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The Surface Crack Problem for a 
Plate With Functionally Graded 
Properties 
In this study the plane elasticity problem for a nonhomogeneous layer containing a 
crack perpendicular to the boundaries is considered. It is assumed that the Young's 
modulus of the medium varies continuously in the thickness direction. The problem 
is solved under three different loading conditions, namely fixed grip, membrane 
loading, and bending applied to the layer away.from the crack region. Mode I stress 
intensity factors are presented for embedded as well as edge cracks for various values 
of dimensionless parameters representing the size and the location of the crack and 
the material nonhomogeneity. Some sample results are also given for the crack- 
opening displacement and the stress distribution. 

1 Introduction 
In today's highly demanding technological environment, one 

of the main challenges in new material design appears to be 
combining seemingly irreconcilable thermomechanical and 
strength properties in the same component. For example, in 
high-temperature applications the material is required to have 
high heat and corrosion resistance as well as high mechanical 
toughness and heat conductivity. Similarly, in such components 
as gears and bearings, it may not be possible to find the required 
degree of high wear resistance and high toughness in the same 
homogeneous material. In very high-temperature applications 
the potential of basically homogeneous materials appears to be 
limited and in recent years the new trends in material design 
seem to be toward coating the main load-bearing component, 
generally a superalloy, by a heat-resistant layer, generally a 
ceramic (Batakis and Vogan, 1985; Houck, 1987). However, 
from a structural view point these homogeneous thermal barrier 
coatings have certain disadvantages such as high thermal and 
residual stresses and relatively poor bonding strength. As a 
result, generally the layered medium becomes very susceptible 
to cracking and spallation. One concept that seems to be quite 
effective against these shortcomings is replacing the homoge- 
neous coating by, or introducing between the coating and the 
substrate, a metal/ceramic composite layer with a composition 
varying continuously from 100 percent metal near the substrate 
to 100 percent ceramic near the surface. These new materials, 
called functionally graded materials (FGMs),  have recently 
been introduced primarily to take advantage of the heat and 
corrosion resistance of ceramics and the mechanical strength of 
metals, and at the same time, to reduce the magnitude of residual 
and thermal stresses (Hirano and Yamada, 1988, Hirano et al., 
1988, Niino and Maeda, 1990); see also Yamanouchi et al., 
1990, and Holt et al., 1992 for review, applications, and exten- 
sive references). 

In designing components involving FGMs, an important as- 
pect of the problem is the fracture mechanics which requires 
the calculation of the crack driving forces such as the stress 
intensity factors on one hand and the resistance characterization 
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of the material on the other. In this study the plane elasticity 
problem for a nonhomogeneous layer containing an internal or 
an edge crack perpendicular to the boundaries is considered 
(Fig. 1 ). It is assumed that the elastic properties of the medium 
vary continuously in thickness direction and the loading is per- 
pendicular to the plane of the crack. In addition to representing 
a relatively common structural component, the part/crack ge- 
ometry and loading conditions considered in this study may be 
particularly useful in the fracture mechanics characterization of 
FGMs. The previous studies on the plane elastic mode 1 crack 
problems in FGMs deal mostly with unbounded media and, 
therefore, are not very suitable for material characterization 
(Delale and Erdogan, 1983; Erdogan et al., 1991; Konda and 
Erdogan, 1994; Ozturk and Erdogan, 1993). 

2 Formulation of the Problem 
The problem under consideration is described in Fig. 1. The 

external loads are assumed to be such that the plane of the crack 
is a plane of symmetry and the crack problem is one of mode 
I. Thus, in analyzing the problem it is sufficient to consider 
one-half (y > 0) of the medium only. Also, through a proper 
superposition, the problem is assumed to have been reduced to 
a perturbation problem in which the crack surface tractions are 
the only nonzero external loads. The previous studies indicate 
that the influence of the Poisson's ratio on the stress intensity 
factors is not very significant (Delale and Erdogan, 1983; Konda 
and Erdogan, 1994). Therefore, to make the analysis tractable, 
it is further assumed that the Poisson's ratio of the graded 
medium is constant and the shear modulus is given by the 
following two-parameter expression: 

#(x) = #oe ~x ( 1 ) 

where fl is a positive or negative constant. The equations of 
plane elasticity for the nonhomogeneous medium may then be 
expressed as 

02U 02U 02U 
( K +  1) 0~v2 + (K - 1 ) - - + 2 - -  Oy 2 OxOy 

Ou Ov 
+ ~(~ + 1 ) ~  + ~(3 - ~ ) ~  = 0, 

(K + 1) 02-----~- + (K - 1) 02v 02u 
022 OX--'-" ~ + 20x--'~ 

+ f l ( K - l ) ( ~ x +  0~-~ ) = 0 ,  (2a,b) 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 449 

Copyright © 1997 by ASME
Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



11 

b h 
IL  

a¢ 

Fig, 1 Geometry of the crack problem in a layer with graded properties 

Gxx : 
# 

(1 + K ) ~ x  + (3 - ~) , 

# 
O'yy : 

~:-- 1 
( 3 -  K ) ~ x  + (1 + t() , 

Cr~y = /z + , ( 3 a - c )  

where u and v are the x and y components of the displacement 
vector, a0, ( i , j  = x,  y)  are the stress components, and K = 3 
- 4u for plane strain and K = (3 - u) / (  1 + u) for plane stress, 
u being the Poisson's ratio. The mixed boundary value problem 
shown in Fig. 1 must be solved under the following conditions: 

Or,x(0, y) = 0, Gay(0, y) = 0, 0 < y < 0% (4a,b)  

a ~ ( h , y )  = 0, Cr,y(h,y) = 0, 0 - < y  < 0% (5a,b)  

~Txy(X , O) : O, 0 < x < h, (6) 

O'yy(X, O) -~ p ( X ) ,  a < x < b ,  

v(x,  0 ) = 0 ,  O < x < a ,  b < x < h ,  (7a ,b)  

where p ( x )  is a known function. 
We will now assume the solution of (2) in the following 

form: 

u ( x , y ) =  ®A(y,a)e-~"~dce + -2 3 ~ ( x , a ) c o s a y d a ,  
7r 

1 L v(x ,  y)  = ~ gl(Y,  a)e-i~Xda 

+ - g2(x, ol) sin ayda. (8a ,b)  
71" 

From (2) and (8) it may be shown that 
4 

gl(Y,  a )  = ~ Dj(o~)e% y, 
j=l 

4 

f~(y,  a )  = ~ mjDj(a)e~J y, (9a,b)  
j = 1 

Y 1 ~/yz + 4 (a2  + i/3~3-, nl = -n4  - 2 2 

~ = - n 3  - z' 1 ~/i~,~ + 4 ( . ~  + i/3~), (lOa,b) 
2 2 

~ =  

T = /3 x/(3 - ~:)/(1 + K) , (11) 

( K - - 1 ) ( a 2 + i / 3 a ) - - ( K + l ) n ~  ( j  = 1 , . ,4 )  (12) 
[/3(K - I ) - 2ia]nj 

4 
p x g2(x, a )  = ~ A~(a)e J , 

j=l 
4 

p .x f2(x ,  a )  = ~ qjAj(a)e ~ , (13a,b)  
j=l 

P. = _ ~_ _ _1 ~/32 + 4a2 + 4 i y a ,  
2 2 

P2 - /3 1 ~//32 + 4a2 _ 4 i y a ,  
2 2 

P3 = - fl-- + 1 ~//32 + 4a2 + 4iyce, 
2 2 

/3 + 1 ~//32 + 4a2 _ 4iTch, P4 : - ~- ( 1 4 a - d )  

(• - 1)(f l  + pj)py - (• + l ) a  z 
q j =  

o42pj  + / 3 ( K  - 1)]  

( j  = 1 . . . .  4) .  (15) 

Since the stresses vanish as y ~ ~,  from (9) and (10) it may 
be seen that 

D:~(a) = 0, D4(o~) = 0. (16a,b)  

We now introduce the new unknown function 

0 
g(x )  = ~x v (x ,  0). (17) 

By using (6) and (7b) and by substituting from (17) and (9a)  
into (8b),  we obtain 

( mz___._n2 -_ ia )___ii I i '  D l ( a )  = (m2n2 - m ln l )a  __ g(t)ei~tdt '  

(ml____n! --2 ia)___~i I b 
D z ( a )  = - (mzn2 - m ln t )a  _, g(t)ei"tdt .  (18a,b)  

Similarly, using (8) ,  (9) ,  (13),  (3) ,  and (18) ,  from the 
homogeneous conditions (4) and (5) it follows that 

4 I~" [(1 + K)qjpj + (3 - K)a]Aj = F~(a, t ) g ( t )d t ,  
j=l 

4 fi3 (pj - aq~)Aj = F2(ce, t ) g ( t )d t ,  
j=l 4 g 

[(1 + K)qjpj + (3 - K)a]el'?Aj = fa(oG t ) g ( t )d t ,  
j : l  

4 I [(pj - eeqj)ePJhAj = F4(a, t ) g ( t )d t ,  ( 1 9 a - d )  
j=l 

I AA~) = G ( a ,  t)g(t)dt, ( j  = 1 , . ,  4 )  (2O) 

giving 

where the functions F~ and Cj, ( j  = 1 . . . .  4) are given in the 
Appendix. Note that g( t )  is the only unknown function which 
may be determined from (7a) .  

3 D e r i v a t i o n  o f  t h e  I n t e g r a l  E q u a t i o n  

From the formulation given in the previous section c% may 
be expressed in terms of Ai and Dj as follows: 
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The stress distribution in the uncracked layer under fixed grip Fig. 2 
loading ¢0 = Eteo/(1 - v =) 

0 . 0  0 . 6  1 .0  0 . 0  0 . 5  1 .0  

z/h z/h 

Fig. 4 The stress distribution in the uncracked layer under bending, @n 
= 6M/h  2 

O'yy(X, y )  = -~(--f! 1 ~ [ (1  + tc)nj 
~ : -  1 s=, 

- (3 - ~¢)icemj]Dje"Y-i"Xdce 

+ - [ ( 1  + K)a 
71" ' =  

+ (3  - K)qjpj]AieP; ~ cos  ceyda}. ( 2 1 )  

Subs t i tu t ing  f r o m  ( 1 8 ) ,  ( 2 0 ) ,  and  ( 2 1 )  into ( 7 a ) ,  we  ob ta in  

[h~(x, t) + h2(x, t)]g(t)dt -- #(x) p(x), 

a < x  < b,  ( 2 2 )  

1 .5  

1 .0  

~7 

0 . 5  

0 . 0  

- - 0 . 5  
0 . 0  0 . 6  1 .0  

X/h, 

Fig. 3 The stress distribution in the uncracked layer under membrane 
loading, ~r t = N/h 

± 
hi(x, t)  = lirn | K l ( y  , a)e~"(N)da, 

y-+O 2zr 

hz(x, t)  = lira ~ f ~  K2(x, t, a) cos  aydce, 
y-~+o 27r 

( 2 3 a , b )  

i 
K,(y, ce) = { [ (1  + K)nl  

ce(m2n2 - m,nl) 

- (3  - K)iolml](m2nz - io¢)e'hY 

+ [(1 + ~¢)n2 - (3  - K)iam2](ia - mlnl)e"2Y }, 

K2(x, t ,  o~) 
4 

= Y~ [(1  + K)o~ + (3 - K)qsps]eI~J~Cj(a, t). 
j = l  

( 2 4 a , b )  

% 

10 
/ 

/ 

6 . 0.1 i 1 ~  

k~,/  / / "  Y 
.4 1 f  / 

0 . o  0 . 1  0 . 2  0.3 0.4 0 . 5  

c~ ' / u  

Fig. 5 The stress intensity factors for a symmetrically located internal 
crack in a graded layer under fixed grip loading, (a + b)/2 = h/2, (b 
a)/2 = a',  ~ro = E1~0/(1 - v2); solid lines refer to kl(a) and dashed lines 
to kl (b) 
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Fig. 6 The stress intensity factors for an internal crack in a graded layer 
under membrane loading, (a + b)12 = 0.3h, a' = (b - a) /2,  ~rt = NIh 

0 .8  / /  
0.6 

.g 0.4 

0 . 2 .  

0 . 0  
0 . 0  0 . 1  0.2  0 . 8  0 . 4  0 .5  

- ' / h  

F i g .  7 The stress intensity factor for an internal crack in a graded layer 
under bending, (a + b)12 = h /2 ,  a '  = (b - a ) / 2 ,  ~r~ = 6 M / h  2 

Observing that for [a [ ~ c~ the asymptotic value of K~ is 

Kt®(y, a )  = - 4 i  ~ - 1 l a l  e_l . ly  ' (25) 
~ + 1  a 

by adding and subtracting K~= to and from the integrand, from 
(23a) we find 

4 ( K -  1) ( 1 + k ~ ( x , t ) ) ,  (26) 
h l ( x ,  t) = --------~Tr(K t - x 

kl(x, t) 

K + I  f_~ - 8 ~  Z ] )  [Kl(0,  a )  - K~(0 ,  a)]ei"(t-X)da. (27) 

Note that the singular term (t - x) -~ in the kernel h i ( x ,  t) 
is associated with an embedded crack in an elastic medium and 
leads to the standard square-root singularity for the unknown 
function g ( t ) .  It may easily be shown that for a > 0 and b < 
h, h2(x,  t) and k~(x,  t)  remain bounded in the closed interval 
a -< (x, t) -~ b. However,  for the case of  an edge crack, at a 
= 0 or b = h g ( t )  is known to be nonsingular and the kernel 
h2(x,  t) must contribute singular terms to make this possible. 
These singular terms may again be separated by examining the 
asymptotic behavior of the integrand K2(x ,  t, a )  in (23b) for 
a ~ ~ .  Thus, after some lengthy analysis the asymptotic value 
of K2 for a ~ ~ was found to be 

K2=(x, t, a )  - 8(t< - 1________) [2a2xt _ a (x  + 3t) + 2 ]e  -"<'+x) 
t < + l  

- [2a2(h  - x ) ( h  - t) - a ( h  - x )  

- 3a (h  - t) + 2]e  .(2, . . . .  ) (28) 

Substituting y = 0 and evaluating the integrals, from (23b) and 
(28) the singular and bounded terms in h2 may be obtained as 
follows: 

4 ( K -  1) 
h2(x,  t)  - - -  [ k , ( x ,  t) + kb(X, t ) ] ,  (29) 

7r(K + 1) 

In determining K2~ most of the analysis was performed by using MAPLE and 
the related integrals were evaluated by using contour integration. 

1 6x 4x 2 1 
ks(x ,  t) = - - - + - -  + 

t + x  (t + x )  2 (t + x) 3 2 h - x -  t 

6(h  - x) 4(h  - x)  2 
+ 

(2h - x - t) 2 (2h - x - t) 3 ' 

kb(x, t) 

K + 1 
f o  [K2(x ,  t, a )  - K2~(x,  t, a ) ] d a .  

8 ~ 2 1 )  

The integral Eq. (22) may then be expressed as 

1 f ; I  l + k ~ ( x , t ) + k , ( x , t ) + k , , ( x , t ) l g ( t ) d t  
7r t - -  x 

(30) 

(31) 

1 + •  

4#(x)  
- - - p ( x ) ,  a < x <  b. ( 3 2 )  

In solving the edge crack problem (a = 0) the last three terms 

.> 
o 

I .  

0.2  

0 , I i I i I 

0.0 0 .2  0 .4  0 .6  

b/h 

F i g .  8 Stress intensity factor for an edge crack in a graded layer under 
fixed grip loading, a = 0 ,  cro = E l e o { 1  - ~ )  
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I I I I ~ I 

0.2 0.4 0.6 

b/h 

Fig. 9 Stress intensity factor for an edge crack in a graded layer under 
membrane loading, a = O, o~t = N/h 

in (30) may be treated as Fredholm kernels. However, in the 
"free end" problem a = 0 and b = h, (32) is still valid, but 
all six terms in (30) as well as (t - x) -~ have to be treated 
as singular kernels (Bakioglu and Erdogan, 1977; Gupta and 
Erdogan, 1974). 

4 On the Solution of the Integral Equation 
For the case of an embedded crack, a > 0, b < h, the solution 

of (32) is quite straightforward. First the interval is normalized 
by defining 

b - a  b + a  b - a  b + a  
t = - - r + ~ ,  x -  s + - - ,  

2 2 2 2 

g ( t )  = OF(r), p ( x )  = f ( s ) .  (33) 

Then, observing that the fundamental solution of (32) is (l  - 
r 2) ~z, the unknown function is expressed as 

&(r) = ~ B,,T,(r),  - 1  < r < 1, (34) 
0 

E 2 / E t =  O. I 
0.2 
1. 

0 i I i I i I i , I  

0.0 0.2 0 , 4  0.6 0.8 

b/h 

Fig. f0 Stress intensity factor for an edge crack in a graded layer under 
bending, a = 0, ~rb = 6M/h 2 

0 ° 5  " 

0 . 4  ~ £ t  =0.2 

0.2 

0.1 

0.0 
0.0 0.5 1.0 

=/b 

Fig. 11 Crack surface displacement for an edge crack in a graded layer 
under fixed grip loading for various values of the nonhomogeneity param- 
eter E21EI, bib = 0.2, V(s) = v(x, O)/2heo 

where T,, is the Chebyshev polynomial of the first kind and B~, 
B2 . . . .  are unknown constants. In this case from (7b) and (17) 
it follows that 4' must satisfy the following single valuedness 
condition: 

f 4 ) ( r )dr=  O. (35) 
l 

By using the orthogonality conditions for T,,, from (34) and 
(35) it may be seen that B0 = 0. The remaining constants are 
then determined by substituting from (33) and (34) into (32) 
and by using a convenient collocation method. 

After determining B[, B2 . . . .  the stress intensity factors and 
the crack surface displacement may be evaluated from 

k](a) = lira 4#(x) ~ _ a ) g ( x )  
:,~a 1 + K 

4,a(a) b - a 

_ 

k,(b) = -lira 4~(~) 2~ - x)g(x) 

4#(b)~ b ~ b  - a 
- ~ 2 --B"' (36a, b) 

I 

v(x ,  O) b - a ~/1 - s 2 ~ B'--2 U,,_l(s), (37) 
2 ~ n 

where U,, is the Chebyshev polynomial of the second kind. 
In the edge crack problem, a = 0, we again normalize the 

interval by defining 

0.5 

0.4 

0.3 

0.2 

0. t 

0,0 

, 5 °  

0.0 0.5 1.0 

=/b 

Fig. 12 Crack surface displacement for an edge crack in a graded layer 
under membrane loading, b/h = 0.2, V(s) = [El/(1 - ~ ) ] [v (x ,  0)] /2het 
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~ ° ' 6 ~ x  ~ 

0 . 4  

0 . 2  " ~  

0.0 
0.0 0 . 5  1.0 

x / b  

Fig. 13 Crack surface displacement for an edge crack in a graded layer 
under bending, blh  = 0.2, V(s) = [E~/(1 - u=)][v(x, 0)]/2hub 

b b 
t = ~ ( 1  + r ) ,  x = ~ ( 1  + s ) ,  

g(t) = oh(r), p(x) = f ( s ) .  (38) 

In this case from the generalized Cauchy kernel given by (30) 
it can be shown that the weight function of the solution is (1 
- r) - I n .  We then express the solution as follows: 

1 
~(r) = ~ o  A,T,(r), - 1  < r <  1. (39) 

For a = 0, in the integral Eq. (32),  the Cauchy kernel (t  - 
x) < and the first three terms of k,(x, t) are singular. However, 
it should be observed that at t = 0 the sum of these four singular 
kernels is zero. The singular terms in (32) may be evaluated 
by observing that (Kaya and Erdogan, 1987) 

-.1 ~ / 1 : 7 ( 7 "  -- liT) 1 ~ ; 7 ' 7 -  : 7 dr/" 

+ T,,(a) , (40) 
"1 q l  - -  r ( r  - a) 

where a is real, on the right-hand side at r = a the first integral 
is bounded, and the second integral is given by 

f f  = a < 1, (41) 
d r  log I n ( a ) [  

t ~/1 - r ( T  - cy) ~/1 - a ' 

1 + ~ ( 1  - or)/2 
B(a) = , (42) 

1 - x/(1 - ry)/2 

f = _ d r  ( - 1 ) m ~  

-, ~ - r ( r  - #)m (m -- 1)(1 -- or)(1 + a )  m-' 

2m ~(i3 f d-L 
+ 2(m Z 1 - a )  , 41 - r ( r  - a),,,-t 

a <  1, m = 2 , 3 ,  i . . .  (43) 

In (43),  the strongly singular integrals are treated in the Hada- 
mard sense (Kaya and Erdogan, 1987). Note that after nor- 
malizing (32),  a is either s or - ( s  + 2) and - 1  < s < 1. All 
other bounded integrals in (32) are evaluated by using Gaussian 
quadrature and the resulting functional equation is solved for 
A~ . . . .  AN by collocation. 

In this case, too, once the coefficients A, are determined, the 
unknown function is obtained essentially in closed form and 
the stress intensity factor and the crack surface displacement 
may be expressed as 

k,(b) = - l i m  4#(x)  ,~2(b - x)g(x)  
x~b 1 + K  

- 4 # ( b ) ~ A , ,  ' 
I + K  0 

b ~ [ s in  (n - ½)0 sin (n + ½)01 
v(x, O) = - - . r E ,  A,, ,  ----? + . . . .  1 -  ' 

q2 o L n - ~  n + ~  

(44) 

(45) 

cos 0 = (2x - b)/b. (46) 

5 R e s u l t s  a n d  D i s c u s s i o n  

The mode I crack problem described in Fig. 1 is solved for 
a = 0 and a > 0 under three loading conditions. The first is a 
"fixed grip" loading with %.(x, 7-c~) = e0 for which the crack 
surface traction defined by (7a) becomes 

8/z(x) 
p(x) = -o%.(x) - - -  e0 (47) 

1 + •  

for both plane-strain (c~z = 0) and plane-stress (a= = 0) condi- 
tions. Observing that/~(x) = #0 exp(flx) and K = constant, in 
this problem we define the normalizing stress as 

8/1,0 El 
= Co - - -  Co (48) ~ 0  1 + K  1 - u  2 

where E(x) = El exp(flx) and for plane stress EJ(1 - u 2) 
should be replaced by E,. 

The second loading is a "membrane"  resultant Nyy = N 
applied along x = h/2 away from the crack region, and the 
third is bending Mz~ = M. For these two loading conditions the 
normalizing stresses are defined by 

at = N/h, c% = 6M/h 2. (49a,b)  

In the last two cases the compatibility condition 02%,/0x 2 = 0 
would give 

8/4x)  
~y(X) = (Ax + B) (50) 

1 + ~ :  

where the constants A and B are determined from 

£ fl Oy(x)dx = N, Cry(x)xdx = M (51a,b)  

by assuming M = 0 for membrane loading and N = 0 for 
bending. The crack surface traction p (x) would then be obtained 
by letting p(x) = -cry(x) .  The results given in this study are 
calculated under plane-strain conditions. 

For the nonhomogeneous medium considered it is assumed 
that u is constant and E(x) or /z(x) is characterized by two 
parameters which are selected to be E1 = E (0 )  and E2 = E(h) 
giving 

flh = log (E2/Et). (52) 

Figures 2 - 4  show some sample results for the stress in the 
uncracked medium obtained from (47) and (50) for various 
values of the material nonhomogeneity parameter E2/E~. Note 
that the results given for E2/E~ = 1, 2, 5, 10, 20 in Figs. 3 and 
4 may also be interpreted for E2/E1 = 1, 0.5, 0.2, 0.1, 0.05, 
respectively. Under membrane loading the ends are free to rotate 
and, as a result, the stress distribution exhibits some bending 
effects which, depending on E2/E~, can be quite severe 
(Fig. 3). 

Some examples for the stress intensity factors in the nonho- 
mogeneous layer containing an embedded crack (i.e., a > 0, b 
< h, Fig. 1) are shown in Figs. 5 -7 .  In these figures a '  - (b 
- a)/2 is the half-crack length and ka = kl(a)/oi~a', kb = 
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Table 1 The normalized stress intensity factors k l lo 'o~ ,  k l / o ' j b  and k~lcr~/b resulting from, respectively, a fixed grip 
loading, membrane loading and bending of a graded layer containing an edge crack, o'0 = E~o/(1 - ~ ) ,  o., = N/h ,  O'b = 
6M/h  2. 

b/h 

Ez/E) = 0.1 E2/Ei = 0.2 E2]Ei = 0.5 

k l  k~ k~ k~ kj k~ k~ kt k~ 

0.1 1.1648 0.8129 2.0427 1.1670 1.0553 1.6743 1.1766 1.t897 1.2840 
0.2 1.2963 1.2965 1.9040 1.3058 1.3956 1.5952 1.3336 1.4150 1.2618 
0.3 1.5083 1.8581 1.8859 1.5330' 1.8395 1.6122 1.5922 1.7559 1.3128 
0.4 1.8246 2.5699 1.9778 1.8751 2.4436 1.7210 1.9872 2.2598 1.4398 
0.5 2.3140 3.5701 2.2151 2.4031 3.3266 1.9534 2.6032 3.0331 1.6744 
0.6 3.1544 5.1880 2.7170 3.2981 4.7614 2.4037 3.6359 4.3187 2.0992 
0.7 4.9305 8.4818 3.8953 5.0272 7.5248 3.3536 5.6098 6.7657 2.9407 

EJEi = 0.6 EJEj = 0.7 E2/E~ = 0.8 

0.1 1.1795 1.1967 1.2173 1.1821 1.1984 1.1635 1.1846 1.1970 1.1187 
0.2 1,3414 1.4068 1.2041 1.3485 1.3974 1.1572 1.3553 1.3874 1.1180 
0.3 1.6080 1.7330 1.2604 1.6224 1.7122 1.2177 1.6358 1.6933 1.1818 
0.4 2.0163 2.2214 1.3903 2.0429 2.1886 1.3498 2.0673 2.1599 1.3157 
0.5 2,6551 2.9774 1.6254 2.7024 2.9308 1.5854 2.7460 2.8908 1.5517 
0.6 3.7285 4.2403 2.0477 3.8131 4.1765 2.0059 3.8914 4.1220 1.9707 
0.7 5.7801 6.6494 2.8791 5.9381 6.5562 2.8301 6.0853 6.4785 2.7894 
0.8 10.7542 12.4850 4.9108 11.0734 12.3056 4.8310 11.3788 12.1640 4.7683 

EJEj = 0.9 Ez/Ei = 2 EJEi = 3 

0.1 1.1870 1.1937 1.0804 1.2066 1.2187 0.8502 1.2190 1.0738 0.7504 
0.2 1.3615 1.3773 1.0845 1.4132 1.2821 0.8801 1.4461 1.2197 0.7898 
0.3 1.6482 1.6760 1.1510 1.7503 1.5437 0.9612 1.8154 1.4690 0.8760 
0.4 2.0902 2.1345 1.2864 2.2764 1.9573 1.1037 2.3953 1.8654 1.0205 
0.5 2.7860 2.8560 1.5229 3.1196 2.6233 1.3406 3.3339 2.5082 1.2568 
0.6 3.9651 4.0755 1.9408 4.5706 3.7702 1.7512 4.9660 3.6238 1.6640 
0.7 6.2264 6.4150 2.7563 7.3973 6.0025 2.5452 8.1791 5.8121 2.4495 
0.8 11.6862 12.0639 4.7241 14.2834 11.4297 4.4475 16.0887 11.1735 4.3373 

E2/EI = 4 E2/L~i = 5 EJEt = 10 

0. l 1.2289 1.0286 0.6856 1.2372 0.9908 0.6385 1.2664 0.8631 0.5082 
0.2 1.4724 1.1713 0.7305 1.4946 1.1318 0.6871 1.5740 1.0019 0.5648 
0.3 1.8676 1.4137 0.8195 1.9118 1.3697 0.7778 2.0723 1.2291 0.6588 
0.4 2.4912 1.7996 0.9650 2.5730 1.7483 0.9236 2.8736 1.5884 0.8043 
0.5 3.5080 2.4276 1.2003 3.6573 2.3656 1.1518 4.2140 2.1762 1.0350 
0.6 5.2903 3.5226 1.6043 5.5704 3.4454 1.5597 6.6319 3.2124 1.4286 
0.7 8.8280 5.6818 2.3848 9.3936 5.5830 2.3360 11.5755 5.2865 2.1915 
0.8 17.6120 11.0041 4.2649 18.9549 10.8775 4.2109 24.2450 10.5008 4.0512 

k~ (b)/o-~ c~t', (i = o, t, b) are the normalized stress intensity 
factors. In Figs. 5 and 7 the crack is located symmetrically; that 
is, a + b = h,  and therefore the stress intensity factors become 
unbounded as a'  ~ h/2. In all cases as a '  approaches zero we 
have kl(a)  ~ o-y(x)~a', where x = (b + a ) /2  and ay(X) is the 
stress in the uncracked medium shown, for example, in Figs. 
2 - 4 .  For  reference, in each case the figures also show the results 
for the corresponding homogeneous  layer, El = E2. Note that 
under constant strain loading as may be seen from Fig. 2 the 
crack sm'face traction for E2/E~ = 10 is considerably greater 
than that for E2/Ej = 0.1, whereas the normaliz ing stress inten- 
sity factor is the same in both cases. This essentially is the 
reason for the differences in the stress intensity factors shown 
in Fig. 5. 

In the example showing the results for bending (Fig. 7 ) ,  
kl ( b )  < 0 and, therefore, only k~ ( a )  is given. Because of  this, 
these results are meaningful  0nly if  they are superimposed on 
other solutions in such a way that the resulting stress intensity 
factors are positive. 

Figure 6 shows the embedded crack results for (b - a ) /2  = 
0.3h. Note that a ' / h  = 0.3 corresponds to a = 0 for which 
k~ ( a )  becomes unbounded and kl (b )  would be the edge crack 
result at b/h = 0.6. The limiting values of k~(b) calculated 
from the edge crack solution are 

E2/Ei: 0.1 1 10 

kl(b)/~rt~a': 7.337 5.704 4.543 

k~(b)/cr,'fb: 5.188 4.033 3.212 

At a ' / h  = 0.3 even though kl (b)  is bounded, because of the 
sudden change in the crack configuration going from embedded 
to an edge crack, its derivative with respect to a ' / h  becomes 
unbounded and, consequently,  kl (b )  becomes rather ill-defined. 

The final set of  results shown in Figs. 8 - 1 0  present the stress 
intensity factors for the important  case of an edge crack in a 
nonhomogeneous  layer. The results for constant  strain or fixed 
grip loading are shown in Fig. 8. Note that the stress or0 = E~eo/ 
(1 - u 2) is the value of ar~x)  at x = 0. Thus, for all values 

ofEz/E1,  as b/h "--, O, k,/croVb would approach 1.1215, the edge 
crack solution for a homogeneous  half-plane. Also, the magni- 
tude of  the crack surface tractions and, as a result, the stress 
intensity factor increases, with increasing stiffness ratio E2/E~, 
and ki (b )  becomes unbounded as b/h --) 1. 

The stress intensity factor for an edge crack in a graded layer 
under  membrane  loading and bending are given in Figs. 9 and 
10, respectively.  Note that the l imiting values of k~ (b )  for b --* 
0 are given by kj (b )  = 1.1215Cry(0)qb where ~ry(x) is the stress 
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in the uncracked medium shown in Figs. 3 and 4. In these 
problems, too, kl (b) becomes unbounded as b approaches h. 

Finally, some sample results for the crack surface displace- 
ment v(x ,  0) for b/h = 0.2 and E2/E1 = 0.2, 1, 5 are shown 
in Figs. 11-13.  For the three loading conditions very near the 
crack tip x = b the relative values of the crack surface curvature 
are seen to follow the relative magnitudes of the corresponding 
stress intensity factors given in Figs. 8 -10 .  

Comparing the results given in Figs. 2 - 1 0  for nonhomoge- 
neous and homogeneous layers, it is clear that the material 
nonhomogeneity has quite considerable influence on the stress 
distribution and the stress intensity factors. 

Additional results for stress intensity factors are given in 
Table 1. These results may be quite useful for determining the 
stress intensity factors by means of a suitable interpolation in 
a given practical application. They also provide the necessary 
information to be used in a possible application of the line 
spring model for estimating the stress intensity factors in three- 
dimensional surface crack problems for FGM plates. 
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A P P E N D I X  
Expressions for the functions Fl ,  • •, F4 and C~ . . . .  C4 

i l l {  F l (a ,  t) = 2"-~ p e~p' [(3 - K)n, - (1 + ~)ipml] 

X 
nl (m2n2 - ip) 

+ [ ( 3  -- K)n2 
( a  2 + n~)(man2 - mln,)  

n2(i___£_ zLninj)_ } d p ,  
- (1 + t~)ipm2] (a 2 + n~)(m2n2 - mini) (A1) 

i ~ 1 ip,[ce(m2n2 - ip)(mlnl  - ip) 
F2(a, t) = 2~ J ~ ~ e . . . . . . . . .  [ (a 2 + n~)(m2n2 - mini)  

a( ip  - mlnl)(mzn2 - iP ) ]dp ,  (A2) 
+ (a  --5- - f  n~)(nn2n----------~ ~ m--~n,-) 

eL' { = - -  - e  ipt'--h) [(3 - tc)nl - (1 + K)ipm,] F3(a, t) 21r p 

nL ( m2n2 - ip ) 
X (a  z + n2)(mzn 2 -  mtnl) 4- [(3 - K ) n 2 -  ( !  + K)ipm2] 

nz(i____p Z n~hn__L)_ t 
× ( a  2 + n~)(mzn2 - m in i )  ~dP'  (A3) 

i l l  eip( ,_h)[a(m2nz-  ip)(mln,  - ip) 
F4(a,  t) = 2~r p L ( a - - ~ +  n~)(rn2n----~ ~ m~n,-~) 

a( ip  - mln,)(mznz - i p ) ] ,  
+ ( ~  ~- ~ ~ - m ~  -- m l ~ )  ] a p .  (A4) 

4 

Ci(a,  t) = ~., bi j (a)Fj(a,  t) ,  (i = 1 . . . .  4) (A5) 
j -1 

where the matrix (bij) is the inverse of (ao) given by 

a u ( a )  = (1 + •)qjpj + ( 3 -  K)a, a2j(a) = p j -  aqj, 

a3j(a) = [(1 + K)qjpj + (3 - K ) a ] e ' ? ,  

a4j( a ) = (pj -- aqj)eP/'. (A6) 

Note that in ( A 1 ) - ( A 6 )  ml and ng are functions of p and pj 
and qj are functions of a (see Eqs. 10 -15) .  By using the theory 
of residues, the integrals in ( A 1 ) -  (A4) may be evaluated as 
follows: 

K -  1 ceZe t(kl-fl/2) 
F, (a ,  t) - [(2X~ + 2k~ - k,fl) 

K + 1 x~x~(x,  2 + x~) 

X sin (k2t) - fiX2 cos (k2t)], (A7) 

F2(oG t )  

K -~--------~ kl~.2(k ~ + ~k~) k I X~ + k~ - s i n  (XJ)  

K -- | o/2e (h t)(xl+B/2) 
f3(c~, t)  - [(2K~ + 2h~ + h ,p )  

K -Jr- 1 XiX2(X ~ "Jr ~k~) 

X sin (k2(h - t)) + /3X2 cos (h2.(h - t ) ) ] ,  (A9) 

F4(&, t) 2 ae-(h-')(×~+~/2' [ ( ~ )  

X sin (Xz(h - t)) -- ~K2(X~ -~ X~4- ~ )  
1 

cos (kz(h - '))1 ' (A10) X 

X~ = + 2 ' 2 ' 

j( R~ = + a 2 ÷  + 1 +to  

r2 
R2 = a 2 + - - .  ( A l l )  

4 
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The Elastic Field Resulting From 
Elliptical Hertzian Contact of 
Transversely Isotropic Bodies: 
Closed-Form Solutions for 
Normal and Shear Loading 
This analysis presents the elastic field in a half-space caused by an ellipsoidal varia- 
tion of normal traction on the sulface. Coulomb friction is assumed and thus the 
shear traction on the surface is token as a friction coefficient multiplied by the normal 
pressure. Hence the shear traction is also of an ellipsoidal variation. The half-space 
is transversely isotropic, where the planes of isotropy are parallel to the surface. A 
potential function method is used where the elastic.field is written in three harmonic 
functions. The known point force potential functions are utilized to find the solution 
Jbr ellipsoidal loading by quadrature. The integrals for the derivatives of the potential 
functions resulting from ellipsoidal loading are evaluated in terms of elementary 
.functions and incomplete elliptic integrals" of the first and second kinds. The elastic 
field is given in closed-form expressions for both normal and shear loading. 

1 Introduction 
The stress field .generated by elliptical Hertzian contact for 

isotropic elastic materials has been thoroughly investigated. The 
solutions for several cases have been obtained. Haines and O1- 
lerton (1963) studied elliptical contact stress under radial and 
tangential load. Solutions for various cases of the elliptical con- 
tact stress can also be found in the books by Gladwell (1980), 
Johnson (1985), and Hills et al. (1993). These solutions are 
extremely important since the elliptical contact problem arises 
often in engineering applications. For example the contact area 
between a ball rolling in a non conforming groove is an ellipse 
and a railway wheel moving along a convex rail head, or crossed 
cylinders also have elliptical contact geometries (Hills et al., 
1993). 

The evaluation of the elastic field throughout the contacting 
bodies for elliptical Hertzian contact has been obtained by Bry- 
ant and Keer (1982) for isotropy. Their solutions included slip 
and stick zones, based on the results of Cattaneo (1938). Sack- 
field and Hills (1983a, b) also evaluated the stress field for 
elliptical Hertzian contact under normal loading and shear load- 
ing. Although the Sackfield and Hills solutions were written in 
a different form, it can be shown numerically that the stress 
field for normal and shear traction are identical to the Bryant 
and Keer solutions. More concise formulas for the stress field 
are given by Sackfield et al. (1993). For a special case, when 
the minor and major axis of the ellipse are the same, the problem 
may be considered as spherical Hertzian contact. The case for 
normal contact stress was first considered by Huber (1904). 
Hamilton and Goodman (1966) have also examined the prob- 
lem including shear traction, where they express the elastic field 
in terms of complex variables. Hamilton (1983) overcame the 
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complication and gave real explicit expressions for the stress 
field. Sackfield and Hills (1983c) obtained the stress field for 
this problem by limiting the corresponding elliptical contact 
problems solved previously. Hanson and Johnson (1993) revis- 
ited this problem and gave the expressions for the elastic fields 
in a more convenient form. They also gave the relations showing 
equivalence between the different forms of the solutions. 

With recent developments in composite materials (where the 
materials no longer obey an isotropic constitutive law) and 
their applications, it is important to develop methods of stress 
analysis for them also. At the present time, analytical solutions 
to orthotropic or more general anisotropy is still beyond our 
abilities. However, it has been shown that transverse isotropy 
solutions are obtainable in analytic form. Chert (1969) has ob- 
tained the subsurface elastic field in a transversely isotropic half 
space in contact with an elastic spherical indenter. Dahan 
and Zarka (1977) also evaluated the elastic field for spherical 
Hertzian contact (without traction) for transverse i sotropy using 
Hankel transforms. Keer and Mowry (1979) extended the anal- 
ysis to shear loading including regions of stick and slip. Hanson 
(1992) recently evaluated the elastic field for spherical Hertzian 
contact including sliding friction in a more convenient form. 
He also gave the comparation with those results previously 
obtained. 

In the present paper, the elastic field for elliptical Hertzian 
contact including sliding traction for a transversely isotropic 
material is evaluated. Assuming Coulomb friction, the sliding 
traction is taken to be directly proportional to the contact pres- 
sure. The conventional assumption that the addition of a tangen- 
tial load has no effect on the contact dimension or the Hertzian 
pressure is also adopted. Here the boundary value problem is 
solved using the potential method for transverse isotropy which 
was first given by Elliot (1948) and is used in the form by 
Fabrikant (1989). The potential functions are determined by 
integrating the point force Green's functions over the elliptical 
contact area. The partial derivatives of the potential functions 
needed to determine the elastic field are evaluated using Lur6's 
method (1964). This method is based on the fact that the solu- 
tions of the Laplace equation in an elliptical coordinate system 
can be written in terms of three Lame functions. Complete 
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Tx 

, / 1 7  Tx 
Fig. 1 Normal and tangential loading of two transversely isotropic bodies 

evaluation for the partial derivatives of the potential functions 
are given in Appendix A for normal loading and in Appendix 
B for sliding traction. Finally, the elastic fields are expressed in 
terms of incomplete elliptic integrals and elementary functions 
which contain the Cartesian and ellipsoidal coordinates. Those 
expressions are given in Section 4 for normal loading and in 
Section 6 for sliding traction. 

From the solution derived here it can be shown that the 
limiting form to a circular contact area will give the known 
results (Hanson, 1992). Using the limiting form of the expres- 
sions for isotropy (Appendix A in Hanson, 1993), it can also 
be shown that the present results will analytically agree with 
the Bryant and Keer (1983) solutions. 

2 The  B o u n d a r y  Va lue  P r o b l e m  

Consider the state of stress when two identically curved trans- 
versely isotropic bodies are pressed together by a normal load 
and then a tangential force is applied as shown in Fig. 1. Here we 
note that the x and y coordinates are aligned with the principle 
directions of curvature. The radius of curvature being larger in 
the x direction. The dimensions of the contact area are consid- 
ered to be sufficiently small compared with those of the con- 
tacting bodies. Assuming the simplifications introduced by 
Hertz (1882) and Mindlin (1949) we require the solution to 
the problem of an elastic half-space with the contact pressure 
and traction applied within an elliptical region Q. Using Cou- 
lomb friction, the boundary conditions on the surface z = 0 for 
the half-space z > 0 (lower body) can be written as 

x 2 y2 

azz = - p o  1 - ~ 7 -  aZ(1 - e 2) ; 

r = = f ~ a z z ;  % z = L O ~ ,  (1) 

f o r x2 1 a  2 + y2/bZ -~ 1. All surface tractions outside the elliptical 
contact area are zero. Here p0 is the maximum Hertzian contact 
stress; f,  and .,~ are the coefficients of friction in the x and y 
directions; e 2 = 1 - ( b l a )  2, where a is the length of the major 
axis oriented along the x direction, and b is the length of the 
minor axis in the y direction as shown in Fig. 2. 

The objective of this analysis is to obtain the expressions for 
the elastic field in the body z > 0. For this it is useful if the 

elliptical coordinate system (~, 4, ~7) is used. These elliptic 
coordinates are determined as the roots of the polynomial equa- 
tion in s given by 

x z y2 z 2 
- -  + + 1 = 0, (2)  
a2s 2 a2(s 2 - e 2) aa( s  2 - 1) 

w h e r e l - < { 2 < m , e  2 < ~ 2 <  1 , 0 - < 7 2 ~ e  2. Note that when 
= constant, the three confocal surfaces which pass through 

every point of space is an ellipsoid. The ellipsoid corresponding 
to { = 1 degenerates into an elliptic disc in the plane z = 0 
with semi-axis a and b = a~/1 - e 2 (Galin, 1961 ). The differen- 
tial relations between the parameter { and the Cartesian system 
can be written as 

o ~  = X _°~ = y o~ z 

Ox ~3D2' Oy ~ ( ~ 2 - e 2 ) n ~ '  Oz ~ ( ~ - 1 ) O  2 ,  

D 2 x 2 y2 z 2 

= ~ + (~2_  e2)2 + (~2 _ 1 ) - - - - - -~  

a ~ ( ~  - ~ ) ( ~  - rl ~) 
= r - -  = (3) 

These relations will be needed for evaluation of the partial 
derivatives of the potential functions. 

3 Potent ia l s  for Transverse  I so tropy  
Consider the transversely isotropic half-space region z > 0 

where the surface z = 0 is parallel to the plane of isotropy. 
Using cylindrical coordinates, a point force is applied on the 
surface z = 0 at Po, ~b0 with components Tx, Ty, and P in the 
x, y, and z directions as shown in Fig. 3. The potential functions 
for these fundamental point force solutions were given by Fab- 
rikant (1989). For the point normal force P the potentials are 

Fj(p ,  qb, z;  po, 05o) = H %  P ln (Rj + zj),  j =  1,2, 
( m / -  l )  

F3(p,  qS, Z; Po, qbo) = O, 

Z 
e~ = p 2 + p0 ~ - 2pp0 cos ( ¢  - ~0) + z~, zj = - - ,  

7j 

j =  1 ,2 ,3 ,  (4) 
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Fig, 2 Ellipsoidal variation of normal traction 

0 i 0 A2 0 2 (~2 • 02  = + 
A ~ x  + ~ y ,  Ox 2 OY 2 , 2 - O - ~ y ,  

( o3 o3) 
A 3 = ~7 5 - 3 + i 3 oyZOy Oy 3 , 

where H, ml, m2, and 39 are material parameters related to the 
five elastic constants A . ,  A=3, A33, A44, and A66 (see Fabrikant, 
1989). The potentials for concentrated shear loading are given 
as  

F~(p,  dp, z; po, d~o) = H T ~  Y2 ( T A  + TA)x(z~),  
(ml  - 1) 2 

HT2 Y'  (T.A. + TA)x(z2),  
F2(p, ~), Z; po, (~o) = ( m 2 2  1) 2 

iY---2-- (TA. - TA)x(z3),  (5) 
F3(p,  ~, z; P0, ~o) = 47rA44 

where T = Tx + iTy is the complex shear force, an overbar 
indicates complex conjugation and the function X(zj) is defined 
as  

g(z j )  = z j l n ( & + z j ) - R j ,  j =  1 , 2 , 3 .  (6) 

The elastic displacements are denoted by u c = u + iv and w 
in the x, y, and z directions and at = ¢r,x + Cry v, or2 = a.,.x - 
ay;. + 2i%y, and rz = rxz + iTyz are the stress components (see 
Fabrikant, 1989). Furthermore the differential operators A, A a, 
A 3, and A are defined as 

0 2 0 2 
A = A A  = Ox----. 5 + - - .  (7) 

Oy ~ 

4 The Elastic Field for Normal Loading 
Consider a half-space with the surface being free of shear 

stress and a normal contact pressure is applied within an ellip- 
tical region. The potential functions can be obtained by replac- 
ing the force P in Eq. (4) withfc(p0, ~bo)podpod~o and integrat- 
ing the result over the elliptical contact area ~. Heref .(po,  ~bo) 
is the elliptical Hertzian contact stress. The potential functions 
become 

p0H% ~(p,~,z) - -  O(p, 4', zj), j = l , 2 ,  
(mj- 1) 

F3(p,  ~ ,  z)  = O, 

P 

OZ z X 

Y Zzx ~zy 

Fig. 3 Point force loading of a half-space 
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f• 
r ~C(4~ o) 

O(P, 05, z) = Jo f~(Po, 05o) In (R + Z)podpod4o,  

R ~ = p:  + po 2 -  2 p p o c o s ( ~ -  ~o) + z ~, (8) 

where Po is the maximum Hertz pressure and f , .(Po, 05o) is the 
nondimensional pressure variation given as 

f,(Po, 050) = {1 p~ c°s2 05° P~ sin~ 050 },~2 
a :  aZ(1 _ e~ ) . (9) 

Here C(05o) is the boundary of the contact region fL 
To determine the elastic field the partial derivatives of the 

potential functions (8) are needed. Using Lur6's (1964) analy- 
sis, the first partial derivative with respect to z can be written 
in a single integral form as 

O0(p,  05, Z) = 7ra(1 - e2) t/2 f l  ~ dh  
Oz A(X) 

× 1 aZha a ~ ( k  ~ - e 2) a2(h  "7"- 1) ' (10) 

the z direction for each body is denoted as w~ and w2, the 
following relation holds in the region of contact (Timoshenko 
and Goodier, 1951) 

w~ + w~ = c e - A x  ~ - B y  z, (13) 

where a is the relative approach. A and B are constants de- 
pending on the magnitudes of the principal curvatures of the 
two surfaces in contact and on the angle between the planes of 
principal curvatures of the two surfaces. If the axis of the princi- 
pal curvature of each surface are inclined to each other by an 
angle cv, then A and B are determined from the equations 

t A + B =  2 R~ R~ 

F,  + 

1)(1 ),,2 
7 _ cos , (14)  

where 2x(k) = { (k 2 - e2)(k 2 - 1) } 1/2 The evaluation of this 
integral and the other derivatives needed for the elastic field are 
given in Appendix A. Using those results the expressions for 
the elastic field are as follows: 

u" - 27rHpo 2 'yj 
- -  (1 - e2) 1/2 ~ (mj S 1) 

a j=~ 

x { x i z j O , ( ~ j )  - aI, i] + i y i z j 0 ~ ( ~ j )  - a / , : ]  } ,  

2 mj 
7rHpo (1 - eZ) '/2 ~ (mj S 1) 

a j=l 

X {a2F(tpj, e) - xi0~(~j) - y202(~j ) - z~03(~j)}, 

a~ = -47rA66Hpo(1 - ea) ~/2 i {y~ - (1 + m j ) y ~ }  z~ q,3(£j), 
~=1 y i (mj  - 1) a 

_ p o ( 1  - e2) I/2 ~, 

47rA66Hpoa 2 (1 - e2) ' / :  ~', (m-~_ 1) 
j=l 

× { a z , [ 4 ' , ( { ~ )  --  q~2({~)] + x21~ -- y21~ 

W 

0" 2 _-- 

T z = 

+ a2(I12 - I l l )  + i2xyl4} ,  

po(1 e2) 1/2 
(-1)J{x~b,(~j)  + iy~Oz(~j)}. (11) 

a ( ' y l  - -  T2) j = l  

5 E l a s t i c  C o n t a c t  P a r a m e t e r s  

On the surface z = 0, when the coordinate ~ and ~ equal one, 
the polynomial in Eq. (2) becomes an ellipse Eo with semi- 
axes a and a(1 - e2) 1/2 

X a y2 
+ 1 = 0 (Eo). (12) a 2 aa(1 - e 2) 

It was noted before that on the surface z = 0, the ellipsoid ~ = 
constant degenerates for ~ = 1 into an elliptic disk bounded by 
Eo on which ~ = 1. Thus the contact area is an elliptic disk 
bounded by an ellipse Eo. The surface ~ = 1 represents the part 
of the plane z = 0 outside the ellipse Eo (Lur6, 1964). 

Let the two contacting bodies be denoted by 1 and 2. The z- 
axis (z~ and z2 for body 1 and 2) is affixed to each body with 
the positive direction pointing inward and starting fi'om the 
initial point of contact. If the normal surface displacement in 

where Ri and R~ denote the principal radii of curvature at the 
point of contact for body 1 and R2, R; for body 2. 

To obtained the displacement in the contact area we need to 
evaluate the functions the, I//2, and qJ3 as z --* 0 and ~ = 1. Noting 
that when z --* 0, zj ~ 0 as well, it can be verified that t)~, 02 
can be expressed in terms of complete elliptic integrals of the 
first and second kind as 

1 
O l ( l )  = ~ {F(e). - E(e)}  = D(e) ,  

1 
02(1)  e2(1 _ e2 ) {E(e)  - (1 - e2)F(e)}  

B ( e )  
- - -  ( 1 5 )  

(1 - e 2 )  ' 

From Eq. (A16),  it is seen that when ~ -~ 1, ~03 tends to infinity. 
However, the displacements and stresses are bounded along the 
contact surface because in the expressions for the elastic field 
this function is either multiplied by zj or z~ which tend to zero. 
This limit can be evaluated using Eq. ( A I 4 ) ,  and it is readily 
apparent that 

Lira z203(~j) = 0, 
zj~O 

Lim zj~b3 ( ~J) a { x 2 y2 }'/2 
zj-0 (1 - e 2 )  1/2 1 a2 a2(1 _ e2 ) . (16) 

Using the above analysis the normal displacements inside the 
contact region for each body can be found as 

wl = 7rHlp....._.~o (1 - e2) t/2 
a 

× a2F(e) - x2D(e) (1 - e 2) B(e)  , 

w 2 7rH2po (1 - e2) '/2 
a 

{ } × a 2 F ( e ) - x Z D ( e )  ( 1 -  e 2) B(e)  , (17) 

where H~ and H2 are material parameters for each body, while 
B(e)  and D(e) are defined in Eq. (15).  Substitution ofEq. (17) 
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into (13) provides the relative approach and the relations for 
the constants A and B as 

oz = zcbpo(H, + H2)F(e) ,  

A = 7rpo(H~ + 1t2) b--- 7 {F(e)  - E ( e ) } ,  
a2e - 

1 
B = 7rpo(H~ + H2) --t)-e ---7 {E(e)  - (1 - e Z ) F ( e ) } ,  (18) 

where b = a(1 - e2) ~/2 
To find the shape and size of the contact ellipse, one can first 

determine the axial ratio ( b / a )  which can be found numerically 
from the equation given next, 

B ( b / a )  2E(e) -- F (e )  

a {F(e)  - E (e )}  

e = 1 - , b_~ a. (19) 

The major semi-axis a of the ellipse of contact may then be 
obtained from Eq. (18) 

a3 = 3 P ( H i  + H2) E(e ) ,  (20) 
2 ( b / a ) e ( B  + A )  

where P is the total contact force given by P = (2)abpo. In the 
isotropic limit H~ = (1 - u~)/(TrE~), H2 = (1 - u~)/(TrE2) 
and the results in Dyson (1965) and Johnson (1985) are recov- 
ered. 

The solution method to obtain the contact dimensions from 
Eqs. (19) and (20) can be accomplished by a numerical proce- 
dure. Dyson (1965) has produced an approximate empirical 
analytical expression in tenns of the ratio ( A / B )  to replace 
the elliptic integrals in Eq. (19).  An iterative procedure was 
published by Hamrock et al. (1974) to obtain the contact dimen- 
sions. Brewe et al. (1977) introduced a linear regression by the 
method of least squares to solve for the contact dimensions. 
Instead of using a numerical procedure, a solution method with 
the aid of charts can als0 be used. Those methods can be found 
in the available literature (Jones, 1946; Harris, 1966; Walowitt  
and Anno, 1975; Thimoshenko and Goodier, 1970; Roark and 
Young 1975). 

6 The Elastic Field for Shear Loading 

Now consider the half-space as free of normal stress and a 
shear contact stress is applied within the elliptical region ~2. 
Assuming Coulomb friction, the distribution of the shear 
stress inside the contact region ~2 is proportional to the contact 
pressure. The magnitude of  the maximum shear contact stress 
now b e c o m e s f p 0 .  Here f y f~ + if.,, is the complex coefficient 
of friction. The three potential functions can be obtained by 
replacing the complex force T in Eq. (5)  with f P o f ~ ( P o ,  
490) podpod49o and integrating the result over  the elliptical con- 
tact area ~2. The potential functions for this problem can be 
written as 

Fl(p, 49, Z) = Hy~yzpo 

2(m~ - 1) 
( f~-  + fA)x (p ,  49, z,), 

F2(p,  49, Z) = 
HTiT2P0 

2(m~ - 1) 
( f A  + f A ) X ( p ,  qS, z2), 

F3(p, 49, z)  = iy3po ( f  ~ _ Y A ) x ( p ,  49, z3), 
47rA~4 

where 

X(P,  49, z)  = zip(p, 49, z)  - ~b(p, 49, z ) ,  

for" fC(~o) { p02 COS2 490 
qS(p, 49, z) = 1 a2 

~0 

(21) 

P0 ~ sin 2 490 ~112 
ccT~-~ ~-Tg~ j Rpoclpod49o. (22) 

It is important to point out that the derivative of cb(p, 49, z) 
is related to the potential function for normal loading by the 
equation 

O~(p,  49, z) O4,(p, 49, z)  
= z (235 

Oz Oz 

It is also true that X(P,  49, z) is the integral of ~b(p, 4', z) with 
respect to z, so one may write the first partial derivative with 
respect to z as 

Ox(p ,  49, z) 0 
- {z~p(p, 49, z ) - C b ( p , d ) , z ) }  

Oz Oz 

= ~0(p, 49, z). (24) 

To determine the expressions for the subsurface displace- 
ments and stresses, the partial derivatives for the potential func- 
tions in Eq. (21) must be found. Their evaluation are given in 
Appendix B. Using these results the expressions for the elastic 
field can be written as 

UC = 7rHylyzpo(1 - e2) I/2 ~ ! 

2a2 j=l (mj 1) 

× { - f a [ a 2 F ( ~ o j ,  e) - x2~bl((j) - y2qj2((j) - z~qJ3((j)] 

+ f [ a ( a  2 - z~)q,',((j) + a[z f  - a2(1 - e2)]~2(~)) 

- 3ay21t + a ( y  2 - x2)I2 + 2y2zJ3 - 2x2z j8  + 3ax219 

+ 2a2zj(IH - I~2) + i4xy(aIz  - zjl4)] } 

'y3Po(1 - -  e 2 )  I /2  
-- { - f a [a2F(~o3 ,  e) - xZtpl(~3) 

4a 2A44 

-Y2~2(~'3) - Z~3( (3 ) ]  - f [ a ( a  2 - Z~)~/q(~'3) 

+ a[z~ a2(1 2 - - e )]02(~3) - 3ay211 

+ a ( y  2 - x2)I2 + 2y2z3/~ - 2x2z318 + 3ax219 

+ 2aZz3(IiL - Ii2) + i 4 x y ( a h  - z314)]}, 

2 mj 
w 2rcHy~T2po (1 - e2) ~/2 ~ (mj --- 1) 

a j=~ yj 

× {Xfx[ZjOl(~j) - alll] + Y~[ZjO2(~j) -- all2] }, 

47rHA66T/)/2Po (1 - e2) I/z ~ {y? - (1 + m j ) y ~ }  O.I "-~ ~ J 
a j=z y ~ ( m j -  1) 

× {xf~.t~l(~j) -Jc" Y£O2(~j)}, 

2 
1T 2 Po o.~z = (1 - e2) 1/2 Y~ ( - 1 )  j+l 

a(Yl - Y2) j=l 

× {xf~p~(~) + yfy~b2(~) }, 

z 1 27rA~6HT t YzPo ~/~ _ 
o2 = a2 (1 - e 2) ~ (mj 1) 

j=l 
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× {fa[xOl(~j) + iy~ba((j)]  

+ f [X {3a2(19-12) + 3azi(14- l s ) - x 2 l t o  + 3y216} 

+ i ' - Y { 3 a 2 ( 1 2 - 1 1 ) + 3 a z j ( I 3 - I g ) - 3 X 2 I T + y 2 I s } ] } a  

po(1 - e2) I/2 ~" 
. ~ - -  fa[x~pl(~3)  + iy~b2(~3)]  [ a 'Y3 

- - f [ ~  { 3 a 2 ( 1 9 -  1 2 ) +  3 a z 3 ( 1 4 -  1 8 ) - - X 2 I l o  + 3y216 

+ i Y  { 3 a 2 ( 1 2 - -  11) + 3 a z 3 ( 1 3 - - 1 4 ) -  3x217 + Y 2 1 5 } ] }  ' a  

T z = 
YIY2Po(1 - e2 )  In  ~ ( - 1 ) i + ~  

2 a 2 ( y l  -- 'Y2) /=l  YJ 

× {faz/O3(~j) - f[azj{ ~pi(~j) - tpz(~j) } 

- aZ(IH - Ila) + x2h - y2h + i2xyI41} 

P0 (1 - e2)l/2{faz3~b3(~3) 
2a  z 

+ f[az3 { ~0i(~3) - 02(~3)  } 

- a2(Ill - 112) + x218 - yZI3 + i2xyI4] }. (25) 

7 Discuss ions  

The present analysis has derived the elastic field in a trans- 
versely isotropic half-space loaded by an ellipsoidal distribution 
of normal or shear traction. The present results for transverse 
isotropy appear to be new while the problem has been solved 
previously in two different forms for an isotropic material. 

One solution has been presented by Bryant and Keer (1982).  
The method used presently to evaluate the derivatives of the 
potential functions was analogous to that used by them. Hence 
all of the functions used in the present paper are consistent with 
the ones defined in their paper. It is noted here that the results 
in Bryant and Keer (1982) provided the elastic field but the 
individual derivatives of the potential functions were not in- 
cluded as they are presently in Appendix A and B. By using a 
limiting form of the transversely isotropic elastic field, the iso- 
tropic results can also be obtained from the present expressions. 
The limiting forms of the double sums for normal and shear 
loading are presented in Hanson and Johnson (1993).  Using 
this limiting procedure the present analytical results provide an 
isotropic elastic field in agreement with Bryant and Keer 
(1982).  Here it is noted that Eq. (10b) of their paper has a 
misprint in the expression for the stress a~. The last term in 
this expression should be divided by p4 to make it correct and 
consistent with Bryant ( 1981 ). 

A solution for isotropy in a different form has also been 
provided by Sackfield and Hills (1983a, 1983b, 1983c, 1993). 
The present authors have not made an analytical comparison 
between these two different isotropic solutions; however, a nu- 
merical analysis showed that they produced identical results. 
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A P P E N D I X  A 

Part ia l  Der iva t ives  of  the Potent ia l  Funct ion  for Nor-  
mal  Load ing  

The expression for the harmonic potential function for normal 
loading is given in Eq. (8)  as 
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f f ~  fc(4"~ ~ 1 po~COS205o poZsin205o 
tb(p, 05, z)  = .,o a a a2 (1  - e 2) 

X In (R + z)podpod05o. ( A 1 )  

T h e  part ia l  der iva t ives  of  the  potent ia l  func t ion  are n e e d e d  
to ob ta ined  the  elast ic  field. T h o s e  de r iva t ives  can  be  eva lua ted  
as fol lows:  

O¢,(p, 05, z) ~r( 1 - e ~) ~ 
Oz 

{ x2 y~ z ~ } 
× a F ( ~ ° ' e ) - - - 0 ~ ( ~ ) - - - ~ b 2 ( ~ ) - ~  ~ 3 ( ~ )  ' a  a ( a 2 )  

O~O(p, 05, z)  _ -27 r  z (1 - e 2 ) 1 / 2 @ 3 ( ~ ) ,  ( A 3 )  
(~Z 2 a 

02~O(p, 05, Z) --271" X (1 - e2~l/a,hl ( c )  - - ~ ~ ~s , ( A 4 )  
OxOz a 

O2O(p, ' 05, Z) = -2~r  y ( 1 - e ~) I/~4,2((),  ( A 5 )  
OyOz a 

Orb(p, 05, Z) -27r f (1 - e2) t /2{ z~b l (~ )  - aIll }, ( A 6 )  
Ox a 

OO(p, 05, Z) _ 2~r £ (1 -- eZ)~/~{z~02(() -- all2}, ( A 7 )  
0y a 

O~O(p, 05, z) 
Ox ~ 

27"f 
a 2 

o:O(p, 05, z) 
~ 2  

. . . .  (1 - e~)'/2{aztp~(~) - a~IH + x ~ h } ,  ( A 8 )  

27r 
aZ (1 - e~)~/:{az~2(~) - a:I,~ + yZl3}, ( A 9 )  

O~p(p, 05, z) _ 27rxy (1 - e~)m/4,  ( A 1 0 )  
OxOy a ~ 

A &O(p, 05, z) 
OZ 

2~r 
- - - -  (1 - e2)'/~{x~O,(~) + i y t~z (~ )} ,  ( A l l )  

A¢~(p, 05, z)  = - 2~- (1 - ea)  m 
a 

X {x[z~0,(~)  - alH] + iy[z02(~) - a l , 2 ] } ,  ( A 1 2 )  

2~  
azq, ' (p ,  ~ ,  z)  = - ~ (1 - e~)l/~{az[~O,(~) - 0 2 ( ~ ) ]  

a 2 ( I l l  I12)  + X218 -- - - y 13 + i2xyl4}, ( A 1 3 )  

1 
O , ( ~ )  = ~ {F(qo, e)  - E(qo, e ) } ,  ( A 1 4 )  

1 
~b2(~ )  - -  e 2  ( l  - -  e 2)  

{E(qo, e )  - (1 - e2)F(~p,  e ) }  

1 ( ~ 2 -  1 ~1/2 
( A 1 5 )  

E(~p, e )  1 { ~ 2  e2~1/2 
0 3 ( ¢ )  -- 1 -- e - - - - - y  + ( (1  - e 2) ~ - Z - i - J  ' ( A 1 6 )  

f f  dO 
FGo,  e)  = (1 - e 2 sin 2 0 )  1/2 ' ( A 1 7 )  

E(cp, e )  = (1 - e 2 sin 2 0)1/2d0, ( A 1 8 )  

~p = sin ~ ( 1 / ~ ) ,  ( A 1 9 )  

2e----~ ~-5 J14 - ~-5 + J24 

- ~ z ( ~ ,  x ,  y; e ) }  , ( A 2 0 )  

2e---- 7 ~~ Jz4 + - -~ J14 

+ ~ t ( ~ ,  x ,  y;  e ) }  , ( A 2 1 )  

x , y ; e )  + ~  S ( G x ,  y ; e ) }  ; 

e2 > O, y -~ O 

1 
B ~3(~ ,  x;  e )  + / 3 =  ~ _ ( ~ - e ~ ) ~ J  

y = O,x 2 ~ a2e a, 

1 
4U~2 e 2 ) 2 ;  Y = O ,  x = a 2 e z  

1 { J14 J24 } /4 = 2e--- 7 - , 

2 ~ { ~ 2 ( ~ , x , y ; e ) - - ~ £ o ( ~ , x , Y ) } ;  

e 2 > 0 ,  X 2 > 0 

h =  1 f 2 ¢, .~, "e'-~ x~%_y;e)]  ; ' 

x = 0 ,  A < 0  

- S ( ~ ,  x ,  y;  e ) ;  e 2 > 0, y =~ 0 

2 
JH = ~ q~3(~, x ;  e ) ;  y = O, X 2 :¢: a2e 2 , 

l 
~2 - -  e 2 ; y = O, x z = a2e 2 

f - £ o ( G x ,  Y); e z > 0 ,  x ~ > 0 

J24 = 2 
(I)4(~, y;  e ) ;  x = 0, ..A < 0 

S ( G  x,  y;  e )  

= , j~ -~  sin-~ ~ 2  22 ~ 5 ~  - s i n - '  , 

£o(~, x, y) 
r 1 , 2 ' / B X o ( G  x ,  y )  + 2 B  + { 2 A  

I 1 ~2  _ e z . _ 2 _ 
~ s l ° g  ~2 , y -  O , x  - a Z e  2 > 0  

( A 2 2 )  

( A 2 3 )  

( A 2 4 )  

( A 2 5 )  

( A 2 6 )  

( A 2 7 )  
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B = e  2 
X 2 y2 yZ 
a~ a2 ,  C = - e  2-~ , D = ~/B ~ - 4C, (A29) 

X2 Y--~2} X2 
A = - -  e z +~-5 + , B =  e a-a2, (A30) 

Xo(~, X, y; e) 
~1(~, x ,  y ;  e )  - ~ 2  _ e 2 1, 

Xo(~, x, y; e) _ 1, 
~ ( ~ ,  x, y; e) = ~-2 

,~1(~, X; e) 
q)3(~ c , x ; e ) -  ~ _  e~ - 1, 

~I)4 (~, y; e) - X2(~i~; 
e) 

1, 

X o ( ~ , x , y ;  e) = {~ '  + .,_~2 + B}1,2, 

X,(~,x;e)= {(~2-e2)( ~ ~ j j  , 

X2(~,Y;e)  = ( ~ 2 _  e 2 _ ~ 5 j  " 

(A31) 

(A32) 

A P P E N D I X  B 

P a r t i a l  D e r i v a t i v e s  o f  t h e  P o t e n t i a l  F u n c t i o n s  f o r  

S h e a r  L o a d i n g  

The potential function for shear loading is related to the 
potential function for normal loading by (see Section 6) 

~(p, 4, z) = z~,(p, 4, z) - ~(p, 4, z),  

0 
O~(p, 4, z) z O(P, 4, z) .  (B1) 

oz ~z 

To determine the elastic field for shear loading, the partial 
derivatives of the potential  function X(P, 4,  z) are needed. 
The complete  partial derivatives may be computed as 

AOx(p,  4, z)lOz = - 2_._~_ (1 - ea) ~/2 
a 

X {x[z~bt(() - alH] + iy[z~b~(~) - al~z] }, (B2) 

AOx(P,  4, z)lOz = - 2_.._~. (1 - e2) ~/~ 
a 

× {x[ztp~(() - aI~t] - iy[z~p2(() - al~2]}, (B3) 

AOex(P, 4, z)/Oz2 

_ 27r (1 - eZ)~/Z{x~0~(() + iyO2(()},  (B4) 
a 
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a 
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× {a2F(~o, e) - xa~b~(~) - y2qJ2(~) - z203(()},  (B8) 
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Ox 3 

= -27r f (1 - e2)t/Q319 
a L 

P¢~(p, c~, z) - - 2 z c  ~ (1  - e2)  1/2 
Oy 3 a 

[311 - y2(~2 _ 1) X 

O~'I'(p, ,b, z)  

x2(~ 2 -  1)'[ 

?ST~5IF J '  

Ox 20y 
2re "-y ( 1 - e 2) t/2 

a 

X2({ 2 -  1) 
X {12 -- ,5({2 -- e2)A(~)O2 } ' 

(B20) 

(B21) 

(B22) 

03¢I)(p, qb, Z) _ 
2"n" f (1 - e2) 1/2 

OxOy 2 a 

_ g ~ C z ! Z  l x I~ {3({2_  e2)22x(OD2j,  (B23) 

A3x(p, ~b, z) = 27r(1 - e2) 1/2 

× 319 - 3h -- 3Z 18 + 3Z/4 -- lm + 3ya a a ~ 7 16 

+i {3,2_3,1 __3z,4 -7 +-3x2 + y2 }] a a a ~-515 , (B24) 

1 15 = ~ (J15 + e2J25), (B25) 

J i io  

J25 =a 

{ z  1 A ~ 2 -  2B L A  2 ] L o ( ~ , x , y )  ~.2 x 2 
o{ I 2, >o 

g =  

~ -  LA~ + A- - X 2 ( ~ , y ; e )  ; x = 0 ,  A < 0  

, (B26) 

{ __~__~ B ! A ~ : 8 ~  
2aB2 [ .{2Xo(~,x ,y;e  ) ~D 2 

z [ 1 [ 16~ 2 8 2 
5a-----A~.x2(e----~y~e--)~ A----5-+~ A~ ) 

( 3 A  2 -  8B){ 2 + ( 3 A  2 -  10B)A 
' D 2 X o ( ~ , x , y ;  e) 

; x = 0 ,  A < 0  

Im = 17 - e 2 j l m ,  

-- ~ J~Lo(~,x, y) } ; e 2 ~ > 0 , x 2 ~ 0  

z { _  2[B({___.~ 2 _ e2_._)) - 2C + B 2] 

a CD2Xo(~, x, y; e) 

j , s =  2_...~ { 8 1 [8(~._~ e2) + 4 
Ba 3B 2 3 B 

Z X2 a2e2 
3a(~ 2 _  e2)3; y = 0, = 

2B 1 1 
S(~, x, y; e)~ ; e 2 > 0, y :¢ 0 

CD 2 C J 

-11 '}" (~2 e2) X,(~, x, e) ' 

3B 2 -  8C 
C2D 2 

(B27) 

(B28) 

y = O, x * a2e 2,  (B29) 

- -  + - S - d s x ( { , x , y ; e )  ; 

e 2 > 0 ,  y ~ 0  

2 z ~ "  1_ 1 2 
5 a B [ x l ( { , x ; e  ) ( ~ 2 -  e2)2 B ( ~ 2 -  e 2 ) 

) 16} 16(~2-  e2) - ~ 5  
+ B 2 + "~ 

y = O, x2 :# a2 e 2 

Z 
4a(~ 2 -e2)4  ' Y = 0 , x  2=a2e  z 

(B30) 

A(~) = [ (~2_  e2)(~2_ 1)],/2, (B31) 

y ( x , y , ~ )  = 1 a2~2 a2(~ 2 _  e2 ) , (B32) 

D = , ~ f - 4 B .  (B33) 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 465 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. B. Park 

G. P. Carman 
Mem. ASME. 

Mechanical, Aerospace and 
Nuclear Engineering Department, 

38-137m Engineering IV, 
University of California, 
Los Angeles, CA 90024 

Minimizing Stress Levels in 
Piezoelectric Media Containing 
Elliptical Voids 
In this paper we present an analytical solution to calculate the stress concentrations 
around an elliptical void in a piezoelectric medium subjected to electrical loading. 
We show that the stress concentrations can be eliminated if the material properties 
satisfy a certain mathematical relation. While a trivial solution exists for this problem, 
we demonstrate that other families of solutions exist (optimal) to minimize~eliminate 
the stresses. The optimal families are shown to be independent of geometry and 
therefore are universally applicable to a specific material system. The optimal families 
do not limit the deformation profile and represent admissible solutions to the problem. 
Numerical studies demonstrate that the entire stress field in the medium vanishes and 
not just at the critical locations as dictated by the mathematics. Finally, we numeri- 
cally demonstrate that the optimal properties are also applicable to the crack problem. 

Introduct ion 
Piezoelectric ceramics are currently being used in a variety 

of active material applications. Some of these include reducing 
vibrations, alleviating flutter, and suppressing noise on aircraft. 
While these applications suggest that piezoceramics offer con- 
siderable benefits, the small displacements provided by the ma- 
terial limits its usefulness. To overcome this limitation, re- 
searchers are applying larger electric fields to the piezoceramics 
with strains an order of magnitude larger than offered in conven- 
tional operations. However, these larger strain actuators show 
considerable degradation during electric fatigue making their 
usefulness questionable in engineering applications. Therefore, 
a focused investigation needs to be conducted on understanding 
the property/structure interactions with the purpose of ex- 
tending fatigue life. 

While a number of experimental reports indicate that electric 
fatigue degenerates a piezoceramic, some offer conflicting ex- 
planations. Carl (1975) reported that microcracks form and 
grow along grain boundaries leading to the degradation of prop- 
erties. Pan (1992) reported that fatigue degradation is related 
to domain pinning issues related to internal defect structures 
and could be eliminated by repoling the material. However, 
Jiang (1993) reported that electric fatigue of piezoceramics is 
related to the porosity of the ceramic with considerable more 
degradation measured in higher porosity materials. Recently, 
Wang et aL (1996) reported that significant fatigue degradation 
occurs in piezoceramics during electric fatigue and is function- 
ally dependent on both the applied electric field and the op- 
erating temperature. Wang et ai. (1996) also report that property 
degradation could not be eliminated by repoling the material. 
While there have been a number of reports on the fatigue pro- 
cess of piezoceramics, all suggest that fatigue mechanisms are 
related to internal defect structures. The fact that significant 
stress concentrations arise around internal inhomogenities sug- 
gests this is a major contributor to the fatigue process. In fact, 
Park et aE (1996b) experimentally demonstrated that damage 
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initiates and grows around internal void-like defects. Since in- 
ternal stresses around these anomalies are dependent upon the 
piezoelectric material properties, a focused study needs to be 
implemented on evaluating if optimal properties exist to mini- 
mize the local stress concentrations. 

In regards to analytical studies related to electrical fatigue, 
fracture mechanics has been used. Using different approaches, 
researchers found that stress fields are decoupled with electric 
fields along the self-similar plane of the crack Patton (1988). 
That is, in the plane of the crack electric fields do not induce 
any stress concentration. This implies that stress intensity fac- 
tors, which are widely used as a measure of fracture toughness 
(and fatigue life) for nonpiezoelectric materials, are indepen- 
dent of electric field. However, this fact is contradicted by ex- 
perimental evidence available in the open literature. The total 
potential energy release rate was also proposed as a fracture 
criteria (Pak, 1990; Suo, 1992). According to this criterion, all 
electric fields theoretically retarded crack propagation, a fact 
contradicted by experiments. More recently the mechanical 
strain energy release rate was suggested (Park and Sun, 1995a, 
b) and successfully used to predict the experimentally observed 
relation between fracture toughness and electric field strength. 
While all of these studies provide useful information regarding 
stress concentrations around internal anomalies, they did not 
attempt to evaluate the property structure interactions with the 
purpose of finding optimal properties which would eliminate 
the critical stress fields causing fatigue degradation. 

Based on this introduction, electric fatigue of piezoceramics 
is attributable to the presence of internal defects. Furthermore, 
most analytical studies investigating this phenomena have fo- 
cused on evaluating the stress distribution due to defect geome- 
try and not on evaluating property/structure interactions. There- 
fore, in this paper we present an analytical study to investigate 
electric field induce stresses around an arbitrary elliptical defect. 
Using a proposed criteria, we demonstrate that optimal proper- 
ties exist to eliminate the stress fields around the defect and do 
not limit the deformation of the piezoceramic. These optimal 
properties are shown to be independent of defect geometry and 
are applicable to the crack problem. 

Analytic  Solution for Defects in a Piezoelectric  Me- 
d ium 

Voids or defects present in piezoelectric ceramics may be 
thought as randomly distributed ellipsoidal shaped cavities (see 
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Fig. 1 (a)).  The specific geometry of the ellipses can vary from 
a circular hole to a slit-like crack. Since in any given piezoce- 
ramic there exists essentially a random distribution of these 
cavities, it is important to understand the stress concentrations 
which arise around each. The internal defects can be analytically 
modeled as two-dimensional hole-like defects (see Fig. 1 (b)) 
for simplicity. If we wish to physically understand the basic 
relation between material properties and stress/electric field 
concentrations, we can assume that interaction effects are sec- 
ond order and thereby reduce the model to a single defect as a 
first-order approximation (see Fig. 1 (c)). 

Following Lekhnitskii's (1981) complex potential formula- 
tion for anisotropic plates, Sosa (1991) obtained a closed-form 
solution for the problem of an elliptical defect embedded in a 
piezoelectric material. In this section, we briefly summarize the 
approach and results from the closed-form solution. Following 
this we present the formulation to predict optimal properties for 
the various elliptical cavities. Optimal in the current context 
implies that the electric-field-induced stresses around the cavi- 
ties are eliminated. Park and Carman (1996a) previously ex- 
plained the physical existence of optimal properties for circular 
shaped voids with parametric studies. They attributed the opti- 
mal properties to the local stresses generated by two competing 
physical phenomena related to either the shear strain piezoelec- 
tric coefficients or the longitudinal strain piezoelectric coeffi- 
cients. 

Consider a piezoelectric medium which has an elliptical hole 
at the center. Based on linear piezoelectricity, the constitutive 
relations can be written as 

So D o = S,jktakl + g~uDk, Ei : --gildO'k/ + f l i k /Dk  (1) 

where s ~  is the compliance tensor measured at constant electric 
displacement, gku is the piezoelectric stress tensor, and/3~ is 
the dielectric impermeability tensor measured at constant stress. 
Although there are several different types of expression for the 
constitutive relations (Ikeda, 1990), the expression in Eq. (1), 
called g-form, which has stresses, crkz, and electric displace- 
ments, Dk, as independent variables was chosen to facilitate the 
development of complex stress potentials. 

Equilibrium equations are written as 

¢ru# = O, Di.i = 0. (2) 

Generally, the x3-axis is used as the poling direction in the 
material principal axes, x~ - x2 - x3. Most piezoelectric ceram- 
ics have a tetragonal structure and are transversely isotropic 
with the x3-axis normal to the isotropic plane. For our problem, 
the x~ = x3 plane is the working plane and it will be denoted 
as the x - y  plane. By reducing the problem to a two-dimensional 
plane-strain plane strain case, the following conditions are im- 
posed: 

S22 = S32 = S12 = E2 = 0. (3) 

With some algebraic manipulations after applying Eq. (3) into 
Eq. (1), the two-dimensional constitutive relations can be ob- 
tained in the following reduced matrix form: 

(a) 

© °%0 
0 o  

• Y 

L i 

bl 

Y 

- -  x, 

(b) (c) 

Fig. 1 Modeling of defects: (a} three-dimensional defects, (b) two-di- 
mensional defects, (c) unit cell two-dimensional defect 

t Syv = 2 a22 0 O'yy 
Ly 0 a33 O~yj 

b13 

{El} __ Ib01 622 ~3 O.yy/ _~ [~;1 (~02] (O~} , (5) 
O'xy j 

The constants of a u, b u, and 60 are reduced stiffness, piezoelec- 
tric coefficients, and permittivity values for a plane-strain prob- 
lem. 

The solution for the stress and electric displacement can be 
expressed as a function of ~Pk as follows (Sosa, 1991 ): 

3 3 
~rxx = 2 Re Z #~¢p~(zk), ayy = 2 Re Z ¢p~(zk), 

k=l k=l 
3 

~rxy = - 2 Re ~ #k~P ~- (Zk) 
k=l 

3 3 
Dx = 2 Re ~ k~#4o~-(zk), Dy = - 2  Re ~ hkcp~(z~). (6) 

k=l k=l 

In the current problem two boundary conditions must be 
stated. One is the far-field mechanical and electrical loading, 
and the other is the boundary conditions along the inner surface 
of the ellipse. Far-field loading can be denoted as 

GrL, O'~V , O'er, D~., and D~ at z = ~ .  (7) 

The rim of the ellipse is traction free and to a first-order 
approximation it can be argued that the ellipse is electrically 
insulated. The validation of the latter boundary condition is 
justified by the fact that the dielectric permittivity of piezoelec- 
tric ceramics is three orders of magnitude higher than that of 
air or vacuum. Hence, boundary condition along the rim of 
ellipse, F, can be written as 

t = 0 and D ' n  = 0  o n F  (8) 

where t is the traction vector and n is the normal vector of 
elliptical contour F. Using the boundary conditions of Eq. (7) 
with the Eq. (8), the full-field stress distributions can be calcu- 
lated. 

Applying the hole boundary conditions, the complex potential 
function can be obtained as 

3 zk - A~, - (a 2 + bZ#~) (9) 
qgk(Zk) = (UBk  + iB[ ) z~  + ( ~  A j j )  

j=~ a + ib#k  

where Bk and B[ are real constants which can be determined 
by applying the far-field boundary conditions in Eq. (7). The 
lj in Eq. (9) can be expressed as 

lj = ( -aCr~y  + ibcr~y) /2 ,  12 = (acr~, - i b o ~ ) / 2 ,  

13 = ( a D y  - i b D . ~ ) / 2 .  (10) 

Substituting Eq. (9) into Eq. (6), full-field solutions such as 
stresses and electric displacements can be obtained. 

Optimal Properties 
In the previous section a general solution for a piezoelectric 

medium containing an elliptical cavity was presented. In this 
section we will demonstrate that for a specific set of material 
constants the electric-field-induced stresses are eliminated in 
the medium. A trivial solution to this problem is that the piezo- 
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electric coefficients are all zero. However,  we will show that 
another family of  solutions exists. For the current loading condi- 
tion we focus our attention on far-field electrical loading and 
assume that the far-field mechanical  loads are zero. When in- 
vestigating the stress concentrat ion in the medium related to 
this form of loading, the y component  of the stress, i.e., crrr, is 
the pert inent  one to study. The full-field Cry~ distribution for this 
loading is presented as follows: 

a y y = 2 R e L  { ( B ~ + i B ~ )  
k=[ 

1 I 1} + (~ ,  A ~ / ~ ) - -  1 - 
I~1 a + i#~b (z~. - (a ~ + #~b 2) 

(11)  

where z~ = x + /.try. 
The largest stress concentration for this material would be 

expected to occur at the location 0 = 0 on the rim, i.e., x = a ,  
y = 0. Using zk = a reduces Eq. (11)  to 

~ T y y ( X = a , y = O ) =  2 R e  L { ( B k +  iBm) 
k=l  

+ (Y~ A j , ) - -  1 
i.-~ a + i#kb b 

(12)  

where 

3 O_~3, 

2 k=l  

After further simplification, we obtain the following form for 
the stress distribution: 

cry~ (x = a ,  y = 0) = a~. 

+ 2 R e  ( ~  A ~ / ~ ) - - I  1 a . (13)  
~=, j =~ a + i#eb  b 

Considering only electrical loading, the far-field loading be- 
comes 

c r ~ = 0 ,  ~ r~ , , -0 ,  c ~ = 0 ,  D ~ - 0 ,  and 

D ;  = constant a t z  =oc .  (14)  

The stress can therefore be represented as follows: 

Cryy (X = a, y = O) 

= a D ; R e  L { A~ 1 ~ = ,  a + i#~b [1  b & ] } '  (15)  

Algebraic manipulat ion shows that #~ are all purely imaginary 
when it is optimized or eliminated. Considering this, let #~ = 
ifl~ where fl~ are real positive numbers.  Then we have 

a y y ( X = a , y = O ) = - ~ D y R e k = l  \ 1 3 k J  . (16)  

Demanding that ~rsy (x - a ,  y = 0)  = 0, it is obvious that the 
following relation holds: 

One solution to Eq. (17)  is that the piezoelectric coefficients 
are zero, a trivial solution. However,  other admissible families 
exist to meet  this criteria. Furthermore,  the term Ak3/flk is inde- 
pendent  of geometry. Therefore, optimal properties for a given 
geometry are also optimal properties for any other geometry. 
Therefore, the optimal material  properties reported by Park and 
Carman (1996a)  for circular defects are also optimal for any 
arbitrary elliptical defects. In the limit, the ellipse approaches 
a crack and we find that the same optimal properties eliminate 
the stress field. 

Resul ts  
In this section, we present analytical results for the electrical 

loading of a piezoceramic PZT-4 containing an elliptical hole. 
The electric field is applied in the negative y direction. Material  
properties for PZT-4 are provided in Table 1. Al though analytic 
solutions were obtained using the g-form of a constitutive rela- 
tion, e-form is used in this parametr ic  analysis, Eq. (18) .  

E cro = C,iktSkl + ekoEk, Di = elklS~l + ei~Ek (18)  

where C~k~ is the stiffness tensor measured at a constant electric 
field, eku is the piezoelectric tensor, and ei~ is the dielectric 
permeabili ty tensor measured at constant strain. The relation- 
ship between the e-form and g-form can be derived by simple 
manipulat ion listed in Table 1. Reduced notation is used in the 
presentat ion of  results (i.e., ei,) where the first subscript ranges 
from 1 to 3 and is associated with the electric field and the 
second subscript ranges from 1 to 6 and is associated with the 
stress field. 

In Fig. 2, we present results for the electric-field-induced 
hoop stresses at the r im of the void as a function of angle. Each 
curve shown in Fig. 2 represents a variation on the piezoelectric 
coefficient e15. In this parametric study all other material con- 
stants remain fixed and are representative of PZT-4. The geome- 
try of  the ellipse studied in this figure is b = a ,  representative 
of  a hole. The results indicate that as e~5 changes, the magnitude 
of the stress at the r im varies, even in sign. For a value of ej5 
= 10.75, the hoop stress at the rim vanishes. Investigating the 
hoop stresses at other radial locations reveals that the stresses 
vanish everywhere in the medium. By varying e33, we find that 
the stress vanishes for a value of e33 = 20.15. The optimal 
property for e31 is -9 .63 .  Variations in both e3~ and e33 cause 
pseudo linear changes in the stress. On the other hand, e~5 causes 
nonlinear  changes in the stress state, 

Table 1 Material properties of  PZT-4 piezoelectric ceramics (Jaffc and Berlineourt, 1965) 

e-form g-form Two-dimensional g-form 

cll = 14.02 X 10 t° (N/m 2) sll = 10.90 X 1 0  - t2  ( m 2 / N )  a .  = 8.20 × I0 ~2 (m2/N) 
cl2 = 7.89 × 10 "~ sl2 = -5.42 × 10 -~2 aj2 - -3.14 × 10 12 
c~3 = 7.57 × 10 ~° &3 = -2.10 X 10 ~2 a22 = 7.50 X 10 -15 
c33 = 11.58 × 10 l° s33 = 7.90 × 10 12 a33 = 20.88 × 10 -12 
c44 = 2.53 x 10 m &4 = 20.88 × 10 12 
e31 = -5.27 (C/m ~) g3t = -1.11 × 10 -~ (m2/C) b21 - -1.66 × 10 -2 (m2/C) 
e33 = 15.45 e33 = 2.61 × l0 2 b22 = 2.40 × 10 2 
e~ 13.00 e~ - 3.94 × tO -2 b~3 = 3.94 × 10 : 
¢1~ = 6.37 × 10.9 (C/Vm) f t .  = 8.29 × 107 (Vm/C) 6~L 8.29 × 107 (Vm/C) 
e3~ = 5.52 × 10 -9 fl33 = 8.69 x 107 633 = 9.82 × 107 
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Having shown that an optimal property exists for a circular 
hole, in Fig. 3 we present a design plot for optimal properties. 
In this figure the shaded region represents optimal properties 
for a piezoelectric medium containing an elliptical void. The 
three axis in the plot corresponds to the piezoelectric coeffi- 
cients which optimize the properties. When constructing this 
plot the stiffness and permittivity values of the piezoceramic 
were taken to be those presented in Table 1. As can be seen 
when reviewing this graph the optimal surface appears to be 
two dimensional. To clarify this point we present sections of 
the graph in Fig. 4. This two-dimensional plot of the optimum 
properties shows that the variation between el5 and e3~ is nearly 
linear for a wide range of e33 values. Furthermore, the spacing 
between the optimal curves presented in the figure indicates a 
slight nonlinear dependence upon variations in e33. That is for 
small values of e33 the spacing between the curves is larger than 
for relatively larger values of e33. A trivial solution to the prob- 
lem is when all the piezoelectric coefficients are zero. That is 

when the electrical and mechanical fields decouple, the stress 
states vanish as they should. 

To illustrate the influence these optimal properties have on 
an ellipse, we present analytical results in Fig. 5. The hoop 
stresses around the perimeter o f  an ellipse with different ratio 
of a / b  are presented. The two symbols in the figure correspond 
to either a PZT-4 sample with properties listed in Table 1 or 
to an optimal piezoceramic defined in Fig. 4. As was proven 
analytically in Eq. (17), at 0 = 0 the optimal properties for the 
material cause this stress concentration to vanish regardless of 
geometry. This confirms the analytical result presented in Eq. 
(17) that the optimal values are independent of aspect ratio. 
Furthermore, as 0 varies from 0 to 90 degrees the optimal prop- 
erties also cause the hoop stress to vanish at all locations. This 
indicates that the entire stress state in the material is eliminated 
with the optimal values. This is a much stronger statement than 
implied by Eq. (17). That is, the optimal properties also cause 
the entire stress field to vanish for an arbitrary ellipse. 

To investigate the influence of optimal properties on cracks, 
a / b  -- % we present analytical results in Fig. 6. The hoop stress 
normalized by radius from the crack tip is plotted as a function 
of azimuth position. The two curves correspond to either a PZT- 
4 sample or an optimal material with properties defined by Fig. 
4. At 0 = 0, the stresses vanish for either of the materials 
studied. That is, the stress fields decouple from the electric field 
regardless of the material properties in the self-similar plane as 
explained previously by Park and Sun (1995a). However, for 
the PZT-4 material the stress state does not arbitrarily vanish 
outside the self-similar plane. On the other hand, using the 
optimal material properties calculated using Eq. (17), the 
stresses vanish in the medium. Therefore, we conclude that the 
optimal properties are also applicable to the crack problem. 
Park and Carman (1996) indicated that optimal properties are 
achievable with appropriate raodification during processing, a 
statement based on the analytical results generated on two dif- 
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ferent piezoelectric ceramics, that is PZT-5H and PZT-4. These 
results also demonstrated that optimal properties do not limit 
the deformation of the ceramic material. 

Conc lus ion  

In this paper we studied electric-field-induced stress concen- 
trations in a piezoelectric medium with an elliptical shaped 
internal defect. Using an analytical constraint on the stress state 
in the medium we were able to eliminate the largest stress at 
the rim of the ellipse. The optimal properties predicted with 
this methodology were independent of geometry and was only 
a function of material properties. Numerical results demon- 
strated that the optimal properties also cause the entire stress 
field around the anomaly to vanish and not just at a specific 
location. This indicates that a porous medium with optimal 
properties behaves similar to a continuous medium. The optimal 
properties were also shown to be applicable to the crack problem 
in a piezoelectric medium. While this result does eliminate the 
stress concentration around the hole for linear ferroelectrics, 
cracking in many ferroelectric ceramics are due to nonlinear 
influences associated with polarization switching. The optimal 
properties proposed in this paper may not significantly influence 
the stress state for the nonlinear case (Wang et al., 1996). 
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A P P E N D I X  
Compatibility equations: 

02Sxx-] - 02Syy 2 02Sxy OE x OEy _ O. (A.I)  
Oy 2 Ox 2 ~ = O, Oy Ox 

Stress functions and electric displacement functions which 
satisfy field equations: 

02U 02U 02U 
O'xx = Oy 2 , O '~v -  ON 2 '  O'xY- OxOy '  

0~/, O~/, (A.2) 
Dx = ~ y ,  and Dy = Ox 

where a complex variable, z ,  defined as z = x + #y. 
Characteristic equation: 

a l l r l l ~  6 --1- (altrzz + 2a12611 + a33611 + b~l + b~3 

+ 2b21bt3)l z4 + (a22~11 + 2a1262z + a33~22 + 2bzlb22 

+ 2 b l 3 b z 2 ) #  2 + (a226zz + b222) = 0. (A.3) 

General solution which satisfy compatibility condition: 

~9k(Z~) = kkU/,(Zk) (A.4) 

where 

(b21 -I- bt3)/tzk 2 + b22 
kk = -- (A.5) 

Complex function to reduce order of the derivative: 

~pk(Zk) = U~. (A.6) 

Simplified coefficients: 

A = S | ]d3hl ~lh3 h3 - hi ~1 ~L 3 j  (A.7) 
L.~lX2 ~akl hi -- M /.z2 #1 

and 

A = (X2 - X3)/z~ + (k3 - k~)~2 + (X~ - M)#3. 
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A Spherical Inclusion in an 
Elastic Half-Space Under Shear 
We find the elastic fields in a half-space (matrix) having a spherical inclusion and 
subjected to either a remote shear stress parallel to its traction-free boundary or to 
a uniform shear transformation strain (eigenstrain) in the inclusion. The inclusion 
has distinct properties from those of the matrix, and the interface between the inclu- 
sion and the surrounding matrix is either perfectly bonded or is allowed to slip 
without friction. We obtain an analytical solution to this problem using displacement 
potentials in the forms of infinite integrals and infinite series. We include numerical 
examples which give the local elastic fields due to the inclusion and the traction-free 
surface. 

Introduction 
When an inclusion (inhomogeneity) is present in a matrix 

and a loading is applied, elastic stress fields are disturbed in 
the vicinity of the inclusion. These stresses depend on a number 
of factors which include the shape and location of the inclusion, 
the .mismatch in the elastic constants of the inclusion and the 
matrix, the boundary conditions, and the loading. 

Inclusion problems have been a focus of the micromechanics 
research for several decades (for a review of literature see, e.g., 
Mura, 1987). Most of these studies, however, considered the 
cases when the inclusion is placed in an infinitely extended 
material and a matrix-inclusion interface is perfectly bonded. 
In this paper we are interested in the case when the inclusion, 
with properties distinct from those of the matrix, is embedded 
near a surface of a half-space and the matrix-inclusion interface 
is either perfectly bonded or is allowed to slip. 

In the terminology of Mura (1987) the inclusion denotes a 
subdomain in the matrix subjected to transformation strains 
(eigenstrains), while the inhomogeneity is a region with proper- 
ties distinct from those of the matrix and subjected to a remote 
stress. In the above two paragraphs and the Abstract we used 
the term inclusion to denote both cases, for simplicity. In the 
remaining part of the Introduction we follow the Mura's termi- 
nology for the clarity of presentation. 

The elasticity problems involving a half-space with a spheri- 
cal (or spheroidal) inclusion, inhomogeneity or cavity have 
been studied by several researchers. Among them, Tsuchida 
and Nakahara (1970, 1972) solved the problem of a semi- 
infinite elastic body with a spherical cavity subjected to a remote 
all-around (equal biaxial) tension on the plane boundary or a 
uniform pressure on the surface of cavity. Tsutsui and Saito 
( 1973 ) investigated the problem of a semi-infinite material con- 
taining a perfectly bonded spherical inhomogeneity under the 
all-around tension, while Tsuchida and Mura (1983) considered 
a similar problem involving a spheroidal inhomogeneity. Other 
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related papers are due to Atsumi and Itou (1974), Tsuchida et 
al. (1973), and Tsuchida et al. (1982). The problem of a per- 
fectly bonded ellipsoidal inclusion, having the same elastic con- 
stants as the half-space and subjected to dilatational strains, was 
solved by Seo and Mura (1979), and the similar problem but 
involving a spherical inclusion was studied by Mindlin and 
Cheng (1950) and Wachtman and Dundurs (1971). The sphe- 
roidal inclusion subjected to eigenstrains in the form of a uni- 
form dilatation and an extension was considered by Yu and 
Sanday (1990). Jasiuk et al. (1991) solved the problem of a 
half-space containing a sliding spheroidal inhomogeneity under 
either an axisymmetric remote tension or an inclusion subjected 
to nonshear eigenstrain. All the above works involved axisym- 
metric loadings only. 

Tsuchida and Nakahara (1974), using a combination of 
Boussinesq, Neuber, and Dougall displacement potentials, con- 
sidered an asymmetric problem of a spherical cavity in a half- 
space subjected to either a uniaxial tension or a pure shear. 
Aderogba (1976) solved the problem of a perfectly bonded 
spherical inclusion in a semi-infinite solid, subjected to arbitrary 
eigenstrains, and Chiu (1978) investigated the corresponding 
problem involving a cuboidal inclusion. Yu and Sunday ( 1991, 
1992) considered the problem of two half-spaces, either per- 
fectly bonded or in frictionless contact with each other, with an 
inclusion (or inhomogeneity) embedded in one of the half- 
spaces. The inclusion, with distinct properties from those of the 
matrix, was of an arbitrary shape, perfectly bonded to the matrix, 
and subjected to either an arbitrary eigenstrain or a remote 
applied loading. 

The corresponding two-dimensional problems involving a 
half-plane included a circular hole under a uniaxial tension 
solved by Jeffery (1920) and Mindlin (1948), a perfectly 
bonded circular inclusion subjected to an eigenstrain loading 
considered by Richardson (1969), and a perfectly bonded circu- 
lar inhomogeneity under a remote uniaxial tension studied by 
Saleme (1958) and Shioya (1967). Also, Lee et al. (1992) 
addressed the case of a sliding circular inhomogeneity (and 
inclusion) in a half-plane under either a remote uniaxial tension 
or a nonshear eigenstrain loading. 

Mindlin (1948) showed that the hoop stress becomes infinite 
as the hole approaches the traction-free surface as opposed to 
a finite value of stress concentration of 3 for the case of hole 
embedded in the infinite medium; Callias and Markenscoff 
(1989) studied the nature of this singularity analytically. Very 
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high stresses were also observed in the case of a stiff slipping 
inhomogeneity near the free surface by Lee et al. (1992). 

In this paper we consider a spherical inclusion and inhomoge- 
neity embedded near a traction-free surface of a half-space. 
Such a geometry may represent a near surface particle in a 
composite material, for example. The inhomogeneity is sub- 
jected to a remote pure shear stress parallel to the plane bound- 
ary while the inclusion, with the elastic properties distinct from 
those of the matrix, undergoes a pure shear eigenstrain. The 
interface between the inclusion (inhomogeneity) and the matrix 
is either perfectly bonded or allows slip without friction (shear 
tractions are zero) while maintaining continuity of normal dis- 
placements and tractions. This problem is related to earlier 
works involving a spheroidal slipping inclusion and inhomoge- 
neity, under shear loading, embedded in an infinite matrix (Jas- 
iuk et al., 1987; Sheng, 1992; Mura and Furuhashi, 1984). This 
is, however, the first study which investigates the joint effect of 
the traction-free surface and slipping matrix-inclusion interface 
under an asymmetric loading. We show that this situation gives 
rise to higher stress concentrations than in the case of the per- 
fectly bonded and/or fully embedded inclusions. This problem 
is of importance in engineering design of as these high stresses, 
due to near surface inclusions and inhomogeneities, may initiate 
cracking and/or plasticity in composite materials under static 
as well as fatigue loadings. 

In the analysis we use the displacement potentials in the 
forms of infinite series and infinite integrals. The method of 
solution is very similar to the one of Tsuchida et al. (1973, 
1982), Tsuchida and Nakahara (1974), and Jasiuk et al. 
( 1991 ). It is also similar to the one of Kouris and Mura (1989) 
who considered the hemispherical inclusion under an axisym- 
metric loading and used displacement potentials with a half- 
range expansion to satisfy a traction-free condition at a surface 
passing through the origin. However, since in our case the sur- 
face of the half-space does not pass through the center of the 
inclusion (the origin of coordinates) the integrals are used in- 
stead to cancel tractions at the surface. 

An alternate method to this class of problems has been re- 
cently proposed by Yu and Sunday ( 1991, 1992) who employed 
the Green's function approach and the equivalent inclusion 
method of Eshelby (1957). Eshelby's method is easy to use 
when the eigenstrain is constant and the inclusion is embedded 
in the infinitely extended material. However, in the case of an 
inhomogeneous inclusion near a surface, the equivalent eigen- 
strains are nonuniform and expressed in the form of infinite 
number of terms in a polynomial (Moscovidis and Mura, 1975 ), 
Also, the sliding at the inclusion-matrix interface cannot be 
easily incorporated in that approach. Our method involves an 
infinite series of harmonic functions, which corresponds to the 
infinite number of eigenstrains. It can treat both perfect bonding 
and slipping conditions at the inclusion-matrix interface, but is 
more restrictive as it cannot deal with arbitrary shapes and 
requires a different set of potentials for different regular shapes 
(and different loadings). As our main interest is to study the 
effects of the matrix-inclusion interface of a spherical inclusion 
(and inhomogeneity) embedded near a surface, we choose our 
method for mathematical convenience. 

Method of Solution 

We consider a semi-infinite elastic material containing a 
spherical inclusion (inhomogeneity) of radius a, having differ- 
ent elastic constants from those of the matrix, as shown in Fig. 
1. The loading is either a uniform pure shear stress, parallel to 
the traction-free boundary, applied at infinity for the inhomoge- 
neity case, or an eigenstrain loading of shear type in the inclu- 
sion for the eigenstrain case. 

These loading conditions can be expressed as axx = -~ryy = 
P0 at infinity for the inhomogeneity case or 

P0 
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4 
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Po 

Fig. 1 The spherical inclusion (inhomogeneity) in a half-space 

"~ = - ~  = e* (1) 

for the inclusion case, where ~rxx, ~ryy are stresses, ~ ,  ~ are 
eigenstrains, and P0 and e* are constants. In our notation we 
denote the quantities in the inclusion (inhomogeneity) by a bar. 

In the solution we use three coordinate systems, Cartesian 
( x ,  y ,  z ) ,  cylindrical (r, 0, z), and spherical (R, 0, 99). The 
relations among these systems are 

x =  r c o s 0  = R s i n 9 9 c o s 0  

y =  r s i n 0  = R s i n 9 9 s i n 0  

z = R cos 99. (2) 

We let the origin of coordinates be at the center of the spheri- 
cal inclusion (and inhomogeneity) and the positive direction of 
the z-axis be downward and, without the loss of generality, we 
take the perpendicular distance from the origin of the inclusion 
to the traction-free surface as unity so that the plane boundary 
is located at z = -1 .  

The boundary conditions are as follows: 

1 tractions at infinity are 

O ' x x  = - -  O ' y y  = Po (3) 

for the remote shear loading, and vanishing tractions at infinity 
for the eigenstrain case; 

2 the traction-free condition on the surface (z = - 1 ) of the 
half-space 

az~ = O cr~ = O Ozo = O; and (4) 

3 either perfect bonding boundary conditions at the particle- 
matrix interface (r = a) 

l~R = fiR H0 = /~O U~ '= ~ 

~rRR = ~e~ ~re0 = ~R0 Crew, = ~R~ (5) 
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or a frictionless slip at the interface with no separation in the 
normal direction 

blR = fir GRR = GRR O'RO = 0 

~ R o = 0  a R ~ = 0  ~R~,=0.  (6) 

In the above expressions, u~ and cr~i represent displacements and 
stresses, respectively. 

In order to construct the solution to the above boundary value 
problems we use a combination of six harmonic displacement 
potential functions, 450, 05~, 052,053, 054, and h3. Among them, 
the set of qS0, 05j, 052,053 is due to Papkovich and Neuber, the 
set of 050,453, and ~.3 to Boussinesq, and the set of 050,054, and 
X3 to Dougall. It should be pointed out that, since these poten- 
tials are not independent, our choice of the potentials is not 
unique and other combinations, specifically the fewer number 
of potentials, but at least three, can give the same solutions to 
the above two problems. We choose our combination for the 
mathematical convenience. 

According to a superposition principle in linear elasticity, for 
the applied remote loading case, the stress and displacement 
fields in the matrix can be considered as stuns of two parts, the 
undisturbed field in the absence of the inhomogeneity caused 
only by the applied loading at infinity and the local field due 
to the disturbance by the inhomogeneity. Similarly, for the 
eigenstrain case, the stress and displacement fields in the inclu- 
sion can be considered as sums of two parts, the inelastic field 
when the inclusion is allowed to deform freely due to eigen- 
strains without any constrain from the matrix and the field re- 
sulting from the elastic strains caused by the presence of the 
matrix. 

For the matrix, the potential function which gives the elastic 
field due to the remote shear loading (3) in the absence of the 
inhomogeneity is 

1 2 I 2 2 050 = $po(x - y2) = po~R P2(#)  cos 20 (7) 

where # = cos ~v and P~'(p,) is the associated Legendre's func- 
tion of the first kind of order n and degree m. 

For the matrix, the potentials accounting for the disturbance 
due to the presence of the inclusion (inhomogeneity) are 

050 = Y, CmR ("+')P2m(#) cos 20 
m=2 

05a = ~ DmR-(m+llP],,(#) cos 0 
m -  I 

052 = - ~ ~, , , -  ~ ~,-(,,,+l~p,_m,(,,~, sin 0 
m = l  

054 = - ~ Dm R-(m+l>P~,,(#) COS 20 
m=2 m -- 1 

053 = ~ E, ,R-{"+'~P2(#) cos 20 (8) 
m=2 

while the following potentials allow to satisfy the traction-free 
condition (4) 

050 = f o  ~3(h')Je(hr)e-X~ cos 20dR 

0 5 1 = f ; q , 4 ( h ) J , ( X r ) e  X~cosOdh 

052 = --  ~ 4 ( ) t ) J l ( X r ) e  ~ sin O d X  

0 5 3  = f~ XOs(X)Jz(~-r)e --xz c o s  20dX 
ao 

~3 = J o  ~b6(~k ) ' 12 (Xr )e -XZ  sin 20dR. (9) 

In the above equations C,,,, Din, and E,, are the unknown con- 
stants, ~3, ~P4, qt5, and if6 are the unknown functions which will 
be determined from the boundary conditions, and J,,(hr) is the 
Bessel function of the first kind of n order. 

For the inclusion (inhomogeneity) region we choose the fol- 
lowing displacement potentials: 

050 = Y, C, ,R"p2(#)  cos 20 
n =2 

05t = ~ 19,,R"P],(#) cos 0 
n = l  

052 = - Z  ~O,,R"P,~,(#) sin 0 
t l= l  

053 = Y, /~,R"P,2,(#) cos 20. (10) 
,,=2 

For the eigenstrain loading, given in Eq. ( 1 ), the undisturbed 
stresses in the inclusion are zero and the displacements, derived 
from displacement-strain relations, are as follows: 

= ~e" RP2(#)  cos 20 

l 
tT* - e*RP~(#)  sin 20 

3p 

= - ~ # e  K r 2 ' ( # )  cos 20 (ll) 

where p = sin ~p. 
Note that for the remote shear loading the potential function 

(7) yields the stresses ~r,~ = -Cryy = po at infinity, while the 
other stress components are zero. The stresses derived from the 
potentials (8) and (9) vanish at infinity. Therefore, the total 
stresses in the matrix satisfy the boundary conditions at infinity 
(3) .  For the eigenstrain case for the matrix region we only use 
the potentials (8) and (9).  These satisfy automatically traction- 
free boundary conditions at infinity. 

The potentials ( 8 ) -  (9) are expressed in spherical and cylin- 
drical coordinates, respectively. In order to satisfy the traction- 
free boundary condition (4) on the surface z = - 1 ,  it is conve- 
nient to use cylindrical coordinates. With the aid of the relation, 

P',',' (/z) ( - 1 )  ....... f ~  R ''+' = ~n~-~2) !  _ . .  X"J,,(Xr)eXZdX (z < 0), (12) 

we can express potentials (8) in terms of cylindrical coordinates 
as 

40 = ~ (~,,, hmJ2(kr)e  x~ cos 20dX 
m=2 

dh = ~ l),,, h" ' J t (hr )e  ×~ cos OdX 

° f [  052 = - Y, /~,,, h/"Ji (Xr)e ~ sin OdX 
Ill = I 

~4 = - ~ /J , , ,  XmJz(Xr)e ~ cos 20dh 
m ~ 2  

053 = ~ E , , ,  h"J2 (Xr )e  x~ cos 20dX (13) 
m=2 

where 

C,, = c,, (-1)'-----Z- 
( n  - 2 )  ! 
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& = D,, (-1)'--------L 
( n -  1)! 

/~,, E, ( - 1 ) "  = - -  (14) 
(n - 2)! " 

Then, we substitute the potentials 40, qS~, q52, 4)3, 4,4, and 
k3, given by (9) and (13), into the boundary conditions (4) at 
the surface (z = - 1). The condition (az~)z=-~ = 0 is as follows: 

_ _  [ 02 z o<] 
(aZZ)Z=_ 1 = 02+0  "-{- r - -  - 2u cos 0 

Oz 2 Oz 2 Or J 

02~b2 0q~2 ] + 2 u l & b ~ s i n 0  + r - - - 2 u  s in0  
r O0 Oz 2 --~rJ 

1 0 ~  0 a ~  04,~ 
+ 2 u -  ' - c o s 0 + z - - - 2 ( 1 -  u) 

r O0 Oz 2 Oz 

02qSa - 2(2 - u) 0ff)4 
- r o r o z  - ~ - =  0.  ( 1 5 )  

We write the other two boundary conditions, given by (4),  in 
a similar way. Then, we let the coefficients of terms involving 
Jt (hr) ,  J2 (kr) ,  and J~ (kr)  be zero and use the following rela- 
tions: 

(a) the Fourier-Bessel integral 

f ( x ) = f f f o ~ Y t f ( t ) J , ( y t ) J s ( y x ) d y d t  

(s > - 1 ,  x > 0); (16) 

(b) the transformation from the Legendre function to Bes- 
sel function given by the Eq. (12); 

(c) the relation between Bessel and modified Bessel func- 
tions 

f ~  x "+1 bty" tK,_t(yb) 
(x2 + y2) t+ lZ ' ( xb )dx=  2 ' F ( t +  1) (17) 

where K,(z)  is a modified Bessel function of the second kind 
and F(n)  is a Gamma function; 

(d) the definition of the modified Bessel function 

K1/2 ()k) K-t/2(k) ~2-~ -×; = = e and (18) 

(e) the recursion formula for the Gamma function 

P ( x +  1) = x F ( x )  ( x > 0 ) .  (19) 

Then, the unknown functions 4'3, 4'4, 4'5, and 4'6, which 
satisfy the traction-free conditions at the surface (z = - 1 ) ,  
given by (4),  become 

4'3(X) = 2 ( - k  + 1 - 2u)2/),  e -2x + ~ [ ( -2X + 3 - 4u)C,.X 
n=2 

+ 2(1 - 2 u ) ( - 2 k  + 3 - 4u)/),.  

- 2{2(1 - u)(1 - 2u) - h2}/~,,,]km-le -2x 

4'4(X) = - - / ) l e  2X 

,,ks(k) = - 2 ( - X  + 1 - 2u)Z~ 7~ 2x 

+ ~ [ - 2 C , , A  - 4 ( I  - 2u)/) , , ,  
m-2 

+ (2k + 3 - 4 u ) / ~ ] h " - t e  -2a 

4 ' 6 ( k )  = ( 1  - -  2u) L /),, km-le 2X (20) 
m=2 

Next, we use Eqs. (14) and express the unknown functions 
4'3, 4'4, 4'5, and 4'6 in terms of the unknown constants C,,, D,,, 
and E,,,, which are now the only unknowns in the harmonic 
potential functions (8) and (9) and will be determined from 
the boundary conditions at the particle-matrix interface given 
by either (5) or (6).  

It is convenient to use the spherical coordinate system to 
satisfy the boundary conditions at the interface. We use the 
following relation to transform the potentials from the Bessel 
function form to the Legendre's function form using the mathe- 
matical relation 

J,,,(kr)e -×~= Y. ( - 1 )  ...... (RR)" P;7(#). (21) 
..... (m + n)! 

Then, we rewrite the potentials (9) in the spherical coordinates 
as follows: 

~0 Z " = ~,,R P,,(#) cos 20 
n=2 

4or = Y~ rI,,R'P],(#) cos 0 
n=l 

4)2 = - Y~ rl,,R~P),(#) sin 0 
n=l 

where 

~93 ~ n p 2  = ~,,R ,,(/.t) cos 20 
n=2 

X3 ~ , z sin 20 = K,,R P,,(#) 
n=2 

(22) 

f ]  (-x)" ax {" = ff3(X)(n + 2)----------~ 

f f  ( - X ) "  ~n = - -  4'4(X)(n + 1)----~--~ dk  

f l  ~ ( - X )  "+' 4, = - 4 '5(k)(n  + 2)----7 

f ]  (-x) .  Kn = - -  4 ' 6 ( X ) ( n  + 2)-""'-'-7. 

dk 

dk. (23) 

After substituting 4'3, 4'4, 4'~, and 4 '6  given by Eqs. (20) into 
(23), and using the formula 

foe -XCx~'dx = F ( b +  1) ( c > 0 ,  b > - l ) ,  (24) 
cb+ I 

we have 

~" = - 2 [  y°*+2 + 2(1 - 2u) Y°,'+l + (1 - 2u)2 ] 
n + ~  (n + 1)(n + 2) Yo.,, D, 

+ L [2(n + 3)y,,, 2,,,+3+(3-4u)%,,-2.,,+2]Cm 
m=2 

] %,, l.,,+t (n+2) (n+l )y , , , _ , ,  D,,, 
m=2 

+i2[ ] ...... ~ + 5  z,,.-2,,,+, - (n + 3) ~,.-2,,,+_~ e,., 

'qn = Dl '~O,n+l  
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1 - 2u ] 
~ , , : - 2  To,.+2+ ~ ; ~  Yo,,,+l D1 

+ i 2 ( n  + 3)y,,,-2.,,+3C,,,- ~ 4(1  - 2u )  y,,,-i.,,+,D,,, 
,,,=2 ,,,=2 n + 2 

- ~ [ 2 ( n  + 3)ym-2.n+3 - (3 - 4U)Tm_2,,,+2]Em 
m = 2  

1 - 2u 
K,, = - ~  (n + 2 ) ( n  + 1) y,,,-I.,Dm (25)  

m = 2  

where 

( - 1 )  p+q (p + q)!  
Yl,., p !q ! 2l,+q+ l (26)  

Then, we express the displacements and stresses in terms of  
the potentials ( 8 ) ,  (10) ,  and (22) ,  and either the undisturbed 
ones in the matrix, obtained from (7 ) ,  or nonelastic ones in the 
inclusion, given by (11 ), into the boundary conditions (5)  or 
( 6 ) ,  and use the recursion formulas for Legendre functions. 
Then, the condition of continuity of normal displacements un 
= fir at R = a becomes 

5 4 u D ,  P~(# )  + {K,~,,,C,, + g ...... ,D,,+, 
3a 2 ,,=2 

E E + K .... iE,,-i + K,,,,,+iE,,+i 

+ X~,,,+,rl,+, + K;~,,, l~n-I 

1 - - C  - -  D - - K,,,,,C,, + K ...... ~D,,-i 
g 

~ E  - -  - - E  + K,, . , , - iE.- i  + K..,,+iE,,+1 

+ K~,.,,.,,c + K ..... 1 r/,,_. 

+ K~,,,+,~,,+, + K,%,~¢,,., } 

- - D  O n  + 1 + K,,.,,+ 

} ] P~(#)  

1 
- (Po - 2 G e * ) a P ~ ( # )  (27)  

3 

where G is the shear modulus,  and g = G / G .  The coefficients 
in Eq. (27)  are defined as 

n + l  K,C,, 
a n + 2  

D 2(1 -- 2U) 
K n ,  n + l  n a n + 2  

E (n + 3 -  4 u ) ( n -  2) 
K n , , , - i  = - -  

(2n - 1 )a"  

~: (n + 5 - 4 u ) ( n  + 3) 
K,,.,,+ 1 : - -  

(2n  + 3 ) a  ''+2 

K~,,, = ha" 

n - 4 + 4 u  KII..-. ~ - a n -  1 
2n -- 1 

n -- 2 + 4u .+1 
a KI[,,+i 

2 n + 3  

(n - 4 + 4 u ) ( n  - 2) a,,_ 1 
K,,,,,_ 1 = 

2 n -  1 

K,;,,,+i = (n - 2 + 4 u ) ( n  + 3) a,,+ I 

2 n + 3  

K~,,, = 4a  "-1. (28)  

We obtain similar expressions for the remaining conditions 

given by Eqs. (5)  or (6 ) .  All terms denoted by a bar in Eq. 
(27)  can be obtained from the corresponding terms without a 
bar  by replacing ~, r/, 4, and u with C, D,  E,  and v. For 
example, - c  --D /K" o e  -- - e  K . . . . . . . . . . .  K,,,,. t, +1, ^,;.,, 1 ana K,,,,,+~ can be obtained 
from K~,,, K~[,, i, K~[,,+i, K~,,,-1, and K~,,,+i, respectively, by 
replacing u with V. 

Using Eqs. (23) ,  we reduce the unknown constants in the equa- 
tions representing the boundary conditions at the interface to only 
C,,, D,,, E,,, C,,, D, ,  and E,. Then, we equate the coefficients of 
P,] (#)  and P , ] ' (# ) ,  where prime denotes the first derivative with 
respect to #, on both sides of these equations for each n from n 
= 2 to n ~ % and obtain an infinite set of algebraic equations. 
Each of these sets contains six equations and six unknowns. For 
calculations we truncate this infinite set of equations at n = N. 
Therefore, there are 6N equations to be solved for the 6N un- 
knowns. We truncate the series such that the boundary conditions 
(5)  or (6)  are satisfied to at least three significant figures. After 
these constants are evaluated, the stresses and displacements are 
known everywhere in the matrix and in the inclusion. 

In the calculations, for the case of a perfectly bonded inclusion 
(and inhomogeneity),  we set the constant D~ to zero since Di and 
C2 play the same role in the potentials and only one needs to be 
kept. Furthermore, we set the constants O2 and E2 to zero for both 
the perfectly bonded and slipping inclusion cases. 

When  the matrix is infinite (or  the particle is very smal l ) ,  
the analytical solution involves only a finite number  of terms 
in the potential functions (8)  and (10) ,  and the potentials (9)  
do not enter. For the case of  an infinite body containing a 
spherical cavity and subjected to uniform shear stresses ~r,, = 
-Cryy = Po at infinity, the constants become 

1 
C2 : a 5 

2 (7  - 5 u )  

5 
D 2 - a 3 (29)  

2 (7  - 5u)  

while the other constants vanish. 
For the case of an infinite body containing a spherical inho- 

mogeneity with a slipping interface and subjected to uniform 
shear stresses Crx, = -O-yy = Po at infinity the solution is 

70(1 - u ) g  1 
E3 = - (17 - 1 9 u ) ( 7  + 5p)g + 4 ( 7  - 5 u ) ( 7  - 4p) a -5  

D~ = 2E3 

O l  - 

47) _ 
= _ m E3 

7 

3a~ ( ~  2(7 + 5P) a2/~) 
7 ~ - 5 u  + 7 

a 2 

C2 = ~-~ (a  3 - 2(1  + u ) D l )  (30)  

with the other constants vanishing. This solution is in a form 
of finite series which is expected from the work of Ghahremani  
(1980) .  The solution for a perfectly bonded spherical inhomo- 
geneity in an infinite space is also expressed in terms of finite 
series as shown by Goodier  (1933) .  

Similarly, the solution for the spherical inclusion in an infinite 
space subjected to an eigenstrain loading case involves finite 
series for both perfect bonding and sliding cases. 

Results and Discussion 
We carry out the computat ions for various radii a of an 

inclusion (and an inhomogenei ty)  ranging from 0.2 to 0.99 
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Fig. 2 The hoop stress ¢~(~.~)  versus the angle ~p for different radii a = 0.2 (solid 
line), 0.5 (dashed line), and 0.8 (dashdot line) when g = 100 and 0 = 0 for the perfect 
bonding and remote shear loading case 

(recall that the particle is located a unit distance from a traction- 
free surface so the larger the radius a the closer it is to the free 
surface) and for different ratios of shear moduli g = GIG. We 
take the Poisson's ratio as u = P = 0.3, for simplicity. We give 
the numerical results for the case of the inhomogeneity under 
a uniform remote shear loading, given by Eq. (3) ,  in Figs. 2 -  
6, and for the inclusion subjected to a uniform shear eigenstrain, 
given by Eq. (1) ,  in Fig. 7. 

Figure 2 shows hoop stresses a,~o and ~o~0 along the interface 
(at r = a) of the perfectly bonded inhomogeneity versus an 
angle ~p, taken from a positive z-axis, when the radius a = 
0.2, 0.5 and 0.8 (plotted in solid, dashed and dashdot lines, 
respectively),  0 = 0, and g = 100. As expected, the radius has 
a small influence on the stresses a ~  and ~o~o when the angle 

~o is small and a larger effect when ~p is close to 180 deg, which 
corresponds to a region near the traction-free surface. Around 
~p = 180 deg the stress ~0~, in the inhomogeneity is more influ- 
enced by the traction-free surface than the corresponding stress 
component a~o in the matrix, and this effect is most pronounced 
at ~p = 180 deg. Note that the stress ~,~, decreases as a increases 
(i.e., the inhomogeneity gets closer to the surface) for this 
combination of elastic constants. This is true for all g > 1 but 
when g decreases the effect of surface decreases, and for g = 
1 is disappears as expected. However, when g < 1 and g de- 
creases the effect is opposite and ~ o  increases due to the surface 
effect. Note that when g = 100 the stress ~o/Po reaches the 
maximum at cp = 0 and is greater than unity as expected since 
the inhomogeneity is stiffer than the matrix and thus carries the 

3 i - -  

i t 
18  

0 . 5 ~  

O0 20 40 60 80 100 120 140 160 180 

Fig. 3 The stress ~ versus angle ~ for perfect bonding and sliding cases when g = 
0.5, 0 = O, and different radii a = 0.2 (solid line), 0.5 (dashed line), and 0.8 (dashdot 
line) for the remote shear loading 
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Fig. 4 The jump in displacement [u~ versus angle ~p for different radii a = 0.2 (solid 
line), 0.5 (dashed line), and 0.8 (dashdot line) when g = 100 and # = 0 for the slipping 
interface and remote shear loading case 

load. At ~p = 180 deg it is lower than at qa = 0 due to the 
traction-free surface effect. 

~r~/po in the matrix is smaller than unity when g = 100 as 
shown in Fig. 2 and this is true for any g > 1. It is interesting 
to note, however, that c%~ has a reverse image for smaller g. 
When g < 1 there is a stress concentration in G~ .  When g = 
0.01 G~Jpo = 2.5 for a = 0.8, ~r~,Jpo is around 2.0 for a = 
0.5, and 1.8 for a = 0.2 at ~o = 180 deg, where it is maximum, 
while at ~p = 0 it is around 1.8 for all three cases. Thus, the 
effect of  the traction-free surface is pronounced for a close to 
unity for small g, and the presence of  the free surface gives 
rise to higher stresses. When g is very small both perfect bond- 
ing and slipping interface conditions give very close results as 
expected since this is almost a cavity case; in this situation the 
stress ~ is very close to zero. For  the sliding case v~,~ in the 

inhomogeneity is most affected by the surface of a half-space 
when g is large and 90 deg < ~p < 180 deg. cr~ in the matrix 
is rather insensitive to the traction-free surface when g > 1 but 
it is influenced by the surface only when g < 1 and for g 
very small coincides with the perfect bonding case as discussed 
above. These additional observations, included here, are based 
on Figs. 3 - 9  illustrating the cases of g = 100, 2, 0.5, and 0.01 
for both interface conditions, given in Sheng (1995).  

Figure 3 shows the stress ~ in the inhomogeneity along the 
interface (versus the angle ~o) for both perfectly bonded and 
slipping interface cases when g = 0.5. We observe that the 
stress increases for the sliding case and decreases for the per- 
fectly bonded case as ~9 increases from 0 to 90 deg, and vice 
versa from 90 deg to 180 deg, so that ~ o  reaches its maximum 
value at ~o = 0 and the minimum value at cp = 90 deg for the 
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Fig. 5 The stress ¢,x(fixx) along the z-axis for different radii a = 0.2 (solid line), 
0 . 5  ( d a s h e d  l i n e ) ,  and 0.8 (dashdot line) when g = 100 and 8 = 0 for perfect bonding 
and remote shear loading case 
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Fig. 6 The stress ~r~lo'x,) at several points along the z-axis versus the 
radius of inclusion a for both perfect bonding (dashed lines) and slipping 
(solid lines) interface conditions when g = 100 for remote shear loading 

perfectly bonded interface case, while the minimum is at ~o = 
0 and the maximum at qo = 90 deg for the sliding interface 
case. The maximum value of ~%~ in the slipping inclusion is 
about 2.7p0 for g = 0.5 and increases as g increases (for g = 
100 it reaches 4.5p0). Thus, the stress concentration in the 
slipping inclusion is higher locally than for the perfectly bonded 
inclusion case. When g ~ 0 both sets of curves become straight 
lines and coincide and ~ = 0 as expected, since this is a limit 
case of a cavity. 

Figure 4 illustrates the jump of the tangential displacement 
[u~] along the inhomogeneity 's  interface for various radii a = 
0.2, 0.5 and 0.8 (plotted in solid, dashed, and dashdot lines, 
respectively),  g = 100, and 0 = 0 for the slipping interface 
case. Note that the jump in the displacement is higher for 90 
d e g <  ~o < 180 deg (i.e., near the traction-free surface and 
increases when the inhomogeneity is closer to the free surface. 
This is true for any other ratio of shear moduli g, according to 
the results from our sample computations (Sheng, 1995). This 
is expected since the inhomogeneity can deform more freely 
near the traction-free surface. 

Figure 5 illustrates stresses cr~ and ~ along the z-axis from 
z = - 1  to z = 1 when the inhomogeneity is perfectly bonded. 
The radius of  the inhomogeneity takes on the values a = 0.2, 
0.5 and 0.8 (plotted in solid, dashed, and dashdot lines, respec- 
tively),  and g = 100. The stress ~ in the inhomogeneity (from 
z = a to z = - a )  decreases when the inhomogeneity is closer 
to the traction-free surface (a = 0.8) while the slope of ~ is 
almost zero when the radius is small (a = 0.2). This is not 
surprising since in the latter case we have almost nearly an 
infinite body containing the inhomogeneity and the stress ~ is 
almost nearly uniform in the particle as expected from Eshelby' s 
(1957) solution. The curves have similar forms for other g > 
1. Note that crJpo is less than unity for all g > 1 and it is 
lowest at z = - a .  When g < 1 we have a bottom-up image 
and the stress concentration is in the matrix at the interface and 
it is maximum at z = - a .  For example, when g = 0.5, o~flpo 
is approximately 1.4 while for g = 0.01 it rises to 2.5. When 
g = 1 the curve is a straight line, as expected, since this is the 
case of a homogeneous material. 

Figure 6 shows the stresses cr~ and ~ at selected points P, 
M1, I1, 12, and M2 along the z-axis (see Fig. 1 ) when the radius 
a of the inhomogeneity varies continuously from 0.2 to 0.99 
for both perfectly bonded (dashed curves) and slipping (solid 
curves) cases when g = 100. The point P is on the traction- 
free surface, M1 and M2 are in the matrix at the interface, I1 
and 12 are in the inhomogeneity at the interface. In our notation 

1 denotes the points at z = - a ,  while 2 denotes the points 
at z = a. It can be seen that the traction-free surface affects 
significantly the stresses Crxx and ~xx at point P for both interface 
cases, and at M1 for the sliding case and I1 for the perfect 
bonding case (i.e., at points close to the surface at the interface), 
but has a very small effect at points I2 and M2 (which are away 
from the surface), as expected. For the case of the perfectly 
bonded interface, ax~ at M1 and M2 in the matrix is very small 
(almost zero for g = 100), but there is a stress concentration 
in ~x~ at 11 and 12 in the inhomogeneity (larger than 2p0 at 12). 
This is expected because when the particle is much stiffer than 
the matrix it carries most of the loading. It is interesting to note 
that the stress in the inhomogeneity at I1 decreases as a ~ 1 
and drops to about unity at a = 1. The stress c ~  at point P 
decreases as the radius a increases and drops to zero at a = 1. 
This is also illustrated in Fig. 2. The inverse situation occurs 
when the inhomogeneity is softer than the matrix. Thus, for 
the stiff, perfectly bonded inhomogeneity case the stress in the 
particle is reduced due to the presence of the traction-free sur- 
face while the one in the matrix remains almost unchanged. 

For the slipping inhomogeneity case, when the particle is 
away from the traction-free surface, the stresses cr~ and ~ at 
these five points are smaller or equal to the applied stress. 
However,  when the radius of the particle increases, there is a 
stress concentration ~r.~x at points P and M1, which are the two 
points in the matrix closest to the surface, and it increases as 
the radius a increases (i.e., the inhomogeneity gets closer to 
the surface). Thus, there is a reverse behavior for the perfect 
bonding and sliding cases with the sliding case having the stress 
concentration in the matrix due to the surface. These conclu- 
sions are similar to those given in Lee et al. (1992) and Jasiuk et 
al. ( 1991 ) for different loadings and inhomogeneity geometries 
(note that Fig. 6 resembles very closely Fig. 2 in Lee e ta l . ,  
1992). 

Figure 7 illustrates the variation of stress cr~ and ~ along 
the z-axis from z = - 1  to z = 1, for the inclusion case when 
it undergoes the shear eigenstrain and is perfectly bonded to 
the matrix. The radius of the inclusion takes on the values of 
0.2, 0.5, and 0.8 (plotted in solid, dashed, and dashdot lines, 
respectively),  and g = 100. It is interesting to note that compar- 
ing the results to the corresponding case of inhomogeneity (with 
the same g) ,  Fig. 7 has an inverse image. However, its shape 
is similar to the one for the case of a uniform shear loading 
when g = 0.01. Note that the stresses in the inclusion are nearly 
uniform when a = 0.2, as expected from the solution of Eshelby 
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Fig. 7 The stress ~xx(O'xx) along the z-axis for different radii a = 0.2 
(solid line), 0.5 (dashed line), and 0.8 (dashdot line) when g = 100 and 
0 = O for perfect bonding and eigenstrain case 
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(1957), and become nonuniform when a increases, i.e., the 
effect of surface enters. These observations are similar to those 
for Fig. 5. The stress in the inclusion is compressive and its 
absolute value decreases when it is closer to the surface and 
this effect becomes more pronounced as a increases. The stress 
in the matrix is tensile and it is higher in magnitude for the 
case when the inclusion is large, i.e., close to the surface; the 
maximum occurs at z = - a .  

Conc lus ions  

In this paper we solved two problems involving the spherical 
inhomogeneity under a remote shear loading and the spherical 
inclusion with an eigenstrain of shear type, both embedded in 
the half-space. In the analysis we used displacement potentials 
in the forms of infinite series and integrals. 

In the numerical examples we studied the joint effect of the 
traction-free surface of the half-space and the interface condi- 
tions, perfect bonding and slipping, on the elastic stress fields. 
We have found that both effects were pronounced for certain 
mismatches in elastic moduli. For example, when the inhomoge- 
neity was very compliant the stress fields rose due to the proxim- 
ity of the traction-free surface and there was a stress concentra- 
tion in the matrix. Also, for the slipping interface case there 
were stress concentrations in both the matrix and the inhomoge- 
neity and they increased as we approached the traction-free 
surface of the half-space. When the inhomogeneity was per- 
fectly bonded the stresses decreased due to the surface when 
the inhomogeneity was stiffer than the matrix. 
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A Tensegrity Structure With 
Buckling Compression Elements: 
Application to Cell Mechanics 
A tensegrity structure composed of  six slender struts interconnected with 24 linearly 
elastic cables is used as a model of  cell deformability. Struts are allowed to buckle 
under compression and their post-buckling behavior is determined from an energy 
formulation of  the classical pin-ended Euler column. At the reference state, the cables 
carry initial tension balanced by forces exerted by struts. The structure is stretched 
uniaxially and the stretching force versus axial extension relationships are obtained 
for different initial cable tensions by considering equilibrium at the joints, Structural 
stiffness is calculated as the ratio of  stretching force to axial extension. Predicted 
dependences of  structural stiffness on initial cable tension and on stretching force 
are consistent with behaviors observed in living cells. These predictions are both 
qualitatively and quantitatively superior to those obtained previously from the model 
in which the struts are viewed as rigid. 

Introduction 
Tensional integrity (tensegrity) architecture has been pro- 

posed to explain how various types of eukaryotic ceils (e.g., 
endothelial, epithelial, fibroblast, smooth muscle, nerve cells, 
etc.) resist shape distortion (cf. Ingber, 1993). The concept of 
tensegrity was originally described by Buckminster Fuller 
(1961) as a new method in designing geodesic structures. In 
its simplest representation, tensegrity structures can be defined 
as the interaction between a set of isolated compression ele- 
ments with a set of continuous tension elements in the aim to 
provide a stable volume and form in space (Pugh, 1976). Ten- 
sion elements carry an initial force, conferring load supporting 
capability to the entire structure. The higher the initial force in 
the tension elements, the less deformable the structure, i.e., it 
is stiffer. Compression elements provide the initial force in 
the tension elements. Together they form a self-equilibrated 
mechanical system. In response to external forces, tensegrity 
structures exhibit a stiffening response, i.e,, structural stiffness 
increases with increasing applied force (Wang et al., 1993; 
Stamenovid et al., 1996). 

In eukaryotic cells, filamentous biopolymers: actin filaments, 
microtubules, and intermediate filaments form a network, called 
the cytoskeleton (CSK),  which extends from the cell membrane 
to the nucleus. It has been noted previously that the CSK lattice 
plays a major role in providing a cell 's shape stability, and that it 
displays features that are consistent with tensegrity architecture 
(Ingber and Jamieson, 1985; Ingber, 1993; Wang et al., 1993; 
Thoumine et al., 1995). First, the CSK contains both tension 
and compression elements. Actin and intermediate filaments 
primarily carry tensile forces supported by microtubules which 
act as compression-resistant struts (Dennerll et al., 1988; Da- 
nowski, 1989; Amos and Amos, 1991; Kolodney and Wysolm- 
erski, 1992, Ingber, 1993). In suspended (round) cells, the CSK 
filaments are believed to form a stable self-equilibrated system. 
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However, in their natural state cells are spread over the extracel- 
lular matrix (ECM) to which they are attached through focal 
adhesion contacts. These are the sites of force transmission 
between the ECM, across the cell membrane, and tensile stress 
fibers of the CSK (Ingber, 1993). Thus, in spread cells, the 
CSK together with the ECM form a self-equilibrated system. 
A second feature of ceils consistent with tensegrity is that they 
are initially tensed. For example, when cell's attachments to the 
ECM are severed, the cell rapidly retracts to a round configura- 
tion (Sims et al., 1992). Third, the more tensed cells exhibit 
higher stiffness. Shear measurements on isolated living cells, 
in which CSK tension has been altered either mechanically 
(Wang and Ingber, 1994) or pharmacologically (Hubmayr et 
al., 1996), reveal that more tensed cells are stiffer than less 
tensed cells. Finally, living cells exhibit stiffening. Dma show 
that CSK shear stiffness increases approximately linearly with 
increasing applied shear stress (Wang et al., 1993; Wang and 
Ingber, 1994; Thoumine et al., 1995). This dependence appears 
to be a fundamental property of living cells and tissues. 

We recently extended these qualitative notions into a formal 
structural analysis (Stamenovid et al., 1996). We considered a 
simple tensegrity structure composed of six rigid struts intercon- 
nected with 24 linearly elastic cables (Fig. 1 ) as a representative 
model of cellular mechanics. The effect of the ECM on the 
force balance was bypassed, i.e., the initial tension in the cables 
was entirely balanced by compression in the struts. The structure 
was stretched uniaxially and stretching force versus axial exten- 
sion relationships were obtained for different values of initial 
cable tension. It was found that structural stiffness, defined as 
the ratio of applied stretching force to axial extension, increases 
with increasing initial cable tension. Furthermore, the structure 
exhibits the stiffening effect, i.e., the structural stiffness in- 
creases with increasing stretching force. These features are con- 
sistent with the behavior observed in Cells. On the other hand, 
some predicted features differ from those observed in cells. For 
example, the dependence of structure's stiffness on applied load 
is in general nonlinear whereas in cells it appears linear (Wang 
et al., 1993; Wang and Ingber, 1994; Thoumine et al., 1995). 
Second, the more tensed the structure, the less stiffening it 
exhibits, contrary to the behavior observed in cells where more 
distended cells exhibit greater stiffening than less distended 
ones (Wang and Ingber, 1994). Possible reasons for these dis- 
crepancies could be related to model assumptions. For example, 
it was assumed in the model that cables are extensible and 
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Fi 9. 1 Six-strut tense_grity_structure. Struts: AA, A___~A', BB, B'B', CC 
C'C'; cables: AB, AC, BC, A'B, A'C, B'C, AB', AC',  BC', A'B', 
A 'C', B'C'. Stretching force of magnitude T/2 (thick arrows) is applied 
at the endpoints A and A'. 

linearly elastic and that struts are rigid. Measurements on iso- 
lated CSK filaments indicate, however, that tension-bearing ele- 
ments, actin filaments, are very little extensible and that com- 
pression-bearing elements, microtubules, buckle under com- 
pression (Gittes et al., 1993). According to these measurements, 
Young's moduli of actin filaments and microtubules are approx- 
imately 2.6 and 1.2 GPa, respectively, whereas bending stiffness 
of microtubules is on the order of 10-23 N" m 2. In comparison, 
the estimated Young's modulus of the endothelial cell does not 
exceed 10 Pa (Wang and Ingberr, 1994). This huge difference 
in Young's moduli of CSK filaments and the cell suggest that 
mechanical properties of the filaments alone do not determine 
cell deformability. Based on our previous tensegrity analysis, 
we identified the CSK tension and architecture as key determi- 
nants of cell deformability (Stamenovid et al., 1996). Our pur- 
pose here is to show that in addition to these two features, 
buckling of microtubules is also an important contributor to cell 
deformability. By allowing the struts in the six-strut tensegrity 
model to buckle, we could overcome some major shortcomings 
of the previous model. Moreover, by taking into account the 
measured Values of the elastic moduli for actin filaments and 
microtubules, we could obtain quantitative predictions of forces 
and deformations encountered in living cells. 

M o d e l  F o r m u l a t i o n  

The tensegrity structure shown in Fig. 1 is composed of six 
struts interconnected with 24 cable segments. The cables and 
struts are connected by pin-joints. Initially, the cables carry 
tensile forces balanced by compression in the struts. The struts 
are slender and buckle under compression. The origin O of a 
Cartesian coordinate system OXYZ is placed at the center of 
the structure with the axes in the direction of the pairs of parallel 
struts (Fig. 1). 

Geometrical Description. At the reference (initial) con- 
figuration, all the struts are of the same length (L0). In the 
case that the struts are buckled, L0 is the distance between the 
endpoints of each strut (chord-length). It is shown below that 
the corresponding length of the cable segments is 10 = 3 ~ L 0  
and the corresponding distance between the pairs of parallel 
strut chords is so = Lo/2. The structure is stretched uniaxially 
(X-direction) by applying forces of magnitude T/2 at each end- 

point of the struts AA and A ' A '  (Fig. 1). This causes (a) 
changes in the chord-lengths of the struts from L0 to L~ (struts 
AA and A ' A ' ) ,  L .  (struts BB and B ' B ' ) ,  and Lm (struts CC 
and C ' C ' ) ,  (b) changes in the distance betw__een the pairs of 
parallel st__rut chords from So to Sx (struts AA and A ' A ' ) ,  sv 
(struts BB and B ' B ' ) ,  and Sz (struts CC and C ' C ' ) ,  and (c) 
ch__anges in the length of cable segments from l.__a0 to Ii (segments 
AB, A 'B ,  AB ' ,  A'B'),___12 (segments AC, A 'C ,  AC ' ,  
A ' C ' ) ,  and 13 (segments BC, B 'C ,  BC ' ,  B ' C ' ) .  Changes in 
the distances between a pair of parallel strut chords, As .  --= s. 
- So(Ce = X, Y, Z) ,  are referred to as extensions. Relationships 
between L¢, L . ,  Lm, Sx, sy, Sz, lt, 12, and 13, are derived below, 

Consider the portion of the structure inside the first quadrant 
of the OXYZ coordinate system; AB = l~, OAx = Sx/2, OBv = 
st~2, AAx = Li/2, BBv = LH/2 (Fig. 2). Thus, 

11 = ~ ( ~ y  --  OAx) 2 + (OBy) 2 + (AAx) ~ 

~/(LH - sx) 2 + s~, + L~. (1) = ~  

Expressions for 12 and 13 are obtained in a similar manner. 

12 = gl ~s~- + L~u + (L/ - Sz) 2 (2) 

13 = 21 ~n121 .q_ ( n i l  l --  Sy)2 _.1_ S~ (3) 

Equilibrium Equations.  Equilibrium of the structure is de- 
termined by considering the balance of forces at each joint. 
These forces include the tensile forces Fj ,  F2, and F3 in cables 
with lengths lj, 12, and/3, respectively, the compression forces 
Pt, P , ,  and Pm exerted on struts with chord-lengths G, L,,  and 
Lm, respectively, and the external stretching force T/2 applied 
at the endpoints A and A ' (Fig. 1 ). The following is obtained: 

T =  2Fl Sx - L" + 2F2 sx (4) 
li 12 

sv Lm - sr (5) 
F, -~1 = F3 l'-'---'~- 

F2 L~ - Sz F~ Sz 
12 " 13 (6)  

c 

~B 

Fig. 2 The portion of the six-strut tensegrity model from Fig. 1 inside 
the first quadrant of the OXYZ coordinate system. The struts are buckled 
and dashed line segments AAx, BBv, and CCz indicate halves of the 
chord-lengths. 
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Px= FiLl  L i -  S z 
+ F~ t2 (7) 

Pn = Fl LH - s__.___y_x + F3 Lj2 (8) 
II 13 

Lll I Lii I -- S.__._..__.y 
Pill = F2 V + F3 13 (9)  

Equations (4) and (7) represent the balance of forces at the 
joints A and A '  in the X and Z-directions, respectively, Eqs. (5) 
and (8) represent the balance of forces at the joints B and B '  
in the Y and X-directions, respectively, and Eqs. (6) and (9) 
represent the balance of forces at the joints C and C'  in the Z 
and Y-directions, respectively. Force balance at the joints in 
directions other than indicated above are satisfied by the sym- 
metry of the structure. 

Cable Elasticity. It is assumed that the cables are linearly 
elastic (i.e., Hookean) and carry only tensile forces. Hence, 
their force versus length relationships are as follows: 

EcA~ ( I~ - 1)  if l~ > l~ 
F, = (i--- 112,3)  (10) 

0 if li <- l~ 

where E, is the Young's modulus of the cable and A~ and l~ are 
its resting cross-sectional area and length, respectively (l~ -< 10). 
Since actin filaments are viewed as tension supporting cables in 
the cell, values for E~ and Ac are taken from data for mechanical 
properties of isolated actin filaments, E~ = 2.6 GPa and A~ = 
18 nm z (Gittes et ak, 1993). 

Strut Elasticity. The struts are viewed as elastic slender 
columns which carry compression forces (thrusts) exerted at 
their endpoints and no lateral forces. Below a critical value of 
thrust (pc) ,  the centerline of the strut remains straight and 
shortens with a linear response given by 

PM = E~A~(1-  L M) ( M =  I, II, III) (11) 

where E~ is the Young' s naodulus of the strut and A~ and L~ are 
its resting cross-sectional area and length, respectively (L~ -> 
L0). Since microtubules play the role of compression supporting 
struts in the cell, E, and As are determined from data for mechan- 
ical properties of isolated microtubules, E, = 1.2 GPa and As 
= 190 nm 2 (Gittes et al., 1993). For a PM ~ pC, the strut 
buckles. The post-buckling force-length relationship is deter- 
mined based on an exact energy formulation of the classical 
pin-ended Euler strut (Thompson and Hunt, 1969). That is, the 
strut is considered simply supported, the axial thrust PM retains 
its magnitude and direction during deformation and the length 
of the strut centerline remains constant during buckling. 

To calculate the relationship between the thrust PM and strut 
chord-length LM, the shape of the centerline of the buckled strut 
(i.e., the elastica) is needed. The elastica is described by a 
function WM(X) that indicates the local deflection of the center- 
line from the chord in the buckled configuration (0 -< x ~ LM) 
as shown in Fig. 3. (In Fig. 3 and in further text the subscript 
M is omitted for simplicity.) 

A continuum perturbation analysis is used to determine an 
expression for w(x).  It is given as a power series in the central 
deflexion h =- w(L/2)  

w(x) = hwl(x) + h2w2(x) + h3w3(x) + . . .  (12) 

where wj(x) ( j  = 1, 2, 3 . . . .  ) are trigonometric functions given 
in the Appendix. Thrust P is given as a Taylor series in h 

Y 

L ~J 
"l 

Fig. 3 Elastic column pinned at the endpoints during buckling by axial 
thrust P; L is the chord-length and w(x) is local deflection (0 _~ x _< L) 

p = pC+ hP1 + l h 2 p 2  + l h 3 p 3  + . . .  (13) 
2! 3! 

where pc = 7r2B/L~ is the first critical load, B is bending 
stiffness of the strut, and each Pk(k = 1, 2, 3 . . . .  ) is associated 
with the corresponding wj(x) such that pC corresponds to wl, 
P~ to w2, P2 to wa, etc. The Pk'S are constants depending only 
on L and B and are given in the Appendix. By substituting Eqs. 
(12) and (13) into the Euler equation for the strut (Appendix) 
and identifying terms of the same powers in h, a system of 
linear differential equations in wj(x) is obtained. A P~ is deter- 
mined by finding the nontrivial solution wj(x) that satisfies the 
boundary conditions imposed on the ends of the struts (Appen- 
dix). 

Lel = X/1 + w'(x)2dx (14) 

The chord-length L of the deformed strut was determined 
iteratively, using the condition that the total length of the elas- 
tica was a constant, equal to the resting length Lr. This proce- 
dure is described as follows. For a given thrust P,  the central 
deflexion h is determined from Eq. (13) and an initial value of 
L that is guessed. These two values, h and L, are substituted 
into Eq. (12) and w(x) is obtained. The total length of the 
elastica (L~j) is determined by numerical integration where 
prime denotes differentiation with respect to x. This procedure 
is repeated until the value of the chord-length is found such 
that L~i matches the known L ,  Computations are performed 
with Mathematica software. The value of bending stiffness mea- 
sured in isolated microtubules, B = 2.15 × 10 -z3 N" m 2 (Gittes 
et al., 1993 ), is used. According to Thompson and Hunt (1969), 
if the expansion of the series (12) and (13) is carried out up 
to the seventh term ( j  = 7 and k = 6), the above procedure 
yields a good approximation of the thrust versus chord-length 
(P  versus L) relationship for h < L/3.  Thus, only values of h 
within this range are used in our calculations. 

Reference Configuration, Before determining the stretch- 
ing force versus axial extension relationships of the structure, 
it is necessary to determine its reference (initial) configuration. 
At the reference configuration the structure is symmetric, i.e., 
LI = Lit = LIII  ~ Lo, Ii -= [2 = [3 ~ [0, SX = S y  ~ S Z ~- SO, P i  : 

Pn = Pat ~ Po, and F1 = Fz = F3 ~- F0. Taking this into 
account and setting T = 0, L0 is determined directly from Eqs. 
( 1 ) - ( 1 1 )  as follows. Equations ( 1 ) - ( 9 )  yield 

so = Lo/2 (15a) 

I0 = 3 ~ L 0  (15b) 

Po = ~ F o .  (15c) 

By substituting Eqs. (10) and (11) into Eq. (15c) ,  Lo is ob- 
tained for the case where the struts are not buckled initially 

AcE¢ e'~ L 
Lo 1 ~ AiE~ ,] (16) 
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where e ~ lo/1,. - 1 is the initial cable strain (c ~ 0). In the case 
where the struts buckle initially, only Eq. (10) is substituted into 200 
Eq. (15c), 

Po = ~/6E,.A,.c, (17) 

and Lo is determined from the thrust versus chord-length rela- 
tionship for the post-buckling behavior. Values for Ec, A~, E~, ~ 150 
and A, given in the previous section are used, whereas values 
for ~ and L, are chosen arbitrarily (see below). Once Lo is 
determined, so and lo are obtained from equations (15a) and N 
(15b), respectively, and l, from lo and c. These values are i 100 
applied to obtain mechanical behavior of the structure during 
uniaxial stretching. 

Structural Elasticity, The stretching force versus axial ex- 
tension relationships for the model (T versus Asx) are obtained 5o 
by solving Eqs. ( l ) - ( 1 1 )  simultaneously. In the case when 
the struts buckle, Eq. ( l 1 ) is replaced by the P versus L relation- 
ship for the post-buckling behavior described above. Solutions 
are obtained for a given value of ~ and Lr and a series of values 
of T, using a Newton-Raphson iterative method. The value of 0 
Lr and e are chosen ad hoc; L,. = 3 #m and c = 0, 3 × 10 -4 
and 4 x 10 -4, L,. = l0/.zm and e = 0,3 X 10 -5 and 4 x 10 -5, 
and L, = 40.85 #m, and c = 0, 1.8 X 10-6 and 2.5 X 10-6. The 
choice Lr = 3 #m is influenced by the length of the segments of Fig. 5 
microtubules observed in electron micrographs of the CSK (cf. 
Amos and Amos, 1991 ), whereas L,. = 40.85 #m is the average 
length of isolated microtubules in the experiments of Gittes et 
al. (1993). The value of T increases until a thrust (Pz, Ptl, or 
Pro) exceeds the value which results in the central deflection h 

L J3. Once the T versus ASx relationship is obtained, the 
structural stiffness is determined as the ratio K ~ T/Asx.  The 
above calculations were performed using TK Solver Plus soft- 
ware. 

Resul t s  and Discuss ion  

Results of the above analysis are shown only for the model 
with struts of resting length Lr = 3 #m. Results obtained with the 
models with L,.'s of 10 and 40.85 #m are qualitatively similar. 

The post-buckling axial thrust versus chord-length behavior 
(P versus L) for a strut with a resting length Lr = 3 #m is 
shown in Fig. 4. Once the thrust reaches the critical value pC 
= 23.578 pN, it increases nearly hyperbolically with decreasing 
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70 

6O 

50 

{40 
30 

80 

2O 

0 - / /  i 

2.2 

I I I [ I 

0.0 2,4 2.6 2.8 3,0 3.2 

CHORD-LENGTH L (grn) 

Fig. 4 Post-buckling axial thrust P versus chord-length L relationship 
for the pinned elastic column of resting length Lr = 3/,¢m 

e = 0% 
Fo=0pN 

0.03% / 
14.04 pN / 

0.04% / / / 

I 7 - - - - 1  
0.0 0.5 1.0 1,5 

AXIAL EXTENSION As x (Fm) 

Stretching force T versus axial extension ,~Sx relationship for the 
six-strut tensegrity structure with struts of resting length L r = 3 btm, for 
initial cable strain ~ of 0, 0.03, and 0.04 percent, i.e., initial cable tension 
Fo of 0, 14.04, and 18.72 pN, respectively. 

chord-length. This relationship is used to calculate the response 
of the model to uniaxial stretching. 

The behavior of the model during stretching is depicted in 
Figs. 5-8.  The applied stretching force T increases nonlinearly 
with increasing axial extension Asx of the structure (Fig. 5). 
This dependence is greater at higher initial cable strain c (i.e., 
higher initial cable tension F0). It differs from the Hookean 
behavior of cables (10) and struts before buckling (11) as 
well as from the strut post-buckling behavior (Fig. 4). Thus, 
mechanical properties of individual structural components are 
not sole determinants of the structure's response to stretching. 
The structure's architecture and Fo play important roles as well 
as shown in our earlier tensegrity analysis (Stamenovid et al. 
1996). 

150 

e = 0.04% 
F o = 18.72 pN 0.03% 

' 0 %  

0 pN 

120 

90 

60 

30 

0 I I I I I 

0 40 80 120 160 200 

STRETCHING FORCE 1' (pN) 

Fig. 6 Structural stiffness K versus stretching force T relationship for 
the six-strut tensegrity structure with struts of resting length L~ = 3 ~m,  
for initial cable strains e of 0, 0.03, and 0.04 percent, i.e., initial cable 
tension Fo of 0, 14.04 and 18.72 pN, respectively. 
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From the T versus &s× relationship it is obtained that the 
structural stiffness K increases with increasing Fo, and at a 
given Fo, K increases with increasing T (i.e., stiffening) (Fig. 
6). The dependence of K on T is nearly linear in the examined 
range of ZXSx, except in the case where Fo = 0 with K exhibiting 
a peak during initial stretching (Fig. 6). This peak is related to 
the onset of buckling in the struts (see below). Results in Fig. 
6 also show that the stiffening is somewhat greater at higher 
Fo, i.e., K versus T curves obtained at different Fo's exhibit a 
slight splay with increasing T. 

The above findings are the most significant results of this 
analysis for a number of reasons. First, they are consistent with 
the behavior observed in living cells (Wang and Ingber, 1994; 
Thoumine et al., 1995; Hubmayr et al., 1996). Second, the 
apparent linearity and slight splay of the stiffening curves in 
Fig. 6 cannot be obtained from our previous tensegrity analysis 
where the struts are viewed as rigid (Stamenovid et al., 1996). 
This in turn suggests that buckling of the CSK compression- 
bearing elements (i.e., microtubules) is a key determinant of 
cell deformability. Third, this stiffening response, which charac- 
terizes mechanical behavior of.cells and tissues, has so far been 
predicted by either empirical relationships (cf. Mow et al., 
1992) or phenomenological models (Fris~n et al., 1969). Here 
it is derived starting from a physically plausible model and first 
principles. Finally, by identifying the cables as actin filaments 
and struts as microtubules, the present model predicts forces 
and deformation which are of the same order of magnitude as 
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Fig. 7 Relationships of (a) chord-lengths L.  L#, and Lm and (b) corre- 
sponding thrusts P~, Pi.  and Pm versus axial extension ~sx of the struc- 
ture with struts of resting length L~ = 3/.¢m, for initial cable strains ~ of 
0, 0.03, and 0.04 percent, i.e,, initial cable tension F0 of 0, 14,04, and 18.72 
pN, respectively. A heavy dashed line in panel (b) indicates the critical 
thrust pC = 23.578 pN. 

2.1 

2.0 

1.9 
,g 

1.8 

1.7 

1.6 

1.5 

1.4 

(a) 

_ _ m  

e (%) Fo (pN 
0 0 
0.03 14.04 
0.04 18,72 

I I, 12, l 3 

.................................... [ i , [ 2 , 1 3  

0,0 t t q 

70 (b) 
F2 

.~ 50 
F: / 

.,,""' / /  

30 / 
"" /  ~ f  ...." . j _ ~  .... 3 

20 ..... - ........ ~ 3 

1o " ~ ' ~ 2 ~ ~ ~ ' ~  

Z,  
o.o 0.5 ].o 1.5 

AXIAL EXTEnSiON As x (.m) 

Fig. 8 Relationships of (a) cable lengths I~, I~, and 13 (b) corresponding 
cable forces FI, F=, and F3 versus axial extension &sx of the structure 
with struts of resting length Lr = 3 ~m, for initial cable strains ~ of 0, 
0.03, and 0.04 percent, i.e., initial cable tension F0 of 0, 14.04, and 18.72 
pN, respectively. 

those observed in cells (Dennerll et al., 1988; Wang and Ingber, 
1994). The model with rigid struts, on the other hand, yields 
high overestimates of forces and deformations. 

An important feature follows from the case where the model 
is not initially tensed (i.e., where Fo = 0). In that case, the 
model lacks intrinsic resistance to shape distortion, i.e., K = 0 
when T = 0 (Fig. 6). Thus, an Fo > 0 is needed to provide an 
initial stiffness to the structure. This behavior characterizes 
many biological structures (e.g., cells, lungs, cartilage, plant 
leaves, spider webs) as well as nonbiological structures (e.g., 
soap foams, tents), all of which are known or are believed to 
lack shape stability unless initial tensed, and all of which appear 
to be designed according to the rules of tensegrity. 

It is instructive to consider how the lengths and forces of 
individual members change during uniaxial stretching of the 
structure. Figures 7 (a )  and 7(b)  depict the changes in chord- 
length and thrust of the struts, respectively. The values of chord- 
length and thrust at 2~Sx = 0 are the initial chord-lengths L0 
( Fig. 7 (a)  ) and the initial thrusts Pc ( Fig. 7 ( b ) ). Chord-lengths 
of each strut decrease with increasing initial cable tension Fo 
(Fig. 7 (a ) ) .  For Fo = 0, only the struts with chord-length Lm 
buckles during initial stretching of the structure. The remaining 
struts shorten without buckling until ZXSx reaches --1.16 #m 
when the buckling in the struts of length LH occurs (Fig. 7 (a ) ) .  
The struts of length L: do not buckle within the examined range 
of &Sx. For e of 0.03 and 0.04 percent (i.e., F0 of 14.04 and 
18.72 pN, respectively), all struts buckle even betbre imposing 
a T (Fig. 7 (a ) ) .  At each of these Fo, the chord-length Lm 
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shortens with increasing ASx while the others, L/and L1/, first 
increase slightly before shortening but the struts remain buckled 
all the time. The above features can be also seen from the plot 
of thrust exerted by the struts versus Asx,  for different values 
of c (Fig. 7(b)) .  The heavy dashed line in Fig. 7(b) indicates 
the critical load p c  in the struts. When the thrust force lies 
above this line, the strut is buckled and vice versa. The fact 
that in the initially tensed structure the struts buckle even before 
the stretching force is applied may explain the bent-shaped 
appearance of microtubules on the immunofluorescent views of 
the CSK (Amos and Amos, 1991). 

During axial stretching of the structure, cables change their 
lengths very little as shown in Fig. 8(a).  A better insight into 
changes of cable lengths can be obtained from the plots of cable 
forces versus axial extension Asx  (Fig. 8(b)) .  For a given Fo, 
F2 and F3 increase with increasing Asx,  indicating that the 
corresponding cable lengths lz and 13 also increase. The opposite 
was found for Ft which decreases with increasing ~Sx. Force 
F~ does not reach a zero value within the examined range of 
ASs and hence, the corresponding cables do not attain the resting 
length 1,.. The "kinks" in the force versus length relationships 
for F0 = 0 (Fig. 8(b))  correspond to the onset of buckling in 
the struts. 

It should be mentioned that the six-strut tensegrity structure 
has cubic symmetry and therefore it is anisotropic. Details about 
the degree of anisotropy can be found in Stamenovid et al. 
(1996). 

C o n c l u d i n g  R e m a r k s  

The analysis presented in this study suggests that a simple 
tensegrity structure composed of linearly elastic cables and slen- 
der struts which buckle under compression can mimic the be- 
havior observed in living cells exposed to mechanical stresses. 
Moreover, by identifying the tensile and compressive force- 
bearing components of the model with the corresponding ele- 
ments in the CSK, it was possible to obtain quantitative predic- 
tions of forces and deformations which fall within the same 
order of magnitude as those observed in cells. The key features 
which determine the structure's response to stretching are initial 
cable tension, architecture and buckling of struts under compres- 
sion. The buckling of the struts appears to be crucial for provid- 
ing good correspondence between model behavior and observa- 
tions in cells. Previous analysis which employed the same model 
but viewed the struts as rigid, yields less accurate qualitative 
and highly overestimated quantitative predictions of mechanical 
properties of the cell. 

It is important to note that the simple static six-strut tensegrity 
structure employed in this study is only a crude representation 
of the CSK, which is an architecturally more complex dynamic 
structure, which expresses its mechanical behavior by inter- 
acting with the ECM. Here, the ECM was not explicitly consid- 
ered. Even so, this simple model of the CSK could capture the 
main features that characterize a cell's response to mechanical 
stresses. 
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A P P E N D I X  

The Euler equation for the axially loaded pin-ended strut 
(Thompson and Hunt, 1969) is given by 

w . . . .  4 w " w " w '  w"3(1 + 3w '2) - - +  .+  
1 - w '2 (1 - -  W t 2 )  2 ( 1  - -  W ' 2 )  3 

P w t, 
+ - 0 (A1) 

B (1 - w'2) 3/2 

where w = w ( x )  and primes denote derivatives with respect to 
x. The boundary conditions are 

w ( O )  = w " ( o )  = o, 

w ( L )  = w " ( L )  = O. 

The denominators of each term in Eq. (A1) can be expanded 
as a Binomial series giving the expanded form of the Euler 
equation 

w " [ l  + w 'z + w '4 + . . . ]  

+ 4w"w"w ' [1  + 2w '2 + 3W '4 + , . . ]  

+ W"3[I + 6W '2 + 15w 14 + . . . ]  

P 3 w, 2 15 w, 4 + - - w " [ 1  + -  + - -  + . . . ]  = 0. (A2) 
B 2 8 

By substituting Eqs. (12) and (13) into Eq. (A2) and collecting 
like powers of h, a system of linear differential equations that 
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can be solved sequentially is obtained. The coefficients of the 
first powers of h result in the equation 

p c  w'( 
w'~" + - -  = 0 

B 

with a solution 

In solVing for w~(x) ,  a nontrivial  solution that satisfies the 
boundary conditions requires that 

The coefficients of h ~ and all even powers of h result in the 
same solutions 

Pk = 0 f o r k o d d  

w j ( x )  = 0 for j even. 

The coefficients of h :~ result in 

4 

P2 = 4 \ L J  

w3(x)  = - sin 7r_fx + sin . 
L 

The coefficients of h 5 give 

P4 = ~-~B 

ws(x)  = - 17 sin 7rx + 16 sin 37rx 5 
L -  L - sin . 

The coefficients of h 7 give 

128 

wT(x) = 395 sin ~ + 2 sin 37r__f 
L L 

- 32 sin - -  57rx + sin 7 ~ x )  . 
L 

Similar calculations can be made for coefficients of higher or- 
ders in h, 
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Dynamic Constitutive and 
Failure Behavior of a Two-Phase 
Tungsten Composite 
The constitutive response and failure behavior of  a W-Ni-Fe alloy over the strain 
rate range of 10 -4 to 5 X 105 s -1 is experimentally investigated. Experiments con- 
ducted are pressure-shear plate impact, torsional Kolsky bar, and quasi-static torsion. 
The material has a microstructure of  hard tungsten grains embedded in a soft alloy 
matrix. Nominal shear stress-strain relations are obtained for  deformations through- 
out the experiments and until after the initiation o f  localization. Shear bands' form 
when the plastic strain becomes sufl~ciently large, involving both the grains and the 
matrix. The critical shear s o ,  in .for shear band development under the high rate, 
high pressure conditions of  pressure-shear is approximately 1-1 .5  or 6 - 8  times that 
obtained in torsional Kolsky bar experiments" which involve lower strain rates and 
zero pressure. Shear bands observed in the impact experiments show significantly 
more intensely localized deformation. Eventual failure through the shear band is a 
combination of  gtzain-matrix separation, ductile matrix rupture, and grain fracture. 
b~ order to understand the effect of  the composite microstructure and material inho- 
mogeneity on deformation, two other materials are also used in the study. One is a 
pure tungsten and the other is an alloy of  W, Ni, and Fe with the same composition 
as that of  the matrix phase in the overall composite. The results show that the overall 
two-phase composite is more susceptible to the formation of  shear bands than either 
of  its constituents. 

1 Introduction 
Tungsten heavy alloys (WHA or tungsten composites) are 

characterized by high density, high strength, and high toughness 
resulting from their composite microstructures of hard tungsten 
grains embedded in a ductile matrix. Because of these properties 
and such qualities as good machinability, low cost, and nonra- 
dioactivity, they are candidate materials for kinetic energy pene- 
trators. Traditionally, the mechanical properties of these materi- 
als have been studied by means of tensile and compressive tests 
under quasi-static or low strain rate conditions, Churn et al. 
(1984), O'Donnell et al. (1990), Rabin et al. (1988), Krock 
et al. ( 1963 ), and Krock (1964). However, WHA with different 
properties as characterized by such tests have demonstrated 
similar penetrating capabilities which are worse than that of 
depleted Uranium (see e.g., Magness (1992)), suggesting that 
the behavior of these materials under impact conditions are 
dominated by deformation and failure mechanisms not ac- 
counted for by such material properties as tensile strengths and 
ductility, Magness (1992) also reported that the performance 
of penetrator materials depends strongly on the formation of 
shear bands. Specifically, the localization of plastic deformation 
associated with the development of shear bands and the eventual 
material failure significantly improve the performance of these 
penetrators by allowing deformed materials to be discarded. 
Zurek et al. (1995) compared the behavior of a tungsten com- 
posite with that of a depleted Uranium over the strain rate 
range of 10 3 to 6000 s -1 and suggested that the enhanced 
susceptibility to shear localization of the Uranium is due to the 
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existence of a soft high-temperature phase. Indeed, the dynamic 
process involves material deformation at high strain rates and 
high hydrostatic pressures. Under such conditions, more defor- 
mation and failure mechanisms are operative than those found 
in the quasi-static tests, including rate sensitivity, thermal soft- 
ening, and the effect of inertia. 

Investigations have indicated that WHA demonstrate signifi- 
cant rate sensitivity between low and moderate strain rates. 
Woodward et al. (1985) studied the effect of strain rate on the 
flow stress of three WHA over the range of 10 -3 to 103 s -t 
and reported an increase of flow stress with increasing strain 
rate. Thermal softening was observed for strain rates greater 
than 2 s -~. Coates et al. (1990a, 1990b, 1992) found a 25 
percent increase in flow stress at a strain of 8 percent over the 
strain rate range of 10 -4 to 7 × 103 s -I in alloys containing 90 
percent to 97 percent W. Increasing strength and decreasing 
ductility with increasing strain rates in tensile and compression 
tests have also been reported by Meyer et al. (1983). Andrews 
et al. (1992) and Weerasooriya et al. (1992) studied the forma- 
tion of shear bands in WHA using torsional Kolsky bar experi- 
ments. Shear bands observed under their test conditions have 
an average width of 50 - -100  #m and the critical strain at which 
shear bands form is approximately 0.15-0.25. Andrews et al. 
(1992) also found that the peak temperature in the shear bands 
is about 580°C and axial pressures delay the process of shear 
band formation. The behavior of tungsten composites at strain 
rates up to 8 × 10  4 S -1 has .also been analyzed by Baek et al. 
(1994), Belk et  al. (1994), Weerasooriya (1994), Weerasoor- 
iya et al. (1994), Woodward et al. (1994), Tham et al. (1995), 
Yadav et al. (1995), and Zhao et al. (1995). 

Higher strain rates and higher pressures exist in penetration. 
In order to improve the performance through revisions in mate- 
rial design and processing, it is necessary to characterize the 
material behavior under high-rate and high-pressure conditions 
similar to those in actual applications. This need calls for experi- 
ments that involve strain rates up to 106 s -I and pressures up 
to 8 -10  GPa. Pressure-shear plate impact, as described by Clif- 
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ton et al. (1985), provides an attractive means for achieving 
such strain rates and pressures under well-characterized plane- 
strain conditions. In this investigation, controlled shear band 
formation is studied using the pressure-shear configuration. In 
addition, constitutive responses at intermediate and quasi-static 
strain rates are studied using a torsional Kolsky bar apparatus. 
The combined pressure-shear impact, torsional Kolsky bar, and 
quasi-static torsion experiments allow material responses over 
the strain rate range of 10 -4 to 106 s I to be characterized. 

2 Materials 
Figure 1 (a)  shows the microstructure of the tungsten heavy 

alloy used in the study. This microstructure consists of tungsten 
grains embedded in a matrix phase of nickel, iron, and tungsten. 
This material contains 93wt%-W, 4.9wt%-Ni and 2.1wt%- 
Fe. In order to understand the effects of the two-phase micro- 
structure and material inhomogeneities on the behavior of the 
alloy, a pure tungsten and a Ni-W-Fe alloy are used to determine 
the responses of the two constituent phases in the composite. 
The matrix alloy, having a composition of 50wt% -Ni ,  25wt% - 
Fe, and 25wt%-W, is custom made to match the the composi- 
tion of the matrix phase (Ekbom, 1981; O'Donnell et al., 1990; 
Hofmann et al., 1984) in the composite. All materials are sin- 
tered and cross-rolled along two perpendicular directions in the 
rolling plane to a thickness reduction of eight percent in each 
direction to obtain comparable dislocation structures so that 
direct comparisons could be made between the response of 
the WHA and its constituents. The microstructures of the pure 
tungsten and the matrix alloy are shown in Figs. 1 (b) and 1 (c), 
respectively. 

3 Experiments 
In the pressure-shear plate impact experiment, the specimen 

is a disk 50/~m to 200/~m in thickness. The specimen material 
is subjected to simple shear for 2 ,us at nominal shear strain 
rates between 105 and 106 s -1 , under pressures on the order 
of 8 -10  GPa. Because of its well-characterized plane-strain 
conditions, this experiment is an excellent configuration for 
studying material constitutive response at very high strain rates 
when uniform deformation is sustained in the specimen. This 
experiment also allows the onset of shear localization and the 
development of a shear band to be interpreted from the stress- 
time and stress-strain profiles. Since the specimen has no free 
surface, shear band initiation and development are insensitive 
to macroscopic geometrical defects, which may significantly 
influence the initiation and development of shear bands in other 
experimental configurations, such as torsional Kolsky bar (Mol- 

(c) 

Fig. 1 Microstructures of materials used; (a) tungsten composite, (b) 
pure tungsten, and (c) matrix alloy 
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Fig. 2 Shear stress-strain curves of WHA obtained from pressure-shear 
plate impact, torsional Kolsky bar, and quasi-static torsion experiments 
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Shot  

# 

9109 

9201 

9205 

9206 

9207 

9209 

9211 

9303 

9301 

9302 

9208 

9212 

Table 1 Pressure-shear experiment on WHA, W, and matrix alloy 

Specimen Project i le  

Mate r ia l  Velocity 

m m / ~ s  

~ r H A  0.181 

W H A  0.188 

W H A  O.2O5 

W H A  0.202 

W H A  0.213 

W H A  0.205 

W H A  0.205 

W H A  0.198 

'W 0.198 

'W 0,206 

M a t r i x  0.200 

M a t r i x  0.199 

Skew Norma l  Shear  

An~e Pressure 'Stress 
o M P a  M P a  

l 
21.5 8981 : 1100 

22.0 9326 1300 

21.5 10680 1350 

26.6 9629 1300 

22.0 10555 1350 

18.0 10430 1290 

21.5 10174 1250 

22.9 0748 1320 

22.9 9733 1250 

22.9 10142 1320 

18.0 10146 680 

21.5 9910 780 

Shear  Specimen 

R a t e  Thickness  

X 105s - 1  ~ m  

0.14 1973 

1.2 201 

3,9 78 

5.4 87 

4.0 89 

3.5 61 

6.5 57 

4.2 79 

4.2 91 

2.5 151 

3.0 129 

9.0 55 

Shear  

B a n d  

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 

No 

No 

inari et al., 1987). Table 1 summarizes the pressure-shear plate 
impact experiments conducted on the WHA, the pure tungsten, 
and the matrix alloy. 

Torsional Kolsky bar experiments are conducted on the ma- 
trix alloy. In addition, data from similar experiments conducted 
by Andrews et al. (1992) on the same WHA are used in the 
discussions. This experiment has been described in, e.g., Hartley 
et al. (1985), Duffy et al. (1971), and Costin et al. (1979). 
Quasi-static torsion experiments are conducted on the torsional 
Kolsky bar apparatus with minor modifications. Table 2 summa- 
rizes the torsional Kolsky bar and quasistatic torsion experi- 
ments conducted on the matrix alloy. Tests at elevated tempera- 
tures of 200°C and 250°C were conducted to gain information 
on the temperature dependence of the stress-strain curves. 

4 Experimental  Results 

4.1 Shear Band Formation and Strain-Rate Effect. Fig- 
ure 2 shows the shear stress-strain curves of the WHA at differ- 
ent strain rates obtained by pressure-shear impact, torsional Kol- 
sky bar, and quasi-static torsion. Over the strain rate range of 
10  . 4  to 1.2 × 105 S -E shown, the flow stress level increases 
2.5 times (from 570 to 1360 MPa), suggesting a strong rate 
sensitivity of the stress-strain relation. The alloy shows strain 
hardening under the quasi-static strain rate. The curves at the 
higher strain rates indicate strain softening of the material. This 
decrease in stress with increasing strain is attributed to thermal 
softening due to heat generated by the plastic deformation and 
the lack of time for the heat to be diffused out of the specimen. 

The precipitous drops an stress shown by the Kolsky bar curves 
indicate the onset of shear localization. The critical strains at 
which shear bands form are between 0.12-0.25. The defect 
parameter e, defined as the maximum wall thickness variation 
in the gauge section of the specimen divided by the average 
wall thickness, has a strong influence on the critical strain for 
shear localization. No sharp downturn in stress is seen in the 
curve obtained by pressure-shear impact although the overall 
rate of strain softening and the amount of accumulated shear 
strain are comparable to those in the Kolsky bar curves. This 
lack of quick loss of stress-carrying capability signifies that 
no localization has occurred, as confirmed by the deformed 
microstructure of the specimen (see the next section). The con- 
tinuation of uniform deformation beyond the critical shear 
strains of the torsional experiments suggests that the formation 
of shear bands have been delayed under conditions of the impact 
experiment. 

Shear localization is observed in impact experiments as the 
total amount of shear strain is increased by decreasing the speci- 
men thickness and increasing impact velocity and impact angle. 
Figure 3 shows the stress-strain curves from three shots involv- 
ing specimens 57-87 #m in thickness and impact angles of 
18-26.6 °. The sharp downturns in the curves of the two higher 
angle shots (9206 and 9211) signify the loss of stress-carrying 
capability associated with the onset of shear localization. The 
critical shear strains at the onset of localization are between 1-  
1.5. These values are six to eight times those obtained in the 
torsional Kolsky bar experiments (Fig. 2). Several factors may 
contribute to delaying shear band formation in pressure-shear 

Table 2 Torsional experiments on matrix alloy 

Spec imen  

# 

M[1 

M:2 

M:3 

M4 

M6 

M7 

M8 

M0 

M l l  

Test  

T e m p e r a t u r e  

Nomina l  Shear  

S t ra in  R a t e  

°C (K) s -1 

256 (523) 1.3 X 103 
0.5 X 10 3 

1.5 X 103 
1.4 × 

2.7× 

2.6 × 

2.7× 

20 (293) 
200 (473) 
20 (293) 
20 (293) 
20 (293) 

250 (s23) 

20 (293) 
20 (293) 

103 

103 

103 

103 

1.0 X 10 -4 

-,~ 1.0 x 10 -4 

Flow 

Stress  

M P a  

430 

570 

490 

580 

590 

59O 

400 

320 

350 

Defec t  

P a r a m e t e r  

E 

0.118 

O. 147 

0.123 

0.095 

0.054 

0.062 

0.130 

0.086 

0.120 

Shear 

Band 

No 

No 

No 

No 

No 

No 

No 

No 

No 
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Fig. 3 Dynamic shear stress-strain curves of WHA obtained by pres- 
sure-shear plate impact 

impact. Higher strain rates cause the material to flow at higher 
levels of stress. This increase in stress tends to stabilize the 
localization of deformation through higher flow stresses inside 
emerging shear bands where strain rates are higher. Normal 
pressures applied to the specimen during impact suppress the 
development of microvoids which would develop in the absence 
of pressure, This retardation reduces the additional softening 
caused by progressive microrupture. The normal pressure on 
the specimen makes the pressure-shear configuration insensitive 
to macroscopic geometric variations of the specimen. Such vari- 
ations expedite the initiation and development of shear bands 
in the torsional Kolsky bar configuration (Molinari et al., 1987). 
Material inertia effect at high rates of deformation may also 
delay the development of shear bands. 

4.2 Microscopic Observations, A series of scanning 
electron micrographs are obtained to show the deformation of 
the phases, the morphology of the shear bands, and the damage 
mechanisms that are responsible for eventual failure of the mate- 
rial inside the shear bands. The deformed microstructure of the 
specimen corresponding to the stress-strain curve in Fig. 2 that 
is obtained from pressure-shear impact is shown in Fig. 4. The 
elliptical grain shapes demonstrate the direction of the shear 
deformation. The deformation appears to be uniform across the 

SHEAR DIRECTION 

SHEAR DIRECTION 

{a) 

SHEAR DIRECTION 
IJ-  

{b) 

SHEAR D IRECTION 

(cl 

Fig. 5 Shear band morphologies in specimens after pressure-shear 
plate impact; (a) Vo = 205 ms-l ,  0 = 21.5 deg, and h = 78/~m, sheared 
for 1.44 #s, (b) Vo = 205 ms -1, 0 = 21.5 deg, and h = 57/zm, sheared 
for 2/¢s, and (c) Vo = 202 ms 1, 0 = 26.6 deg, and h = 87 #m, sheared 
for 2/~s 

Fig. 4 Deformed mierostructure of WHA after pressure-shear impact, 
Vo = 188 ms -1, # = 22 deg, and h = 201 p~rn 

thickness and no shear band is observed. This observation is 
consistent with the shape of the stress-stress curve in Fig. 2 
which does not show a sharp drop in stress. 

Figure 5 shows shear band morphologies at different stages 
of development. The specimens are subjected to successively 
more intense shear loading. All three shots have similar impact 
velocities between 202-205 ms -~ and the specimens are 57 -  
87 /zm in thickness. Figure 5 (a )  shows the deformed micro- 
structure of a specimen sheared for approximately 1.44 #s. The 
micrograph shows a nucleating band at the center of the speci- 
men. A neck has formed in the tear-drop-shaped grain. Further 
development of the band would involve shearing of this grain 
and propagation on both sides of the nucleating band. Figure 
5(b)  shows the morphology of a developing shear band in a 
specimen sheared for 2 p,s. The impact angle and the impact 
velocity are the same as those for Fig. 5 (a) .  Heavily elongated 
grains in the middle of the specimen indicate the developing 
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Matrix Grain-matrix Fractured 
Failure S h e a r  B s r l d  Debonding Grain 

Fig. 6 A shear band that has led to fracture of a WHA specimen, Vo = 
213 ms -1, 0 = 22 deg, and h = 89/.~m 

shear band. The intensely sheared region involves both the W 
gains and the matrix. In Fig. 5(c) ,  a shear band with more 
intensely localized deformation is seen. The micrograph shows 
deep etching of the grains so that the structure of the deformed 
matrix and grains is clearly revealed. The grains form tear-drop 
shapes near the middle of the band. The different distributions 
of deformation across the shear bands in Figs. 5 (b) and 5 (c) 
suggest that after the onset of shear localization further deforma- 
tion occurs primarily in the center of the bands. 

The shear bands in Fig. 5 ( b - c )  have widths of approximately 
5 -10  #m. This is in sharp contrast to the widths of approxi- 
mately 100 #m reported for torsional Kolsky bar experiments 
(Andrews et al., 1992). Although many factors may influence 
the width of shear bands, heat conduction over the time duration 
of the experiments sets one of the length scales for the localiza- 
tion of deformation. In the pressure-shear impact experiment, 
the specimen is sheared for 2 #s. The torsional Kolsky bar 
experiment subjects specimens to torsional loading of up to 600 
,us in duration. At higher strain rates, shear bands develop over 
a shorter time. Consequently, heat conduction occurs over a 
shorter distance. The more localized high temperatures contrib- 
ute to the formation of narrower shear bands. The shear bands 
in Fig. 5 also show more intense shear than what has been 
observed in the torsional Kolsky bar experiments (see Andrews 
et al. (1992) and Weerasooriya et al. (1992)).  Prolonged shear 
band development occurs in pressure-shear impact partly be- 
cause high pressures (9.62 GPa and 10.17 GPa for the two 
specimens in Figs. 5 (b -c ) )  delay failure due to microvoids 
and microcracks. During the torsional Kolsky bar experiments, 
rupture occurs at relatively early stages of localized deformation 
in the absence of pressure. 

The shear band in Fig. 5 (c) indicates that more intense shear 
deformation occurs in the matrix. Parts of the grains that are 
involved in the shear band form thin tails. As the deformation 
continues, grain-matrix separation and matrix rupture may occur 
due to strain incompatibility. A shear band that has led to the 
failure of the composite is shown in Figure 6. Note that the 
original thickness of this specimen is approximately twice of 
that shown in the picture. Only one half is shown because 
fracture occurred through the shear band, in the middle of the 
specimen. The top surface of the piece shown is the center 
line of the shear band through which fracture occurred. Ductile 
rupture of the matrix, grain-matrix separation, and grain fracture 
can be seen. A fractograph of the ruptured shear band surface 
is shown in Fig. 7. The dark areas are the matrix and the light 
regions are the grains. The surface morphology indicates intense 
shearing at the center of the shear band. Note the fractured grain 
at A. Dark strips on the grain surfaces indicate grain-matrix 
contact before separation. Because of the high percentage of 
the fracture surface that carries the grain-matrix shear marks, 
grain-matrix separation appears to be the dominant failure 
mechanism. A group of light grains with no dark contact marks 

Fig. 7 Fractograph of the shear band surface, Vo = 198 ms -t, 0 = 22.9 
deg, and h = 79 pm 

appear near the center of the fractograph. These grains are the 
remaining halves of fractured grains. It is not known whether 
the fracture surfaces represent certain crystallographic cleavage 
planes. A combination of ductile rupture of matrix, grain-matrix 
separations, and grain fracture appears to be responsible for the 
failure inside the shear band. 

4.3 Role of  Material  Inhomogenei t ies  in Shear  Band  
Format ion .  The deformed microstructure of a tungsten speci- 
men is shown in Fig. 8. This specimen shows intense shear 
deformation. The material near the top and lower faces experi- 
ences less severe shear because the conduction of heat into the 
flyer and anvil reduces the temperature increases and the amount 
of thermal softening near the surfaces. No shear band is ob- 
served for this material although the impact condition is compa- 
rable to those for the WHA specimen in Fig. 5(c) .  This result 
is in contrast to the shear band observed in Fig. 5(c)  for the 
composite. Similarly, no shear bands were observed in the ma- 
trix alloy under similar impact conditions (see Table 1 ). 

The stress-strain curves of pure tungsten, matrix alloy, and 
the composite obtained from impact experiments are summa- 
rized in Fig. 9. Similar stress levels are observed for the tungsten 
and the composite. The matrix, on the other hand, has lower 
flow stresses which are approximately one half of those for the 
tungsten and the composite. Neither the tungsten curve nor the 

S H E A R  D I R E C T I O N  

Fig. 8 Deformed microstructure of pure tungsten, V o = 198 ms 1, 0 = 
22.9 deg, and h = 91 ltm, sheared for 2/~s 
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Fig. 9 Dynamic shear stress-strain curves of WHA, pure tungsten, and 
matrix alloy obtained from pressure-shear plate impact 

matrix curve shows a sharp downturn that indicates the loss of 
stress-carrying capability associated with the onset of localized 
deformation. The matrix shows strong strain hardening through- 
out the deformation. These curves, along with the results of 
microscopic examinations, suggest that material inhomogene- 
ities inherit in the composite microstructure of WHA enhance 
the tendency for localization. The heterogeneous material distri- 
bution provides conditions under which nonuniform deforma- 
tion develops more easily. This nonuniformity in turn expedites 
the initiation of shear bands in the composite, causing the com- 
posite to be more susceptible to shear localization than either 
of its constituent phases when they are tested separately. Numer- 
ical simulations of the pressure-shear impact experiments car- 
ried out in Zhou et al. (1994) showed that the material inhomo- 
geneities inherit in the composite microstructure indeed domi- 
nate the course of shear band formation in WHA. The 
calculations also confirmed that the two constituent phases are 
more resistant to shear banding than the composite WHA. 

Torsional Kolsky bar and quasistatic torsion experiments con- 
ducted on the matrix alloy demonstrate that deformation is es- 
sentially uniform in the specimen and no localization is ob- 
served. This result is in contrast to the observation of shear 
band formation in WHA in torsional Kolsky bar experiments 
reported by Andrews et al. (1992). These results are consistent 
with the results of pressure-shear plate impact, confirming the 
higher susceptibility to shear banding of the composite. Tor- 
sional experiments on pure tungsten were not successful due to 
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Fig. 10 Shear stress-strain curves of matrix al loy obtained from pres- 
sure-shear plate impact, torsional Kolsky bar, and quasi-static torsion 
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Fig. 11 Strain-rate sensitivities of WHA, pure tungsten, and matrix alloy 

its brittle response. The specimen fractured immediately upon 
loading, Substantial plastic deformation is achieved in pure 
tungsten only during pressure-shear plate impact. The presence 
of pressure is necessary to facilitate plastic deformation in brittle 
tungsten. 

4.4 Material Response Characterization. Figure 10 
summaries the stress-strain curves for the matrix alloy obtained 
from quasi-static torsion, torsional Kolsky bar and pressure- 
shear plate impact. Unlike the composite, the matrix alloy shows 
strain hardening under both quasistatic and dynamic conditions. 
This lack of strain softening can be explained as follows. The 
matrix alloy has a specific heat three times that of the WHA. 
Its flow stress and density are only approximately one half of 
those of the WHA. For the same amount of plastic strain, the 
temperature change would likely be only one third of that for 
the composite. In addition, the FCC lattice structure of the 
matrix gives it a higher rate of strain hardening due to its larger 
number of slip systems and the resulting higher rate of disloca- 
tion entanglement. In contract, pure tungsten has a BCC lattice 
structure and a relatively lower rate of strain hardening. 

The strain-rate sensitivities of the WHA, the tungsten and 
the matrix alloy are shown in Fig. 11. The flow stresses plotted 
correspond to a shear strain of 0.45. It is noted that the matrix 
alloy exhibits a relatively weaker strain-rate dependence of flow 
stress at strain rates above 103 s-~. The composite, on the other 
hand, shows a strong strain-rate sensitivity at high strain rates. 
The flow stress levels of pure tungsten are slightly higher than 
those of the composite. 
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Fig. 12 Shear stress-strain curves of matrix alloy at room temperature,  
200°C, and 250°C obtained from torsional Kolsky bar 
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Fig. 13 Temperature dependence of flow stress for WHA, W, and matrix 
alloy 

Figure 12 shows the shear stress-strain curves of the matrix 
alloy obtained from torsional Kolsky bar experiments at room 
temperature, 200°C and 250°C. Significant thermal softening is 
seen in this temperature range. The temperature dependence of 
flow stresses for the composite, pure tungsten, and the matrix 
alloy are summarized in Fig. 13. The data for WHA are reported 
by Andrews et al. (1992), Bose et al. (1988), and O'Donnell 
et al. (1990). Based on the data presented here, Zhou et al. 
(1.994) used a characterization which accounts for viscoplastic- 
ity, strain hardening, and thermal softening for the responses 
of the tungsten and the matrix. This model characterization is 
indicated by the solid lines. There is a lack of data at high 
temperatures for all the materials studied. It is assumed that the 
materials lose all stress-carrying capabilities when the tempera- 
ture reaches their corresponding melting points. Tungsten shows 
a much lower rate of thermal softening than the matrix partly 
because of its high melting temperature (approximately 3300 K 
versus 1750 K). Simulations of the pressure-shear plate impact 
experiments on WHA using this characterization of the constit- 
uents gave good predictions for the behavior of WHA. 

5 Conclusions 
1 The formation of shear bands in a tungsten heavy alloy 

is studied using pressure-shear plate impact. In the experiment, 
the material is subjected to simple shear at shear strain rates up 
to 7 × 105 s -~ . The experiment provides an opportunity to 
relate the shear band development to stress-strain profiles. Dy- 
namic stress-strain relations obtained from the pressure-shear 
plate impact and torsional Kolsky bar experiments show that 
the alloy exhibits significant rate sensitivity and thermal soften- 
ing due to plastic dissipation. Shear bands form when the plastic 
strain becomes sufficiently large. Significantly more intensely 
formed shear bands are observed in the pressure-shear impact 
experiments than those reported for torsional Kolsky bar experi- 
ments. The critical shear strain for shear band development is 
approximately 1-1.5 or 6 - 8  times that obtained in torsional 
Kolsky bar experiments. 

2 Failure inside the shear bands during pressure-shear im- 
pact is a combination of grain-matri x separation, ductile matrix 
rupture, and grain fracture. Grain-matrix separation seems to be 
the dominant mechanism through which material failure occurs. 

3 Impact experiments show that the flow strength of the 
WHA follows closely that of the tungsten grains. The matrix has 
a flow strength approximately one-half that of the WHA. Pure 
tungsten and the composite show stronger rate sensitivities than 
the matrix. Pure tungsten and WHA also show thermal softening 
during pressure-shear impact experiments while the matrix exhib- 
its strain hardening for strain rates up to 3.0 × 105 s -1. 

4 The presence of different phases serves as a perturbation 
to deformation that enhances the initiation and development of 
shear bands. The composite microstructure causes the WHA to 
be more susceptible to shear banding than either of its constit- 
uents when tested separately. 
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Elastic Fields in a Polygon- 
Shaped Inclusion With 
Uniform Eigenstrains 
In this paper the elastic fields in an arbitrary, convex polygon-shaped inclusion with 
uniform eigenstrains are investigated under the condition of  plane strain. Closed- 
form solutions are obtained for  the elastic fields in a polygon-shaped inclusion. The 
applications to the evaluation of  the effective elastic properties o f  composite materials 
with polygon-shaped reinforcements are also investigated for  both dilute and dense 
systems. Numerical examples are presented for  the strain field, strain energy, and 
stiffness of  the composites with polygon shaped fibers. The results are also compared 
with some existing solutions. 

1 .Introduction 
The elastic fields due to ellipsoidal inclusions in an infinitely 

extended media have been investigated by many authors follow- 
ing the pioneering work of Eshelby (Eshelby, 1957). However, 
little work has been done for nonellipsoidal inclusions. The 
elastic fields due to a cuboidal inclusion with uniform eigen- 
strains have been calculated by Faivre (1964), Sankaran and 
Laird (1976), Lee and Johnson (1977, 1978), and Chiu (1977, 
1978). Owen (1972) and Chiu (1980) considered the problem 
of a rectangular inclusion in both infinite and half-spaces. Takao 
et al. (1981) investigated a cylindrical inclusion problem in an 
attempt to examine the hygrothermal effect in a fiber composite 
material. Nonellipsoidal inclusion problems are important for 
composite materials since some nonellipsoidal reinforcements 
are used, for examples, SiC whisker used in metal and ceramic 
matrix composites, and eutectics used in superconductor com- 
posites. Recently Mura et al. (1994) have examined the elastic 
field in a pentagonal star-shaped inclusion and claimed that the 
elastic field (stress and strain) inside the inclusion is uniform. 

In this paper an arbitrary, convex polygon-shaped (n-sides) 
inclusion is investigated for the case where uniform eigenstrains 
are prescribed. In the following, we first show the elastic fields 
induced by the eigenstrains in the convex polygon-shaped inclu- 
sion can be obtained explicitly by the straightforward extension 
of a well-known procedure for an ellipsoidal inclusion (Mura, 
1987). It should be noted here that "convexity" of an inclusion 
shape is required so as to maintain one-to-one mapping between 
the inclusion and unit sphere. Then, the strain concentration 
matrix (Dunn and Taya, 1992) is calculated to determine the 
overall elastic constants of composite materials reinforced by 
polygon-shaped fibers. Finally, numerical results are presented 
for the strain field, strain energy, and effective stiffness of com- 
posites with polygon-shaped fibers. The strain fields and strain 
energy are compared with the analytical ones by Chiu (1980) 
for n = 4 and Eshelby (1957) for n ~ ~. Dilute approximation 
and Mori-Tanaka mean field approaches are used to evaluate 
the overall stiffness of composites. A numerical integration for- 
mula is applied to obtain the strain energy and averaged Eshel- 
by's tensor. 
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2 Computational Procedure 

2.1 General Case. Consider an infinite, elastic, homoge- 
neous, and isotropic domain D having an arbitrarily shaped 
convex inclusion ~2 with uniform eigenstrain e~ in a Cartesian 
coordinate system (X'l, x~, x~). The matrix domain is denoted 
as D - ~. The eigenstrain c ~ is so defined that it assumes some 
constant value in ~ but vanishes in D - f2. For prescribed 
eigenstrain e~ in f~, the resulting stress au is given by 

au = Cij~l(ekt- e~) in D, (1) 

where Cok~ is the elastic stiffness tensor of the matrix and ekt is 
the strain induced by the inclusion. Using Green's function 
G u ( x  - x ' ) ,  the displacement field inside f~ can be written as 
(Mura, 1987) 

u, ( x )  = - * f Cjk,,,,,em, Gu.k(x -- x ' ) d x  i 

a~ 

f~ r(l ,  x)guk(l)dw, (2) 

where u is the Poisson's ratio of the matrix and x, x '  are the 
points inside ~. ! = (x '  - x ) / Ix '  - xl, r(l ,  x) = Ix' - xl 
and d~  is a surface element o f a  unit sphere Z. guk(l) is a 
function defined by 

guk(l) = (1 - 2u)(6~lk + 6,k6 - 6S , )  + 31,ljlk. (3) 

Thus, if we find r(l ,  x), we can determine the displacement 
field inside any convex inclusion from (2) and the strain and 
stress fields using the standard displacement-strain relationships 
and Eq. (1). 

2.2 Two-Dimensional Polygons. When the inclusion is 
a cylindrical inclusion in the x3 direction extended from x~ = 
-oo to x3 = ~ and the transverse section of which has an arbitrary 
convex polygon (n-sides) shape as shown in Fig. 1, the elastic 
displacement due to the inclusion is still given by Eq. (2). The 
volume element dx '  in Eq. (2) is dx[dx~dx~ and the eigenstrain 
c~ is assumed to be independent of x3. The integration with 
respect to x ~ involves only the Green's function and this integra- 
tion requires the Green's function for two-dimensional plane- 
strain problems. For isotropic media, the Green's function for 
two-dimensional plane strain is (Mura et al., 1994) 

G;)(x - x ' )  

= [~,ZJr 2 - (3 - 4u)~ u log r]/87r(1 - u)#,  (4) 
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• 3 

D ~ l  F 

Fig, 1 Polygon-shaped inclusion ~ and unit circle F 

w i t h e  = x :  - x i  a n d  r 2 = ( x  I - x ~ )  2 + ( x  2 - x ~ )  2 = I x '  - 

xl ~ : Ix - x '  I =. In Eq. (4), /z is the shear modulus of the 
matrix. Now the integral (2) is reduced to a two-dimensional 
integral defined inside the polygon and further to a line integral 
along the unit circle F centered at point x. 

u~ ( x )  = -Q~m, ,~* , ,  f,~ G~),~(x - x ' ) d x '  

EjSk 
f r  r(l ,  x)g~.~(l)dw. (5) 4~(![ i u) 

In the above equation, g~)~(l) is defined by 

g~k(l) = (1 - 2v)(-85k/~ + 8(/I~ + 5~fll) + 21fljl~. (6) 

When x is located inside the inclusion, the integral in Eq. (5) 
is explicitly performed. A~(x~, x~) (I = 1 ~ n) is a vertex of 
a polygon of n sides. When x'  is on the side A~Ai+~ of the 
polygon, Fig. 1, r(l ,  x), the distance between x and x' ,  is 
obtained by 

o~x~ + /3~x2 + y~ 
r(l ,  x) = r~(l, x) = - , (7) 

where 

~ ,  = x~  - ~ + ' ,  

~, = - ( x {  - x l  + b ,  

,~,  .~] X/-t- 1 I 1 + |  
= - -  X 2 X  1 . 

Substituting Eq. (7) into Eq. (5), we obtain 

u ~ ( x )  

- 4~-(1 - u) r~ x)g~( l )dw 
i 

( 8 )  

+ f r  r2(l,x)giyk(l)dw + . . .  
2 

+ frlrl(l,x)gok(l)dw + . . . + fr  r,(l,x)gok(l)dw] 

e,~ ,, f%(x) rl(l,x)g~jk(l)d0 
47v(1 - u) ~ ~o, ~(~) 

1 ~ 'j~%(x) e~o r" j k ,~ i j k  \ 1 ) . . . .  dO 47r(1 - u) (oOxl +/3~x2 + y~) , ,(~)c~/ll +/3/2 ' (9) 
l= 1 

where Fi (I = 1 ~ n) is an arc segment of the unit circle F 

corresponding to the side AzAi+~ of the polygon, dw = 1 • dO 
and ®~(x) is defined as 

I 

O,(x) = c4x) + ~., O : ( x ) ,  
J= l  

O0(x) = of(x), O,,(x) : a(x)  + 27r, 

I x 2 - x ~ ]  
~(x) = tan -~ LX~ - Xl l  ' (10) 

In Eq. (10), 0~(x) is the angle c01Tesponding to the arc segment 
Fi 

{all(X)} + {di+l(X)} 2 - a 2] 
01(x) = cos ~1 2dl(x)dl+lix) ' 

d , ( x )  = ~/(x~ - x l ) :  + (x~ - x ~ ) :  , 

a ,  = ( ( x ~  - x i + ~ ) :  + (x~  - x ~ + b :  . ( 1 1 )  

Using the integral formulae given in Appendix A, Eq. (9) is 
reduced to 

u~ (x) = Di:k(x)e~, (12) 

where D~k(x) is a third-order tensor given in Appendix B. The 
strain field inside ~ is obtained from Eq. (12) 

I ( U i ,  j + Uj'i  ) = S i j k l ( X ) e ~ l ,  (13) ~ ( x )  = 

where S0k~(X) is a fourth-order tensor given in Appendix C. 
S0kz(x) is the Eshelby tensor for polygon-shaped inclusion. The 
stress field inside ~, chj(x) is calculated by substituting Eq. 
(13) into Eq. (1). 

The elastic strain energy in the infinite domain D is (Mura, 
1987) 

,fo W* = ~ ai~(x){~,j(x) - ci~}dD 

F a0(x)e~ dD' (14) 
1 

The expression for au(x) is so complicated that we are not able 
to perform the integral in Eq. (14) analytically. Thus we need 
to employ a numerical integration technique to evaluate the 
elastic strain energy (14). 

3 Effective Stiffness of Composites Reinforced by 
Polygon-Shaped Fibers 

3.1 Strain Concentration Matrix. Consider polygon- 
shaped fibers (elastic stiffness C~kt) embedded in an infinite 
body D (elastic stiffness C~a) subjected to an uniform farfield 
strain e °. The state of actual strain at any point in a composite 
material can be expressed by e'i} + %(x) where c~/(x) is the 
disturbance strain field due to the existence of fibers. Therefore 
the integration of the disturbance strain Q(x) over the entire 
composite domain vanishes, i.e., 

--c 0 ei) = e,j, (15) 

where ~) is the average strain field in the composite material. 
On the other hand, the average strain and stress fields in the 
composite material are expressed as 

g~ = f g ~  + (1 - f ) g , ~ .  (16) 

In the above equations, f is the volume fraction of fibers, U 
and ~i (i = c , f ,  m) are the average strain and stress fields (in 
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composite material, fibers, and matrix), respectively. The 
stress-strain relations in each phase are defined by 

~ = C~,,r~,, 

I'-"ijkl kl, 

--/11 HI --m o'~i = Cijktekl. (17) 

From Eqs. (15), (16), and (17), we obtain the elastic stiffness 
tensor of the composite material as 

Ci% = C;)'k~ + f (  C~kt - C~'kt)Ao,t, ( 1 8 )  

where A~jkt is the strain concentration matrix (Dunn and Taya, 
1992) which relates the average strain in fiber domain to that 
in the composite material, i.e., 

Z:~ = A,jkFGt = Aijkledl. (19) 

We can obtain Aok~ for both dilute and dense systems by 
Eshelby's equivalent inclusion metlmd. 

3.2 Dilute System, First, we consider a composite mate- 
rial of which fiber volume fraction is low enough to ignore the 
interaction effects. The composite material is subjected to an 
uniform farfield strain e ° and we write for the total strain as 

e~(x) = e ° + <;(x), (20) 

where e0(x) is the disturbance strain caused by the inhomogene- 
ities. The effect of the inhomogeneities on the stress and strain 
distribution may be modeled with help of a eigenstrain 
¢* (x). This concept is based on the following equivalence: 

~ o + 0 . A x ) =  l o C~k/(~l + e~i(x)) 

m 0 = Co.~(e~l + e~l(x) - e~(x)) in fL (21) 

where cr ° is the uniform stress corresponding to the applied 
strain and they are related by 

O" 0. = m 0 C~i~ek~, (22) 

and cr~(x) is the stress disturbance by the inhomogeneities. 
Averaging Eq. (21) over f2, we obtain 

t ~  f [ 0 m 0 = Co~t(e~ + - ~'}). (23) 

Subtracting the uniform field, Eq. (22) from Eq. (21) we obtain 

~ = C~(e~ - gg~). (24) 

Equation (24) is identical to Eq. (1) in form if Eq. (1) is 
averaged over fL Furthermore, if Eq. (13) is averaged over f2, 
we have 

~ = &~,,,,;g,~,, = &~,,,,,e27,, (25) 

where e~ was assumed constant. Thus, as far as the averaged 
fields are concerned, we can use Eq. (25) to solve Eq. (23). 
In Eq. (25), ~m is the averaged Eshelby tensor defined by 

&,,,,,, : ~ , Se , , , , , ( x )dV .  (26) 

The average strain field in f~ is obtained as 

g~ = e ° + &,,~-~. (27) 

We can reduce Eq. (23) to 

C ~,gD = C ~',, ( gD - g~ ). ( 28 ) 

By eliminating g~ with Eqs. (27) and (28), the relationship 
between the average strain in the fiber domain and that in the 
composite material is obtained as 

~ = - ,,t o ( 2 9 )  ,'a[ijklEkl ~ 

where 

- -  m - -  l A,~], = [lij,, + Sa,,(Co-k¢) (C~k,. - Ca,,)] . . . .  ' . (30) 

3.3 Dense System, We adopt the Mori-Tanaka mean field 
approach (Mori and Tanaka, 1973) which is effective for any 
finite volume fi:action of fibers f,  0 ~ f ~  1. The key assumption 
in the Mori-Tanaka theory is that the concentration factor Aak~ 
is given by the solution for a single fiber embedded in an infinite 
matrix subjected to an applied elastic field equal to the as yet 
unknown average elastic field in the matrix. This solution is 
easily expressed as 

~ f  ~ ~ dil --m • a Ukl~l, (31) 

where A}~ is given by Eq. (30). With Eqs. (16), (19), and 
(31), the concentration factor, Mr A~jk~, can be written in the form 
as first proposed by Benveniste (1987), 

A O~.~" = d, ,,I - A,jkt[(l --.f)lijk/ + fAokl] • (32) 

4 Numerical  Results and Discussion 

4.1 Strain Fields and Strain Energy in the Inclusion. 
Numerical examples of the strain (13) and the elastic strain 
energy (14) are shown in this section. We assume a regular 
polygon-shaped inclusion centered at the origin O of the 
Cartesian coordinate system as shown in Fig. 2. The Poisson's 
ratio of the matrix u is assumed to be 0.3 throughout the compu- 
tation. As will be mentioned further, the strain field inside the 
inclusion have logarithmic singularity at its corners. To evaluate 
the integrals of strain energy (14) and average Eshelby tensor 
(26) properly, we devide the polygon into triangles whose verti- 
ces are denoted by O,  A i ,  Bi  or O, At, Ci (I = 1 -- n) where 
Bi is the midpoint of a side AiA~+i and Ct is that of At ~At. 
Transforming the triangles to a square of which vertices are ( 1, 
1 ) , ( - 1 ,  1), ( - 1 ,  - 1 )  a n d ( l ,  - 1 )  so as tocorrecpond O-+ 
( - 1 ,  1), Bt(C~) ~ (1, l)  and A ~  ( - 1 ,  - 1 ) ,  (1, -1  ), standard 
Gaussian numerical integration formula has been used to evalu- 
ate the integral over the square. This transformation gives a 
Jacobian which contains nondimensional distance from A~, a 
singular point, so that the logarithmic singularity at the corners 
of poligons is suppressed. The number of abscissas for numeri- 
cal integration on each triangle was 100. 

Figures 3 and 4 show the variation of the total strain fields 
q l (x), e22 (x) in a regular n polygon-shaped inclusion along 
the x ~-axis for a dilatational eigenstrain (e ~, e ~2, e ~2) = (e0, 
0, e0). The strain distributions are not uniform but approach to 
the Eshelby's solutions (dashed line) for circular inclusion of 
radius a with the increasing number of vertices n. The strain 
fields have logarithmic singularity at the corner of each polygon 
as pointed out by Chiu (1980) for a rectangular inclusion. Note 
that the values of strain fields in a regular n polygon-shaped 

= - 2 '  

l a x2~ 

Fig. 2 Regular polygon-shaped inclusions 
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Fig. 3 Normalized total strain elt/eo in regular polygon-shaped inclu- 
sions along the x.~-axis for a dilational eigenstrain (Co, 0, Co) 
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Fig. 6 Normalized total strain ~ / e o  in regular polygon-shaped inclu- 
sions along the x.~-axie for a uniaxial eiganstrain (e0, 0, 0) 
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Fig. 4 Normalized total strain ~ / e o  in regular polygon-shaped inclu- 
sions along the x.~-axis for a dilational eiganstrain (co, 0, Co) 

sions with a dilational eigenstrain (e~<l, e~<2, e2"2) = (e0, 0, Co) 
versus the number of vertices n, where E is the Young' s modu- 
lus of the matrix and Va is the volume of inclusion. It is noted 
in Fig, 8 that the normalized strain energy for the square type 
II under the dilational eigenstrain (n = 4) coincides with Chiu 's  
solution (1980).  Figure 9 shows the results of normalized strain 
energy based on the present model for a uniaxial eigenstrain 
( e  1~1, El~2, el2 ) = (e0, 0,  O) where the analytical results by Chiu 
(1980) for n = 4 are shown as an open square ( ~ )  IV* = 
0.195, and the present results for the square type ! by an open 
diamond square ( ~ ) I~* = 0.180, while the Eshelby's results 
for a circular cylinder are W* = 0.1875. Thus the strain energy 
for a cylindrical inclusion lies between those of square type I 
and II. If the present model is applied to another tilted square 
(square type III, in Fig. 7) where the angle of tilt is 22.5 deg, 

inclusion for the given eigenstrain field coincide with Eshelby' s 
solutions at its center. Figures 5 and 6 show the results for a 
uniaxial eigenstrain, (el*l, e~*2, e2"2) = (co, 0, 0). In this case, 
the values of strains at its center take the same values with 
Eshelby's solution except for the case n = 4. The reason for 
the discrepancy between the present results and Chiu's  solutions 
for n = 4 is that the square used in Chiu 's  model is parallel to 
the x~ and x;  axes, type II in Fig. 7, while the square used in 
the present model is type I as shown in Fig. 7 where the lines 
of the square are tilted at 45 deg with the x~ and x~-axes. In 
addition, the uniaxial eigenstrain imposed is along the x~ axis 
which is not parallel to the lines of the square used in the present 
computation, type I. We also computed the strain at the center 
of a type II square used by Chiu by using the present model 
and found the results coincide with those of Chiu (1980).  

Figure 8 shows the variation of the normalized strain energy 
W* = W*(1 - uZ)le~ EVa for regular polygon-shaped inclu- 

0,5 

.~ 0 
co 

-0.5 - - - - -  

-1 

-1.5 
0 

Fig. 5 Normalized total strain etl/~o in regular 
signs along the x~'-axis for a uniaxial aiganstrain 

Eshelby's Sol. 

n=3 ~ 

(e;,,e;2,e;2)=(eo,O,O) 
I I I I 

0,2 0.4 0.6 0.8 1 

X I '/a 

polygon-shaped inclu- 
leo, O, O) 

Xl I 

X21 X21 

Square (I) Square (II) 

X i  t 

X21 

@ ~ °  XI I 

Square (III) 

Fig. 7 Geometry of various types of square: type I (diamond square with 
tilt angle ~r/4), type II (regular square with zero tilt angle), type III (with 
~ / 8  tilt angle) 
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dilational eigenstrain (E0, O, ~0) 
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Fig. 10 Averaged Eshelby tensor S0kt for regular polygon-shaped inclu- 
sion versus n 
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Fig, 9 Normalized elastic strain energy IiV* = W*{1 - ~ ) /eo  2 EVa in an 
infinite body with a regular polygon-shaped inclusion of n sides for a 
uniaxial eigenstrain (~o, O, O) 

just a half of square type II, the strain energy of an infinite body 
containing the square inclusion of type 1II 0 coincides with 
the Eshelby's results for a circular inclusion, i.e., 1~* = 0.1875. 
For square type III, the computed Smx, $1t22, S2m, and $2222 
all coincides with the Eshelby's results for a circular inclusion, 
although the Eshelby's tensor for shear such as SH21 do not 
vanish. We computed 1~* by using the present model for the 
square type II which was used by Chiu, and the result of I~* 
based on the present model coincide with Chiu's  model: 1~/* 
= 0.195. It should be noted that the values of the normalized 
strain energy of regular n-polygons approach to the Eshelby's 
solution of a circular cylinder as n ---, co. 

4.2 Stiffness of Composites With Polygon-Shaped Fi- 
bers. To obtain the effective stiffness of composites with 
polygon-shaped fibers, we first compute the averaged Eshelby~s 
tensor in Eq. (23) numerically, using the same numerical inte- 
gration procedure used for strain energy. Figure 10 shows the 
variation of averaged Eshelby tensor versus the number of verti- 
ces n for regular polygons where the present solutions for the 
square type I are shown by an open diamond square ( © ). The 
averaged Eshelby tensor takes the same value as the one for a 
circular inclusion (Eshelby's  solution) except for the case n = 
4. This is similar to the case of the strain energy discussed 
above. 

Table 1 shows the comparison between Eshelby tensor for 
a circular cylinder and averaged Eshelby tensor for square- 
shaped inclusions. It is noted in Table 1 that the values of 
Sokt for the square type I are those marked by an open diamond 
square ( 0 ) in Fig. 10. We calculated the stiffness of an A1 
matrix composite reinforced with SiC square-shaped fibers by 
using Table 1 and the data of SiC and A1 in Table 2, where 
indices 1 and 2 refer to the x~ and x;-axes defined in Fig. 7, 
respectively. Figures 11 and 12 show the calculated stiffness 
tensor components C ~ ,  and C]2t2 respectively, where s@- 
scripts 1 and 2 again refer to the x[ and x~ axes, respectively. 
It turns out that the stiffness for the square type I is larger 

Table 1 Nonzero components of the averaged Esheiby's 
tensor for square-shaped inclusions 

Eshelby's tensor Circular cylinder Square (I) Square (II) 

S~HI 0.678571 0.699546 0.657597 
St~z2 0.035714 0.014740 0.056689 
Slz12 0.321429 0.300454 0.342403 

Table 2 Elastic stiffness of SiC and AI 

Material Cmt (GPa) Ci212 (GPa) 

A1 Matrix 110.5 26.5 
SiC Fiber 474.2 188.1 

Fig. 11 
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than  that  for  c i rcular  cy l inder ,  and the  s t i f fness  for  the  square  
type  II is sma l l e r  than that  for  c i rcular  cy l inder .  The  shape  
e f fec t  is l a rger  on  C?212 than  C ~ i i .  It shou ld  be  n o t e d  he re  
that  the  c ros s  sec t ion  o f  c o m m o n  SiC f iber  is no rma l l y  e i ther  
c i rcular  or hexagona l .  In t h e s e  cases ,  the c o m p u t a t i o n  o f  the  
e las t ic  cons t an t s  o f  SiC f iber  c o m p o s i t e s  can  be  d o n e  by  us ing  
the  s t andard  E s h e l b y ' s  m o d e l  w h e r e  the va lues  o f  So~ are for  
a c i rcular  cy l inder ,  w h i c h  co inc ide  wi th  t h o s e  for  a f iber o f  
h e x a g o n a l  c ross  sect ion.  It shou ld  a lso  be  no ted  that  a h igh  
p e r f o r m a n c e  t r ansduce r  e l e m e n t  is m a d e  o f  P Z T  fiber o f  
square  c ross  sec t ion  e m b e d d e d  in e p o x y  matr ix .  The  p r e sen t  
m o d e l  w o u l d  be usefu l  in ana lyz ing  the  s t ress  field in such  a 
p i ezoe l ec t r i c  c o m p o s i t e .  
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A P P E N D I X  A 

Integral Formulae 

To pe r fo rm  the integral  in Eq. ( 9 ) ,  the fo l lowing  fo rmulae  
are used: 

f cos 0 aO + b log l a cos  0 + b sin 0l 
dO 

a cos  0 + b sin 0 a 2 -F b 2 ' 

f s i n 0  b O - a l o g  ] a c o s 0  + b s i n 0 1  
dO 

a c o s 0  + b s i n 0  a 2 + b 2 ' 

f COS 3 0 
dO 

a c o s 0  + b s i n 0  

= 2aO(a 2 + 3b 2) + ( a  2 + b 2 ) ( b  cos  20 + a sin 20)  

4 ( a  2 + b2) 2 

+ 
b 3 l o g  [ a c o s O  + b s i n O [  

( a  2 + b 2 )  2 

f COS 2 0 sin 0 
dO 

a c o s 0  + b s i n 0  

2bO(b 2 - a 2) - ( a  2 + b 2 ) ( a  cos  20 - b sin 20)  

f COS 0 sin 2 0 

a c o s 0  + b s i n 0  

4 ( a  2 + b2) 2 

ab210g  la cos 0 + b sin 01 
( a  2 + b 2 )  2 

dO 

= 2aO(a 2 - b 2) - (a 2 + b2 ) (b  cos  20 + a sin 20)  

4 ( a  2 + b2) 2 

a2b log [a cos 0 + b sin OI 
( a  2 + b2) 2 

f sin 3 0 
dO 

a c o s 0  + b s i n 0  

= 2bO(3a 2 + b 2) + (a 2 + b~)(a  cos 20 - b sin 20) 
4 ( a  2 + b2) 2 

a 3 l u g  [ a c o s 0  + b s i n 0 1  
( a  2 + b2) 2 

A P P E N D I X  B 

Third-Order Tensor Du~(x) for Displacements 

In equat ion ( 1 2 ) ,  the c o m p o n e n t s  o f  Dijk(x) are 

n 

1 . Y~ (a lx l  + t3ix2 + 3'1) D0k(x) = 4~r(1 - u) r=l 

l 
× [ F 0 k ( O i ( x ) )  -- F~jk(Ot_l(X))] ,  

where  

( A 1 )  

( A 2 )  
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F{i i (0)  = ( 1 -  2u)~cel0 +/31 log Icel cos 0 +/31 sin 0] 1 
( ./~ +/3,~ 

2cet0(ce~ + 3/3~) + (ce/~ + /3~)(/3, cos 20 + ce, sin 20) + 
2(ce~ +/3~)2 

2/3~ log Ice, cos 0 + 13, sin O[ + 
( ~  + fl~)~ 

F{,2(0) = ( 1 -  2 u ) { / 3 , 0 -  oq log c~ 2]~' cos 0 + + / 3 P  /3, sin 01 } 

2/3~0(/3~ 2 - ce~) - (ce~ + /3~)(ce, cos 20 - /3, sin 20) + 
2(ce~ +/3,2)2 

2o0/3~ 2 log Io0 cos 0 + /3, sin 0 

(od +/3~)2 

F{=,(0) = F{~(0) ,  

F{22(0) = - ( l  - 2u) (a,O + /3~ log Ice, cos 0 + fl~ sin 01 

2ce,0(ce~ - /5/2) - (a~ + /3~)(/3, cos 20 + a,  sin 20) + 
2(ce2 + /3])2 

2a~2/3, log la ,  cos 0 +/3 ,  sin 01 + 
(ce~ +/3,~)~ 

F~,,(O) = - ( 1 -  2 u ) ~ ' / 3 , 0 -  a ,  log ta,  cos 0 + /3~ sin 01 "~ 
J 

2/3,0(/3~ - a~) - (a~ +/32)(ce~ cos 20 - / 3 ,  sin 20) + 
2(a ,  ~ + ~ ) a  

2ce/3~ log Ice, cos 0 + /3, sin 01 

(ce,~ + / 3 b  2 

F~,2(O) = (1 - 2u) ~ , 0  + /3, log la,  cos 0 + /3, sin 01 / 
( .,~ +/3,~ J 

2a,O(ce} - /52) - (a~ + /3])(/3, cos 20 + ~, sin 20) + 
2(c~ + /3~) 2 

2ceCil, log la ,  cos 0 + /3 ,  sin 0] + 
(ce~ + ~ ) 2  

F~2,(0) = F~,a(O), 

F~=(0)  = ( 1 - 2 u ) { / 3 ' 0  - °O l°g alia' cos 0 ++/312/3 ,  sin 0l } 

_,_ 2/3fl(3ce] + /3~) + ( a ]  + /32)(o 0 cos 20 - /3, sin 20) 
2 ( , ~  +/3~)2 

2ce~ log Icel cos 0 + /31 sin OI 
- (ce2 + fl~)2 (A3) 

A P P E N D I X  C 

E s h e l b y ' s  T e n s o r  Suk~(x), for  P o l y g o n - S h a p e d  Inclu-  
s ions  

In Eq. (14),  the components of S0k~(x ) are 

1 
I (Dikl, j + Djkl,i) S0~(x ) = ~ 

47r(1 - u) 

× ~ [ E ~ ( ® , ( x ) ,  x) - EIa~(®H(X), X)], (A4) 
1=1 

where S ~  S/~ S ~ ,  ' = = Ei~(O, x) are 
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E{it~(0, x) = ol,F{H(O) + (ce,Xl + /3,x2 + T,)B{u(O)Hi(O), 

E{,12(O, x) = ce,F{~2(0) + (ce,xt + fl,x2 + y,)B{i2(O)Hi(O), 

E{i21(O, x) = E{ii2(O, x),  

E { 1 2 2 ( 0  , X) = ce,F{=(0) + (ce,Xt + /3,X2 + T,)B{=(O)H,(O), 
1 

E{211(0, x)  = ~ {Ce,F~H(0 ) + /3,F{1,(0) 

4- (ce,x I -I- /3,x 2 -~- T,)(B{H(O)H2(O) + B~,,(O)H,(O))}, 
I E{z,2(O, x) = ~ {a,F~,2(0) + ~,F{,z(O) 

+ (atx~ + /3,xz + Ti)(B{,2(O)H2(O ) + B~z~2(O)H,(O))}, 

E~221(0, x) = E{212(0, X), 

E~2=(o, x) : ½ {.,F~=(O) + p,F{=(O) 

+ (CeiXt + ~,X2 + ") / i ) (B{22(O)H2(O ) + B I z 2 2 ( O ) H , ( O ) ) } ,  

E~ju(O, x) = E{2,,(O, x),  

E~,,2(O, x) = E{2,2(0. x),  

E2121(0, x)  = E{212(0 , x) ,  

E~i=(O, x) = E{~22(0, x),  

E~2,,(O, x) = /3,F~(O) + (ce,& + /31x2 + "y,)B~ai(O)H2(O), 

E~2t2(0, x) = 13,F~,2(0) + (ce,x, + /3,x2 + T,)B~,2(O)H2(O), 

E~221(0, X) = E~2,2(0, x ) ,  

E~222(0, x)  = /3lF~22(0) 

+ (cet& + /3,x2 + T,)B{zz(O)H2(O), (A5) 

where BSkl(O ) and ~ ( 0 )  are 

B{, ,(0)  = (1 - 2u)  cos 0 + 2 cos 3 0 

a,  cos 0 + /5, sin 0 ' 

Bit2(0) = (1 - 2u) sin 0 + 2 cos 2 0 sin 0 
at  cos 0 + /3, sin 0 

B{22(0) = - (1 - 2u) cos 0 - 2 cos 2 0 sin 0 

a,  cos 0 + ' f l ,  sin 0 

B~.(O) = - (1 - 2u) sin 0 - 2 cos 2 0 sin 0 

a t c o s 0 + f l ,  sinO 

B~i2(O) = (1 - 2u) cos 0 + 2 cos 0 sin 2 0 
ce~ cos 0 + /3, sin 0 

B~22(0) = (1 - 2u) sin 0 + 2 sin 3 0 
% cos 0 + /3i sin 0 ' (A6) 

Hl(O(x))  00 (x )  
Oxf 

Y2 -- X~ 

d~ 
l _ ~  1 

,=, ((2ajar+,) 2 - (d~ + dL,  - a~) 2 

( 2 ( &  - x  J) + 2(& - x ~  +l) X 
( 

+ x ' -  x , -  x q  1 
\ a~+~ + d; / J '  
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H : ( O ( x ) )  = - -  
00(x) 

Ox~ 

Xl --  X l  

d~ 

l 1 
- E  

~=~ ~ / (2d~d~+~)  ~ - (ct~ + c t ~ ,  - a ~ )  ~ 

x {2(x2 - x~) + 2 ( x 2  - x~  +~)  

- ( d ~  + d~+,  - a , ] )  

d~+-, + d~ J " 
(A7) 
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A Yield Criterion for Porous 
Ductile Media at High 
Strain Rate 
An approximate yield criterion for porous ductile media at high strain rate is devel- 
oped adopting energy principles. A new concept that the macroscopic stresses are 
composed of two parts, representing dynamic and quasi-static components, is pro- 
posed. It is found that the dynamic part of the macroscopic stresses controls the 
movement of the dynamic yield surface in stress space, while the quasi-static part 
determines the shape of the dynamic yield surface. The matrix material is idealized 
as rigid-perfectly plastic and obeying the yon Mises yield. An approximate velocity 
field for the matrix is employed to derive the dynamic yield function. Numerical 
results show that the dynamic yield function is dependent not only on the rate of 
deformation but also on the distribution of" initial micro-damage, which are different 
from that of the quasi-static condition. It is indicated that inertial effects play a very 
important role in the dynamic behavior of the yield function. However, it is also 
shown that when the rate of deformation is low (_<103/sec), inertial effects become 
vanishingly small, and the dynamic yield function in this case reduces to the Gurson 
model. 

1 Introduction 
It is quite evident that the process of fracture of ductile mate- 

rials under intense dynamic loading is mainly characterized by 
inertial effects (kinetic energy of void growth) which is differ- 
ent from that of quasi-static loading (Rajendran and Fyfe, 1982; 
Meyers and Aimone, 1983; Carroll et al., 1986; Wang, 1994). In 
addition, the influence of the thermal effect (adiabatic heating), 
generated by high rate of deformation, and the rate-dependent 
effect on evolution of dynamic damage is also important (Mey- 
ers and Aimone, 1983; Wang, 1994). 

Carroll and Holt (1972) proposed a model of dynamic void 
growth in the case of spherical geometry subjected to spherical 
symmetric tension pressure, in which inertial effects were con- 
sidered. The material was assumed to be rate independent and 
ideally plastic. This model has been modified by considering the 
influence of deviatoric stress (Butcher et al., 1974), viscosity 
(Johnson, 1981 ), and strain hardening (Perzyna, 1986). Curran 
and co-workers (Curran et al., 1987) established a computa- 
tional model called NAG (nucleation and growth) for ductile 
dynamic fracture. In the model, two internal state variables N 
(the number of microvoids) and R (average radius of micro- 
voids) were introduced to describe the process of dynamic frac- 
ture in solids. However, the influence of inertial effects on 
void growth was not included in their model. Wang (1994) 
developed a model of void growth in ductile porous materials 
under intense dynamic loading. In his model, the influence of 
the inertial, thermal, and rate-dependent effects on void growth 
were taken into account. 

Gurson (1977) first developed approximate yield criteria and 
flow rules for ductile porous materials. In the Gurson model, 
the matrix material is idealized as rigid-perfectly plastic and 
obeying the von Mises yield criterion. The main advantage of 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engiueering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS, 

Manuscript received by the ASME Applied Mechanics Division, July 17, 1995; 
final revision, Feb. 19, 1997 Associate Technical Editor: R. Becker. 

the Gurson model is its simplicity and its ability to provide 
direct calculation of the microparameters, which are essential 
in predicting failure. The Gurson model has widely been used 
in the predictions of the behavior in porous ductile media under 
quasi-static loading (Tvergaard 1990). The Gurson theory has 
also been used to model the process of dynamic ductile fracture 
by Rajendran and Fyfe (1982), Johnson and Addessio (1988), 
and Worswick and Pick (1995). But the predictions were not 
as good as expected. 

The purpose of this work is to develop an approximate dy- 
namic yield criterion which is a dynamic extension of the Gur- 
son model and from which the dynamic constitutive relation- 
ships can be derived for porous ductile materials. In the present 
work, our attention is restricted to consider the inertial term. No 
attempt is made to include rate-dependent and thermal effects. 

2 Dynamic Yield Function 

Consider a representative macroscopic volume element 
(RVE) containing a distribution of spherical voids of mean 
radius a and mean spacing b. The solid surrounding the void 
is idealized as homogeneous, incompressible, rigid-plastic, yon 
Mises material, and the dilatation is due completely to void 
growth. Throughout this paper, the adjective "macroscopic" 
refers to average values of physical quantities (stress, rate of 
deformation, etc.) which represent the aggregate behavior. The 
macroscopic stress and rate of deformation acting on the RVE 
are denoted by Z~ and/~u, respectively. The corresponding mi- 
croscopic stress and rate of deformation (in the matrix material) 
are au and ~u. For the purpose of analysis, the representative 
volume element is idealized as a single void in a rigid-plastic 
cell (as shown in Fig. 1 ) with volume, V. The volume of the 
matrix material in the cell is denoted by VM. The void volume 
fraction f ,  which is defined as f = VM/V, of the cell equals that 
of the aggregate (in this way, some account is taken of the 
interaction of neighboring voids). Take the void and the matrix 
material to he a system with outer radius b and inner radius a. 

The macroscopic rate of deformation is defined, as in Gurson 
(1977), in terms of the velocity field on the surface of the unit 
cell 
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1£1 
Eo = -~ ~ (vinj + vjni )dS, (1) 

where vj is the microscopic velocity field, S is its outer surface, 
and n is the unit outward normal on S. For the true stress field 
crij and the true strain-rate ¢ij, the following conditions should 
be satisfied: 

vi = t~i:xj on S (Cartesian coordinates), (2) 

a0. ~ = p~#~ in f~ (Cartesian coordinates), (3) 

where :9 is the position of a material point in cartesian coordi- 
nates, and ( )q  denotes differentiation in the coordinate sys- 
tem. Indices i, j rang from 1 to 3, and summation convention 
is adopted for repeated indices, the overdot denotes the time 
rate of change, and p, is the density of the matrix material. 

Energy conservation requires that 

W =  Ii +I~,  (4) 

where W is the work done by the external applied stress Z~j, 
while I~ and I~ denote deformation energy and klnefic energy 
of the system, respectively. Differentiating Eq. (5) with respect 
to time t gives 

= [, + L, (5)  

with 

V? = Z U/~0, (6a) 

l f ~  1~ = ~ cro~udV, (6b) 

) = V Z , ( 6 c )  

where vk is the component of the actual velocity field in the 
matrix material which is characterized by its generation of the 
minimum of the dissipation W. In this case, Gurson (1977) 
proved that the yield locus of Z U has the properties of convexity 
and normality. That is 

o~¢ 
Z,: = O/~u (7) 

Gurson's result was obtained in the quasi.static condition. In 
what follows we can .prove. that the approximate actual velocity 
field also minimize/~ + Ik so that Eq. (7) can be suitable for 
the dynamic loading. 

Axisymmetric motion with symmetric axis x3 is considered 
in the present work. The macroscopic rate of deformation is 
described by 

~,,=~=~*0, I~1 ~-I~1, / ~ 0 = 0 ( i e : j ) .  (8) 

The situation where I/~331 < I/~,[ may be analyzed in a similar 
manner. 

The rate of deformation ~u, in the matrix material expressed 
in spherical polar coordinate as shown in Fig. 1, is given by 

0v~ 
c-"~ Or (9a)  

10vo Vr 
~00 = -r O0 + - ' r  (9b) 

~ :  = ctgO V o + v_z , (9c)  
r r 

X 3 

2i. i " ~  2(i 

×1 

Fig, 1 A rigid-plastic spherical cell 

-l(Ov---£°-v°+lOv--~O ) -  , (9d)  ~0 
2 Or r r 

where v~ and Vo are components of the velocity field v. 
The velocity field v is assumed to be broken up into three 

parts (as in references (Gurson, 1977; Sun and Huang, 1992)), 

v = v ~ + v v + v*,  (10) 

where 

v~ = ~bxj, (lla) 

v~. = ~ t~kk Xi, ( l i b )  

/~b and/~kk denote the deviatoric and dilatant parts of the macro- 
scopic rate of deformation/~,j, respectively, v* is an additional 
velocity field given by (Sun and Huang, 1992) 

1 O~(r, O) 
v* r 2 sin 0 O ~  ' (12a) 

v* = 1 0 ~ ( r ,  O) , ( lZb)  
r sin 0 Or 

~?(r, 0) is given by 

3 
rl(r, 0) = ~ / ~ ( b  - r) 2 sin 0 

k ~ 2 , 4 , .  • • 

Rk(r)Pk.o(COS 0), 

Rk(r) = ~ aktr t, (13) 
/ = 0 , ~ 1 , ± 2 , ,  - • 

where Pk(COS 0) is the Legendre polynomial of k,/~, = ( ~ / ~  

E[~)J/z -- ~ ( E 3 3  - / ~ 1 1 )  is the macroscopic effective rate of defor- 
mation. Parameters ak~ are chosen so that minimize W. The 
velocity field v (Eq. (10)) obviously satisfies the boundary 
condition (2) and the incompressible condition. 

The parameters ark in Eq..(13) could be determined by min- 
imizing ~ + [k. Let ([i + Ik)0 expresses the one given by the 
velocity field v" + v v, while ~ + [k is determined by v s + v v 
+ v*. The steepest descent al~gorithm is used to determine the 
parameters ark by minimizing 1i + [k. The numerical results for 
copper-like material with cro = 0.26 GPa, p, = 8.92 g/cm 3, a0 
= 0.00019 cm, fo = 0.0001 show that 1(~ + [k)/(~ + Ik)0l --< 
0.9823 for the condition of (/~m = /~ = 105/sec,/~m = / ~  = 0) 
and I(~ + [k)/(~ + /k)o[ ~ 0.9714 for the condition of (E,, = 
/~ = 105/sec, E m =  /~ = 0.1/sec2). Numerical calculation 
shows that v* has little contribution to the value of [i + [k. So 
we can take approximately the velocity field, 
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v = v ~ + v v, (14) 

as the actual velocity field, i.e., 

V r ~ 7 7 +  /~r(1 + 3 c o s 2 0 ) ,  (15a) 

3/~r sin 20, (15b) V 0 ,~ --~ 

1 Ekk. where C0 = b 3 fi~m, E,m = 

Substitution of Eq. (15) into Eq. (9) gives 

2Co 1 
~ -  r3 + ~ / ~ ( 1  + 3 c o s 2 0 ) ,  (16a) 

~00 = 77 + /~e(1 -- 3 COS 20), (16b) 

Co 1 . 
~ ,  = r- 7 - ~ E ,  (16c) 

3 " 
~,.e = - a Ee sin 20. (16d) 

The effective rate of deformation ~ in the matrix material 
can be expressed by 

= ( 4 C o  2 C o t ~ h ( O )  )1/2, 
~ \ r6 r----S~ + /~  (17) 

where h(O) = 1 + 3 cos 20. 
By virtue of Eq . (17) , the  rate of deformation energy of the 

system~ can be expressed as 

' r  [4C~ _ C o E e ' ] ' / z  
~ '3do  L r6 h ( 0 ) r + E ~  

X sin Or2dOdr. (18) 

By introducing variables w, w*;  a n d  x such that 

2 rg _ 2/~,,, ' co,=w ( b )  3 
w 3 /~V Ee ' f , x =  w 7 ' (19) 

Eq. ( 1 8 )  can be rewritten as 

= I O'oE,~U(w,f),  

where 

f T I  l U ( w , f )  = w 1 - ~ h (O)x  + x 2 

(20) 

x -2dx .  (21) 

Since 

- 1  ~ 2x  1 h(O) 
- - <  l ,  - -  ~ ~ 1, ( 2 2 )  
1 + x 2 - -  2 4 

we have 

( [1 
1 - ~ h ( O ) x  + x 2 = (1 +xZ) j/2 1 - ~ h ( O )  l + x-------- ~ 

(x)2 ] 1 h 2 ( 0  ) + ' ' "  -3-5 
[1 (1 +x2)  m 1 - ~ h ( O )  . (23) 

Substitution of Eq. (23) into Eq. (21) gives 

U ( w , f )  .~ 2~ [ (1  + w_______~ 2 _ ,~I + w .2 
L OJ OJ* 

+ lnW* + ~/l + 00 *2 ] 
w + ~ J (24) 

Using Eq. (15), the rate of kinetic energy of the system [k can 
be expressed as 

- -  213 - 2 / 3  1 • 

+ 3[fi(f)/~,.E:. + f 4 ( f ) / ~ / ~ ] }  , (25) 

with 

~ ( f )  = 2(6f-=/3 _ _ f - 4 / 3  __ 5), (26a) 

f2( f )  = 1 -- f2 /3 ,  (26b) 

f 3 ( f )  = f - , / 3  _ 1, (26c) 

f 4 ( f )  = 1 (1 _ f 5 / 3 ) ,  (26d) 

where ao and3~ denote the initial radius of a void and the initial 
void volume fraction, respectively. 

Components of the macroscopic stresses can be obtained by 

1 0I,~1 
ZII  = 222 2 0/~H (27a) 

ow 
Zs3 - 0E33' (27b) 

After some manipulation, we have 

Z,,, = 51 (Xit + Za  + Xs3) = Z~, + Z,~, (28a) 

with 

Z ~ = Z s 3 - Z .  = £ ~ + X ~ ,  (28b) 

2 w* + ~/1 + w *z 
Y4;, = ~ ao In (29a) 

w + ( 1  + w  2 ' 

\ W* ] ' 
(29b) 

a L ~2^ f l  -fo'~ z/3 f)-2/3 
E., = 12 ,,o~,~\----~o ) ( 1 -  

× [3 f , ( f ) /~ ,  +f2(f ) lF,~ + 12~(f )E, , ] ,  (30a) 

× [fz(f)E,,,,t~,e + 6f4(f)/~e], (30b) 

where E,,, and E~ are the macroscopic mean and effective 
stresses, respectively. Equations ( 2 8 ) - ( 3 0 )  indicate that the 
macroscopic stresses are divided into two parts, the quasi-static 
part represented by superscript " s "  and the dynamic part de- 
noted by superscript " d , "  due to inertial effects. 

By eliminating parameters w and w* in Eq. (29), the expres- 
sion of a dynamic yield function (yield criterion) can be ob- 
tained, 
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1.0 
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0.0 
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~/~ro 
(a) 
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0.5 

0.0 

1 ~  - -  Gurson's 
. . . . .   m=o o2.s- ' ,  

--~. - -. E.,=0.1 p,s- 

,, f=0.1 

~/~o 
(b) 

Fig. 2 The movements of the dynamic yield surface in stress space with 
different values of f and ~m for the case of ~e = ~m 

~(ZiJ'~'°'Eu'f)= (Z~-'Z~) 2 o o  

+ 2 f c ° s h ( ~  Z'mZZ'~/cro / - ( 1  + f 2 ) = O .  (31) 

3 Dynamic Freatures of Yield Function 
Computed results of Eqs. ( 2 9 ) -  (30) indicate that w h e n / ~  

--< 103/sec, Y.~ < Z~,, and y,a ~ Z~. In this case, l~,, ~ lg~,, ~P'e 
Z$. However, as the rate of deformation is greater than 103/ 

sec, the dynamic part of the macroscopic stresses becomes sig- 
nificant. Y,,", and Z~ increase rapidly with the increasing rate of 
deformation. The dynamic yield function Eq. (31) reveals that 
in stress space, the coordinates of the center of the dynamic 
yield surface qs(Zo, /~,j, /~gj, f )  are determined by Z~/a0 and 
E ~/a0. The distance between the original point of the coordinate 
and the center of the dynamic yield surface in stress space, d, 
is given by 

d = [(Zero/a0) 2 + ('~'d/o'0)2]1/2 (32) 

A copper-like material is chosen for numerical analysis. In order 
to investigate dependence of the dynamic yield function (Eq. (31)) 
on the void volume fraction f and the dilatant rate of defbrmation 
/~,,, a simple situation, E, = E~, is employed to carry out numerical 
analysis (as shown in Fig. 2). It is shown that the distance d 
moved by the dynamic yield surface increases as/~m increases for 
the same value of the void volume fraction f. 

To investigate the dependence of the movement behavior of 
the dynamic yield function in stress space on the rate of defor- 
mation and the size of voids, numerical computations have been 
carried out for the case of/~e =/~m, which are displayed in Fig. 
3. Figure 3 indicates that the distance d of movement of the 
dynamic yield surface has a very strong rate dependence, d 
decreases with increasing f .  It is also sensitive to the void vol- 
ume fraction f .  

Numerical investigations of the dependence of d on the initial 
radius a0 of a void and the initial void volume fraction f0 have 
also been performed, and are shown in Figs. 4 -5 .  Computa- 
tional results indicate that d is quite sensitive to a0 especially 
for small values o f f .  In addition, it can be seen clearly from 
Fig. 5, that d is also dependent on the initial value of the void 

volume fraction fo. But dependence of d on fo is relatively weak 
when compared with that of ao. 

4 Finite-Difference Calculation 
As an application of the foregoing theory, a spallation experi- 

ment on copper is calculated. The experimental setup, the man- 
ganin pressure gauge record as well as the predicted result, are 
shown in Fig. 6. 

The two-dimensional flow equations in terms of the macro- 
scopic Lagrangian position coordinate Xi are 

9/V = U~s, (33) 

PUi = Eq, j, (34) 

p~ = E m V / V  + (Z , j  - 6qEkk)l~o', (35) 

with 

p = (1 - f)p,, (36)  

where U~ is component of the average velocity field, 12 is the 
rate of the average relative specific volume, E~ is the average 
specific internal energy, and p is the average density of the 
porous ductile material. 

The macroscopic rate of deformation is written as the sum 
of an elastic part and a plastic part, 

~q = ~ + #}. (37) 

E~ is given by 

~; = ~ ~0 + 5 ~ 60~**, (38) 

where/.z and K are the elastic shear and bulk modulus, respec- 
tively, 6 U is Kronecker delta. The dynamic yield thnction Eq. 
(31) is taken as the plastic potential such that 

0~ 
~I; = A ,JOX--' (39) 

The parameter A is determined from the equivalent plastic work 
t pOwk, expression, Zij/~,~ ,~ (1 - f)cre~ + 

1 pO, uk (1 - f)~re¢ + : 
A = (40) 

0q~ 
~ k /  - -  

0£kt 

4.0 

3.0 

"o 2.0 

1,0 

0.0 

f=O.O02 t 
. . . .  f=0.02 [11 

f=o.1 flf 

, i  . . . . . . . .  i 

0.1 1 
~:., ( 1 / ~ s )  

Fig. 3 The distance d of movement of the dynamic yield surface as a 
function of ~m and f. The curves are computed for the case of Ee = ~m 
with fo = 0.0001, ao = 0,0019 cm, ps = 8.92 g /cm 3, and ~ro = 0.26 GPa. 
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Fig. 5 Dependence of d on fo for different values of f with a0 = 0.001 cm and p~ = 8.92 g / c m  3 

with 

( ~ / ' "  
ors = Cro -- , (41) 

\~0 /  

where ~re is the effective stress in the matrix material, ~0 is a 
reference strain rate, and m is the exponent coefficient which 
is taken so small (m = 0.01) that the behavior of the matrix 
acts as rigid-perfectly plastic. 

The fracture criterion of a critical void volume fraction fur, 
is adopted. That is, if the void volume fraction f ~ f ,  it, the 
mesh is taken to be failure. The rate of void growth is given 
by 

f ~ (1 - f ) /~k.  (42) 

The predicted result comparing with the experimental result 
is shown in Fig. 6. It seems that the predicted void growth is 
slightly slower than the record. The reason, we think, is that 
the thermal effect (adiabatic heating) is not considered in the 
constitutive relationships, since the thermal effect would de- 
crease stress level and increase void growth. Anyway, as a 
whole, application of the dynamic damage analysis to the spall- 
ing process in copper gives a reasonable good representation 
of the data with the material parameters # = 46.6 GPa, K = 
139.7 GPa, and fori, = 0.3. 

5 D i s c u s s i o n  

5.1 Some Special Cases. For the condition of pure dila- 
tant deformation (/~, /~e = 0), from Eq. (30a), we can obtain 
a growth equation of a void, 

2 1 1 / 1 --  fo  \ 2 / 3  . . . .  a~p~ - -  1 - -.8/3 5,,, 3 / ) ( 

× [ ( f - , / 3  + f _ f 2 / 3  _ l ) f  

1 
+ g ( 1 2 f - l / 3  _ _ f - 4 / 3  - -  l l ) f 2 ] .  (43) 

This is exactly the same as that derived by Carroll and Holt 
(1972). 

Numerical analyses indicate that as the rate of deformation 
103/see, inertial effects can be ignored. Therefore, the dy- 

namic yield criterion (Eq. (31)) reduces to the quasi-static 
criterion, 

ff~(Z 0, a 0 , f ) =  (Z~)2 + 2fcosh ( 3  Z,,___2 ~ 
\ a o /  \ 2  or0/ 

- (1 + f 2 )  = 0 ( 4 4 )  

which is the Gurson model (Gurson, 1977). 

5.2 I n e r t i a l  Ef fec ts .  It is evident that inertial effects play 
an important rule in the mechanical response of solids under 
intense dynamic loading (Rajendran and Fyfe, 1982; Meyers 
and Aimone, 1983; Regazzoni, et al., 1986; Carroll at al., 1986; 
Ortiz and Molmari, 1992; Wang, 1994). As a consequence of 
its influence on stability, inertial enhances ductility and exhibits 
the potentially stabilizing effect at the microscale. Experimental 
evidence suggests that there exists a threshold tensile stress at 
which fracture initiation takes place. However, a material can 
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Fig. 6 (a) The experimental setup. (b) A comparison between the pre- 
diction of the model (Eq, (31)) and the experimental data in sapallation 
in copper. - - - -  the data and the computed. 

bear tensile stresses considerably larger than such threshold 
stress without causing fracture. This is due to inertia or kinetics 
associated with the micromechanisms controlling the spall type 
of fracture, Experimental results indicate that in general, the 
threshold tensile stresses J (Zorn,) for spall fracture are 3 - 5 
times as large as those (Z~r~,) of quasistatic loading. For exam- 
ple, for polycrystalline alumina, Zoa,~t ~ 3Z~it (Munson and 
Lawrence, 1979), and for copper, E~it ~ 5Z~rit (Grady, 1988). 
The influence of inertial effects on the evolution of a void is 
resisting void growth (Johnson, 1981; Meyers and Aimone, 
1983). Worwick and Pick (1995) modeled the processes of 
ductile fracture occurring during symmetric Taylor cylinder im- 
pact tests on leaded brass in great detail using the Gurson consti- 
tutive model implemented within the DYNA2D finite element 
code, Numerical results showed that the predicted void growth 
exceeded that observed experimentally and the predicted extent 
of void coalescence was too large. The problem Worwick and 
Pick met is that resistance of inertia on void growth was not 
taken into account, since the Gruson consti}utive model is only 
suitable for the quasi-static condition due to inertial term being 
not included. 

5.3 Comparisons With Other Models. The model de- 
scribing dynamic growth of a void in porous ductile materials 
proposed by Carroll and Holt (1972), and later modified by 
Butcher and co-workers (1974), Johnson (1981), and Perzyna 
(1986), in fact, is only an evolution equation of void growth 
under high rate loading, rather than a constitutive model for 
porous ductile materials at high strain rate. So is our previous 

model (Wang, 1994). The original Carroll-Holt model is, as 
proved in the above content, a special result (under hydrostatic 
case, /~e = /~e = 0) of the model developed here. Curran, Sea- 
man, and Shockey (1987) carried out a systematic study of 
dynamic fracture in ductile and brittle solids and developed 
computational models for ductile and brittle fracture called 
NAG (nucleation and growth) models. The model features have 
been taken mainly from detailed observations of samples par- 
tially fractured during impacts rather than the theoretical analy- 
sis of microstructure of materials. The NAG models have suffi- 
cient generality to include the statistical distribution of one or 
more variables such as porosity, void density etc., but require 
numerous phenomenological constants that are difficult to ob- 
tain. In their models, inertial effects were not included. 

An advantage of the model developed in the present work 
comparing with other models of dynamic growth of a void 
such as the Carroll-Holt model (1972) and our previous model 
(Wang, 1994) is that the present model is a macroscopic consti- 
tutive model for porous ductile materials at high strain rate 
which can describe the overall behavior of porous ductile mate- 
rials under intense dynamic loading, not merely an evolution 
equation of dynamic growtfi of a void. For the special situation 
such as hydrostatic dynamic loading, the present model can 
reduce to an evolution equation of dynamic growth of a void 
which is the same as the Carroll-Holt model. As for comparison 
with NAG models (Curran et al., 1987), the present model is 
much more simpler than NAG model. There are only a few 
parameters to be determined. Meanwhile the present model can 
describe the continuum constitutive behavior in terms of the 
properties and structure of the microconstituents. 

The dynamic yield function (Eq. (31)) actually is a dynamic 
extension of the Gurson model at high strain rate. Inertial effects 
on the constitutive behavior of porous ductile materials are 
emphasized and investigated in detail. The key point different 
from the Gurson model is that the filed variables in the matrix 
material are required to satisfy or0. J = ps0i. The terms p~.~i called 
inertial terms represent the dynamic response characteristics of 
materials. The difference of descriptions between dynamic and 
quasi-static behavior of materials is whether considering inertial 
terms (p,0g) or not. In the Gurson model, p ~  are not included. 

To derive the dynamic yield criterion (Eq. (31 )),  an assump- 
tion that the form of velocity field of matrix material adopted 
in quasistatic deformation analysis is available for the case of 
high strain rate. Although the form of velocity field in the matrix 
is assumed to be the same as that of quasistatic case, the velocity 
field is required to satisfy the field equation ~ , j  = p,f#, which 
is different from the quasi-static field. The assumption we adopt 
is also employed by many investigators in intense dynamic 
deformation analysis (Carroll et al., 1972, 1986; Rajendran and 
Fyfe, 1982; Regazzoni, et al., 1986; Ortiz and Molinari, 1992). 
Numerical estimation carried out in the present work verifies 
that the approximate velocity field (Eq. (15)) is accurate 
enough to be taken as the true field. Using the approximate 
velocity field, the approximate yield function, which has the 
same form as the Gurson model, is derived. 

A new concept that the macroscopic stresses are comprised 
of two parts, the quasistatic part Z~ and Z~, and the dynamic 
part Z~ and E~ due to inertial effects, is proposed in this work. 
The dynamic part of the macroscopic stresses represents the 
dynamic features of mechanical response of porous ductile ma- 
terials. However, as the macroscopic rate of deformation -< 103/ 
sec, E~, and E~ are vanishingly small comparing with Z, ~. and 
E~, i.e., Z,, ~ E~;, and Ee ~ E~. This is in consistence with the 
actual stress status in materials. Therefore, without deleting 
E~ and E~ from the dynamic yield function, Eq. (31) is also 
suitable for the quasistatic situation. 

In the present work, our attention is restricted to consider a 
rigid-perfectly plastic material which is assumed to obey the 
von Mises yield. The influence of the strain-rate hardening of 
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the matrix material and the thermal effect (adiabatic heating) 
generated by high rate of deformation on the dynamic behavior 
of porous ductile media is not taken into account. These effects 
will be investigated in our future work. 

6 Conclus ions  

An approximate dynamic yield criterion for porous ductile 
media is developed by means of energy principles for a rate- 
independent rigid-perfectly plastic matrix material obeying the 
von Mises yield. Numerical analysis has been carried out in 
detail to investigate various features of the dynamic yield func- 
tion. A new concept that the macroscopic stresses are comprised 
of two parts, the quasi-static part Z~, and Z~, and the dynamic 
part Z~ and Z~ due to inertial effects, is proposed in this work. 
An interesting and important fact is found that the movement 
of the dynamic yield surface in stress space is only controlled 
by the dynamic part of the macroscopic stresses, E~ and Z~, 
while its shape is only determined by the quasi-static part of 
the macroscopic stresses, E~,, and Z~. Analysis shows that when 
the rate of deformation -<103/sec, inertial effects become van- 
ishing small due to Z,'~ ~ Z;~,, and Z~ ~ ~ Z~, and the dynamic 
yield criterion in this case reduces to the Gurson yield criterion 
(a quasi-static yield criterion). To check the validation of the 
foregoing theory, a spalling experiment in copper is simulated. 
The prediction of the model is reasonably good. 

Numerical analysis of the model proposed here reveal the 
following additional features of the dynamic yield function 
which are different from that of the quasistatic yield function: 
(1) the dynamic yield function is rate dependent; (2) inertial 
effects play an important role in the dynamic yield function 
when the rate of deformation is very high (~_10  4 s e e - l ) ;  (3) 
the influence of the distribution of the initial micro-damage in 
porous ductile materials on the dynamic yield is significant. 
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Optimal Bounds on Plastic 
Deformations for Bodies 
Constituted of Temperature- 
Dependent Elastic Hardening 
Material 
Bounds are investigated on the plastic deformations in a continuous solid body 
produced during the transient phase by cyclic loading not exceeding the shakedown 
limit. The constitutive model employs internal variables to describe temperature- 
dependent elastic-plastic material response with hardening. A deJbrmation bounding 
theorem is proved. Bounds turn out to depend on some fictitious self-stresses and 
mechanical internal variables evaluated in the whole structure. An optimization prob- 
lem, aimed to make the bound most stringent, is formulated. The Euler-Lagrange 
equations related to this last problem are deduced and they show that the relevant 
optimal bound has a local character, i.e., it depends just on some fictitious plastic 
deformations produced in the same region of the body where the bounded real plastic 
deformations are considered. The bounding technique is also generalized to the case 
of  loads arbitrarily varying in a given domain. An application is worked out. 

1 Introduction 
In many cases of practical interest, structures are required to 

operate beyond their elastic limit under the action of loads that 
vary within given ranges, but with time histories not specified. 
Under such conditions, the so-called shakedown limit load mul- 
tiplier provides an effective safety factor for the relevant struc- 
ture. When the load multiplier is below the shakedown limit 
(but above the elastic limit), the structural response to the loads 
manifests itself with an initial elastic plastic phase, during which 
some finite amount of plastic deformations (depending on the 
actual load history) is produced, with no further plastic defor- 
mations whatever the subsequent loads. Such desirable behavior 
of the structure, usually referred to as shakedown (or adapta- 
tion), can no longer occur for load multipliers that are above 
the shakedown limit, since in the latter case, plastic deforma- 
tions may not cease and the structure is exposed to a certain 
inadaptation collapse, either incremental collapse (or ratch- 
etting) with consequent plastic strain growth, or alternating 
plasticity collapse (or plastic shakedown) with ensuing fatigue 
failure (see, e.g., Koiter, 1960; Martin, 1975; K6nig, 1987; 
Gokhfeld and Cherniavsky, 1980). 

The assessment of the shakedown limit load multiplier for a 
given structure subjected to loads varying in a given domain 
can be achieved by methods based on one of the two basic 
shakedown theorems, namely the statical and kinematical theo- 
rems; related numerical procedures have been developed for 
various structural models and with different approximation lev- 
els (see, e.g., Koiter, 1960; Corradi and Zavelani Rossi, 1974; 
Cohn and Maier, 1977; Gokhfeld and Cherniavsky, 1980; Poliz- 
zotto, 1982; K6nig, 1987). In particular, the shakedown limit 
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load multiplier problem has also been studied for material mod- 
els with internal variables (see, e.g., Maier, 1987; Maier and 
Novati, 1987, 1990; Polizzotto et al., 1991). 

Since plastic deformations occurring in the initial phase of 
the structural response, although finite, may indeed exceed some 
tolerance limits (e.g., ductility limits), the computation of suit- 
ably chosen measures of these plastic deformations may be very 
useful. 

The exact computation of the plastic deformation related to 
the transient phase may be effected by a step-by-step analysis, 
which constitutes the most suitable way to obtain the structural 
response. Unfortunately, the computational effort required to 
perform a full analysis is high (a sequence of linear complemen- 
tarity problems must be solved for discrete structures) and not 
always justified during the initial phase of the structure design. 
Actnally, in this phase, it is enough to obtain approximate infor- 
mation about the structural response, keeping the computational 
effort down. 

A quantitative rough evaluation of suitable measures of the 
real plastic deformation may be obtained by applying some 
appropriate methods (see, e.g., Zarka and Casier, 1981; Poliz- 
zotto, 1989) or applying the so-called bounding techniques (see, 
e.g., Ponter, 1972; Capurso et al., 1979; Kfnig, 1979; Poliz- 
zotto, 1982, 1989; Giambanco et al., 1990, 1992) which require, 
in general, the solution to a linear programming problem. 

In the present paper we deal with the shakedown problem 
for a continuous solid body constituted of material having a 
temperature-dependent elastic hardening (constitutive) behav- 
ior described by means of internal variables. 

At first, in order to obtain upper bounds on suitably chosen 
measures of the real plastic deformation produced in the body 
during the transient phase, a proper deformation bounding theo- 
rem is proved; this theorem represents a generalization of analo- 
gous theorems (see, e.g., Polizzotto, 1991 ) to the case of bodies 
constituted of material having a temperature-dependent plastic 
potential. One recognizes that the relevant bounding quantity 
so obtained is susceptible of optimization, with the aim of mak- 
ing the bound most stringent. The bound minimization problem 
is formulated and the related Euler-Lagrange equations are de- 
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duced. These last equations provide useful information on the 
bound features in optimality conditions. A numerical applica- 
tion concludes the paper. 

2 The  Elast ic  H a r d e n i n g  Sol id  Body  

Let us consider a continuous solid body, occupying the open 
domain V surrounded by the surface S and constrained on S,, C 
S to prevent rigid motions, referred to a cartesian orthogonal 
coordinate system x = (x~, x:,' x3). The body is subjected to 
an assigned history of quasi-static external actions described by 
the scalar ,9 = ,9(x, t) and the vector P = P(x ,  t). 0 is the 
thermal load (temperature increment with respect to the initial 
state temperature 7",. ), while P collects external actions as body 
forces b = b (x ,  t) in V, surface forces f = f (x ,  t) on S~ = S 
- S,, and imposed displacements u, = u , (x ,  t) on 5;,,. The time 
variable t is not the physical time, but just some monotonically 
increasing variable tospecify the loading sequence (0 -< t -< 
7). 

The compatibility and equilibrium equations read as follows: 

= ~ + ~ + ¢~', in V, Vt ~ (0,7),  (1) 

= Cu, in V, Vt ~ (0, 7), compatibility (2) 

u = u., onS , ,  Vt ~ (0,7) ,  (3) 

Cro  " + b = 0, in V, Vt ~ ( 0 , 7 ) , ]  (4) 
equilibrium ( 

= f, on ss, v t  z ( 0 , 7 ) , J  ( 5 )  

where u = u (x ,  t) is the displacement vector, ~ = ~(x, t) is 
the (total) strain vector sum of the elastic [E ~ = ~"(x, t)] ,  
thermal [~'9 = ~'~(x, t)] and plastic [~P = ~P(x, t)] part, o, = 
o'(x, t) is the stress vector, C is the well-known compatibility 
differential operator matrix, C r is the equilibrium matrix (ad- 
joint of C),  and C~, r is an algebraical operator which applied to 
the stress vector o" provides the surface force vector f. 

A temperature-dependent elastic hardening material model is 
assumed as described by the following equations: 

~ = Ao', ~ = a,9, (6a) 

r (c r ,  X,,9) ~-0,  h_>0,  ~ r ( ~ r , x , , 9 )  = 0 ,  (6b) 

Or 0 r ,  (6c)  
= i' -o-U ' = - O x  

to be satisfied in V and at all instants of the loading process. Here 
A is the elastic compliance matrix, tr is the vector collecting the 
material thermal expansion coefficients, r = r (  tr,  x ,  ,9) is the 
yield function (having also the role of plastic potential), by 
hypothesis smooth in the ( tr ,  X, ,9)-space and convex in the 
( tr ,  X)-space; for simplicity, we assume that the shape of the 
yield condition function does not vary with temperature and 
only the yield stress depends on it; k is the plastic activation 
coefficient; vectors X and ~ are internal variables dual of each 
other, with ~: describing the material microstructure state of slip 
and X being local thermodynamic forces in one-to-one corre- 
spondence with ~: 

0 ~  0~2 
X = 0-'~' ~ = 0-X ' (7) 

where ff¢ = ~(~:) and f~ = f2(X) are the primal and dual (convex, 
differentiable) internal variable thermodynamic potentials, re- 
spectively. The following relation holds: 

~(X) = X ~  - ~P(#). (8) 

The intrinsic dissipation function/)  depends not only on the 
plastic strain rate and on the kinematic internal variable rate 
but also on the instantaneous temperature variation value, i.e., 

/J = / J (~P ,  ~, O) = /JP(~P, ,9) - / ~ h ( ~ )  (9) 

= o-TriP _ Xr~. 

The part/J~' of function/)  depending on plastic deformation is 
proportional to the increase in the yield stress ay, i.e., 

/J"(~", 0)  = / ) ~ ( ~ " ) .  ~(,9), ( 1 0 )  

w h e r e / J ~ ( ~ )  is the energy rate appropriate to 0 = 0 and ~(,9) 
defines the temperature dependence of Cry on ,9: 

~ry(,9) = Cry0"~(0), ay0 = Cry(0), ~(0) = 1. (11) 

Most metals exhibit properties which are such that (0~/0,9) 
< 0 .  

The partial derivatives of/~ with respect to ~P and ~ provide 
the stress vector tr and the static internal variable vector X, 
respectively, i.e., 

OD Oh; OD OO ~ 
~r-0-S,-  0~,~, x =  0~ 0~: (12) 

At any state (er, X, ,9) such that r ( t r ,  X, ,9) = 0 (plastic 
state), where there is not elastic return, the following relations 
hold: 

h > 0 ,  ~ k = 0 ,  (13) 

i.e., 
T (0r), ~=\~g/ +\Ox/ +-~o=o. ( 1 4 )  

Using Eqs. (6) and (7),  Eq. (14) provides 

l ((0ry  0r \ 
~'=h \o-g~) +0,9 / '  (15) 

where h = h( t r ,  X) > 0 is the hardening modulus (Martin, 
1975) given by 

( o r ] '  o r  
h = 0 0# Ox" 

(16) 

As a consequence of Eq. (15): 

(i)  if ( 0 r / 0 c r ) r o  " + ( 0 r / 0 t g ) 0  < 0 (elastic return), then 
= 0, 
(i i)  if (Or/Oo')7dr + (0cp/0,9)~ = 0 (neutral loading), then 
~ = 0 ,  
(iii) if (0r/00")To " + ( 0 r / 0 , 9 ) 0  > 0 (plastic activation), 
then ~ > 0. 

It is worth noting that, since ( 0 r / 0 , 9 )  is always positive, 
when 0 > 0 the quantity in brackets on the right-hand side 
of Eq. (15),  and as a consequence ~, may be positive even 
if the loading index is negative, i.e., even if ( 0 r / 0 c r ) r o  " < 
0, (Fig. 1). 

_-z0~ 

do" 

Z > 0  

Fig. 1 Temperature-dependent yield surfaces: plastic deformation may 
occur also in the presence of negative loading index 
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A typical example of linearly hardening material showing a 
mixed kinematic-isotropic hardening behavior with a Mises 
yield function and a quadratic thermodynamic potential (Lemai- 
tre and Chaboche, 1985) is obtained by the choices 

~ ( o - ,  x ,  x0 ,  0 )  --- ~ [ ( o - '  - x ' ) ~ ( o  -' - x ' ) ]  ~'~ 

- Xo - Cry(0), 

( O ' ' ) T :  ICrx--Crm CYy--Cr m Crz--Crm ~f2'7"x ~f2Ty 

or,,, = (Crx  + Cry -}- Crz)/3, 

,i,(~, ~o) ~- ½(0~ + b~), 

(17a) 

(17b) 

(17c) 

(17d) 

where vector X' has analogous definition as t r ' ,  (X, Xo) and 
(K, ~o) are sets of dual vector and scalar internal variables, B 
is a constant positive definite matrix and b a constant positive 
scalar. A usual piecewise form for the yield stress function Cry 
= ¢%(0) is the following one (K6nig, 1987): 

O'y : CRY0' /'or T -< To, (18a) 

(18b) cry = cryo[l - # ( T -  To)], for To -< T -< Tj, 

where 

T = T~ + 0 (19) 

is the actual temperature, sum of the initial state temperature T~ 
and of the temperature variation 0, To and T~ are two reference 
temperatures and # is a dimensional positive scalar. 

3 S h a k e d o w n  C r i t e r i a  

We assume that z9 and P, as functions of t, can be identified 
with cyclic temperature variation and loading, respectively, such 
that 

O(t + At)  = O(t), P ( t  + At)  = P( t ) ,  Vt > 0, (20) 

At  being the time period. In addition we assume that the refer- 
ence loads 0 and P are affected by a load multiplier/3 > 0; in 
such a way an homothetic load family :r(/3) can be identified 
(Fig. 2), where 7r(1) is the reference cyclic load. 

The conditions under which the solid body has the ability to 
eventually shake down in the elastic regime (or to adapt to the 
loads) when subjected to loads/30(t) and/3P(t)  as previously 
defined can be established through the statical shakedown theo- 
rem (Melan, 1938a, b) and the kinematical shakedown theorem 
(Koiter, 11960). These theorems are here recalled in the form 
of lower bound and upper bound theorem, because these are 
more appropriate for the purpose of the present paper. 

L o w e r  B o u n d  T h e o r e m .  A number /3'~ > 0 is a statical 
load multiplier if, correspondingly, a time-independent self- 
stress vector p~(x) and a time-independent vector X~(x) exist 
such that 

reference load domain 

• "" - .  { P(0,0(t) } 

' ~  {/~P(t),/3~0} 

- .  . . . . .  , . J IW  " ' ~  

7r(fl) 

Fig. 2 Load domain dependency on the load mult ip l ier  ,8 

qo(/3sore + pS, x , , /3s0) < 0, in V ×  (0, At) ,  (21a) 

C r p  " = 0 ,  inV, C~p s = 0 ,  onSr, (2 lb)  

where tr e = o 'e(x,  t) is the purely thermoelastic stress response 
to the reference loads. 

A statical load multiplier does not exceed the shakedown 
limit load multiplier/3", i.e., /3" --< /3*. 

Upper  B o u n d  T h e o r e m .  A number/3c > 0 is a kinematical 
load multiplier if it identifies with the total intrinsic dissipation 
promoted in the body by a plastic accumulation mechanism, 
that is a kinematic internal variable rate distribution ~ '  = 
~ ( x ,  t) t E (0, At)  resulting in a vanishing kinematic internal 
variable distribution ~c and a strain rate distribution dP" = 
d /  ( x ,  t) t E (0, A t )  resulting in a compatible strain distribution 
eP' and such that the external loads do unit work, i.e., 

/3' = f?' fvD(~pc, #~, O)dVdt, (22a) 

L" eP' = ~PCdt = Cu c, in V, (22b) 

~'  = Cdt = 0, in V, (22c) 

f?'fvoSe,~'dVdt=l. (22d) 

A kinematical load multiplier is not smaller than/3", i.e., fl" 
-> /3*. 

S h a k e d o w n  L i m i t  L o a d  M u l t i p l i e r  A s s e s s m e n t .  The 
shakedown limit load multiplier/3* can be obtained either as 
the maximum statical load multiplier or as the minimum kine- 
matical load multiplier: 

max fl'~ = /3* = min/3", (23) 

i.e., solving the problem: 

/3* = max /3' (24a) 
(Z3',O~,X ~ ) 

subject to 

qo(/3 ~o'e + P ' ,  X ' ,  /3~0) <-- O, in V × (0, At) ,  (24b) 

CTp '~ = 0 in V, C,r,p s = 0, onSj,  (24c) 

or solving the problem: 

/3* = min /3~: (25a) 
(~P',~C,uC) 

subject to 

~0 ~t #'" = ~!'"dt = Cu c, in V, 

~ c =  ~Cdt = 0, in V, 

f:'fvo.E~,'*dVdt=l. 

(25b) 

(25c) 

(25d) 

Making reference to the load program/30,/3P (as previously 
defined) we can state that when/3 F -< p -< /3*, /3L. being the 
elastic limit load multiplier, the relevant body surely Shakes 
down, i.e., after a certain number of load cycles during which 
it behaves elastoplastically and a finite amount of plastic strain 
is produced (transient phase), the response becomes purely 
elastic (stationary phase). Although finite, the amount of plastic 
strain produced during the transient phase may exceed the duc- 
tility limits of the material and/or some servibility limits and, 
thus, the computation of suitably chosen measures of this plastic 
deformation may be useful. The exact computation of chosen 
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measures of the real plastic deformation related to the transient 
phase may be effected by a step-by-step analysis worked out 
for a suitable number of cycles, but often it just suffices to 
evaluate bounds on the chosen relevant measures, at the compu- 
tational low cost of appropriate bounding techniques. 

4 A Deformation Bounding Theorem 
Let ( a ,  X, P 6 )  and ( i P ,  &, k )  be real mechanical, thermal, 

and kinematical quantities (corresponding to each other through 
the plastic flow laws). Furthermore, let ( a , ,  X I ,  0 , )  be any 
plastically admissible set, i.e., 

Because cp is convex in the (a ,  x)-space, we can write 

We assume that the test stresses and temperature variation 
(32u, b)  are plastically admissible with respect to the perturbed 
yield function, i.e., they fulfill the following test condition: 

cpY(B, k, 0 8 )  = p ( g B  + s ,  2 ,  p 9 )  5 0, 

in V X (0, At ) .  (34) 

Applying the central inequality (28) with 

a, = g B  + s ,  X, = x ,  0, = 08, (35) 

we have 

V ( U I ,  X I ,  POI - P(U, x ,  08)  2 (2)'(u1 - ( a  - g u  - - (X - x)T.$ + icp(g8 + S, k, P 6 )  2 0, 

in V x (0, At ) ,  (36) 

+ ( z ) T ( X I  - x), in V Y (0, At ) .  (27) 

Multiplying Eq. (27)  by > 0, since i p ( u ,  X, P 6 )  = 0, we 
obtain the central inequality 

which holds for any arbitrary set ( a , ,  x , ,  0 , )  fulfilling Eq. 
(26) .  It is worth noting that in the central inequality the sign 
of term p ( a I ,  X I ,  PO) is not known. 

The central inequality (28)  constitute a new result valid for 
bodies constituted of temperature-dependent elastic-plastic ma- 
terial. If 6, = P0,  since k p ( a l ,  x , ,  PO) s 0 results, Eq. (28) 
assumes the form usually related to bodies constituted of elastic- 
plastic material (see, e.g., Polizzotto et al., 1991) 

where a,  X, i, EP, i ,  and ,619 refer to the actual elastic-plastic 
process. Summing up and subtracting the product gar€"  and 
taking into account Eq. (9) the inequality (36) can be easily 
transformed as 

1 + + s , ~ ,  P 0 ) ,  in V X  (0, At) .  (37) 
g 

Since k r 0 and since p ( u ,  X, PO) is an increasing function 
of d,  by virtue of Eqs. (30a), (32b), and (34) we can write 

in V X (0, At)  (38) 

( a  - )'iP - (X - XI ) T i  2 0, in V X (0, At ) ,  (29) and, thus, the last addend on the right-hand side of (37)  can be - 
disregarded. 

but also valid in the present more general context provided that Remembering that the two perturbation modes are exclusive 
X) and XI ) are to the same temperature varia- of each other, and thus = 1 can be set in the denominator of 

tion Pt9. the second addend on the left-hand side of (37) ,  and taking 
Let g ( x )  and s(x! be scalar and vector fields (perturbation into account that (1  + w )  g ,  and thus in the denominator 

functions), defined in V as of the first addend of the left-hand side of (37)  can be revlaced 

g = 1 -t wy(x), 0 5 Y(x) 5 1, ( 3 0 ~ )  by ( I + w ), an integration over V of this last inequality gives 

s = WS(X), (30b) - 1 , +wJ"  p d p ( l p ) d v  + Jv s7 rpdV 

where w is a positive scalar parameter (perturbation multiplier). 
The set p(x) ,  S(x) specifies a yield function perturbation mode. 
We assume that 7 and S are exclusive of each other, i.e., B = sI(L(cT w 

- B)'&"dV- J v ; ( ~  - k ] 7 8 d V ) ,  
0 if 7 + 0 and vice versa. Taking into account Eqs. (30) ,  the 
perturbed yield function cp* can be defined as 

in (0, At). (39) 
cp*(a, X,  PB) = ~ ( g a  + s ,  X,  in V x (0, At) .  (31)  

Making use of the identity 
Let us define the test stresses B ,  and the test temperature 

variation 8: &P = ,g - p i6  - A(& - &), in V X (0, At )  (40) 

B ( x ,  t)  = ,8aE(x,  t)  + B r ( x ) ,  x = ~ ( x ) ,  and by virtue of the virtual work principle one obtains 

in V X (0, At) ,  (32a) tt (f Jv ( a  - & ) T A ( a  - b ) d V  J, (P - b ) G p d V  = - - 
" 

f? = 19(x, t )  2 0 ( x ,  t ) ,  in V x (0, At), (32b) 

where B r ( x )  and ~ ( x )  are a residual stress field and a static in (0, At) .  (41) 
internal variable field, respectively, both time independent, and 
let us  define a kinematic time-independent internal variable The second addend in brackets on the right hand side of (39) 
field &(x)  corresponding to ~ ( x ) ,  i.e., can be transformed by utilizing eqs. (7) and (8) :  
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= d~ [f~(~) - a(X) - ~r(X _ x)ldV.  (42) 

Setting 

L*(t) = 9~ (o" - 0")rA(o " - &)dV 

J;' + ~ [g,(g) - ~(i~) - ,tT(g -- .~)laV 

= _1 f (o" - &)rA(o" - O')dV 
2 av 

+ i l l (X)  _ f2(X ) _ ~r(.~ _ x)]dV, (43) 

the inequality (39) can be rewritten as: 

l f v y O P ( e " ) d V  + f v g ' ~ P d v  <- l d (44) 
1 + a~ co dt L * ( t ) .  

We recOgnize that L*(t) (Vt -> 0) is a non-negative scalar 
quantity: actually the first addend is a quadratic form and the 
second is non-negative in V due to the convexity of functions 
ql(~) and ~2(X). 

An integration of (44) over (0, h) ,  with 0 -< h <- ~ ,  taking 
into account that o 'e(0)  = 0 in V, provides 

1 fv ~lf ;1 ~p(~P)dtldg_~_ f ~T( f tl ~PMt)MV 
1 + co o v  \ o o  

1 ! 1 
--< - -  [ L * ( 0 )  - L * ( q ) ]  ~ L * ( 0 )  -< - - L 0  

co co co 

co 

co 

where Lo is deduced by L*(0) setting g = 1, so that L0 - L*(0) 
results. The scalar quantity Lo/w is an upper bound to the peak 
value of the left-hand side quantity in (45). 

Since the two perturbation modes are exclusive of each other, 
inequality (45) provides 

max f g(x)r~P(x,  t)dV <- _1 Lo =- U1, (46a) 

f v ' ( x ) [ f f  OP('P)dt] dV-~ 1 +-------~ L°-= U 2 ' c o  (46b) 

The scalar quantities on the right-hand side of (46) are upper 
bounds on plastic deformations produced in some region of the 
body during the transient phase: the quantity U2 in (46b) is an 
upper bound to the whole plastic dissipation produced in the 
region where y, :~ 0; the quantity U, in (46a) is an upper bound 
to the peak value of any other chosen measure of the plastic 
deformation in the region where g :~ 0 is suitably defined. 

The bounding theorem (45) (and the consequent inequalities 
(46)) represents a generalization of analogous previous 
bounding theorems (see, e.g., Polizzotto, 1991) to the case of 

bodies constituted of material having a temperature-dependent 
plastic potential. 

As previously described the test temperature variation 0 may 
be any function satisfying (32b). Anyway, in order to calculate 
upper bounds (46a, b) some special choices of 0 can be advis- 
able, as, for example, the following provided ones. 

(i) If the loading history is smooth with respect to time t, 
then the test temperature variation can be chosen as 

= O(x) = max 0(x,  t),  in V. (47) O~t~&t 
The choice (47) guarantees that deformation hounds (46a, b) 
hold for any mechanical loading history inside the convex hull 
generated by the amplified cyclic mechanical load/3P associated 
with arbitrary temperature variations 0" within the range 0 -< 
o"_<_/30 .  

(ii) If the mechanical loading history is a piecewise linear 
path with m sides and m vertices Pa, (k E I(m) = {1, 2 . . . . .  
m } ), the test condition can be written as 

~[g(/3o 'f  + ~.r) + s, X,/3Yolk] <- 0, in V, Vk E l(m), (48) 

where o ' f  is the thermoelastic stress response to the kth refer- 
ence basic load (P,,  0 ,) ,  being 0k the maximum value that 0(x,  
t) reaches in t,-1 -< t -< t~+~ (by definition 00 ~ 0,, and 0,,,+~ 
= 0 , ) .  

(iii) If the mechanical loading history is a piecewise linear 
path with m sides and m vertices Pk(k E I(m)) and the test 
temperature variation is chosen as 

0 = ~ 9 ( x ) =  max O(x , t )  = m a x 0 h ( x ) ,  i n V  (49) O~t~LXt k 
then the test condition reads 

~o[g(/3~rf + ~-~) + s, ~ , / 3 0 ( x ) ]  -< 0, 

in V, Vk ~ l(m). (50) 

The choice (49) guarantees that deformation bounds (46a, b) 
hold for any mechanical loading history inside the convex hull 
generated by the amplified basic mechanical loads/3Pk associ- 
ated with arbitrary temperature variations 0 a within the range 
0 _< 0~' _< f i~ .  

For a selected test temperature variation history vq(x, t) in V 
× (0, At) ,  the mechanical quantities 0 "~ and ~ ,  necessary to 
calculate U~ and U2 in (468, b), can be obtained, for example, 
solving the following problem: 

/3" = max /3 (51a) 
( IL~-",,D 

subject to 

qo(ggr + s, ,~,/3~9) <- 0, in V × (0, At)  (51b) 

Cr& r 0, in V, r^  = C~rr = 0, onSi.  (51c) 

Problem (51 ) is a shakedown limit load multiplier one, analo- 
gous to (24) but with a perturbed yield function. It can be 
proved that, due to the introduced yield function perturbations, 
the objective function fi* turns out to be just a lower bound on 
the shakedown limit load multiplier/3*, i.e.,/5" <_/3*. 

After all, with the low computational effort required by the 
solution to the linear maximum problem (51 ) and by the subse- 
quent computation of U~ and U2 in (46), it is possible to obtain 
approximate evaluations of the shakedown limit load multiplier 
fi* and of the chosen measures of the real plastic deformation. 
Even if approximate, these evaluations can be usefully utilized 
during the initial stage of the structural design. 
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5 Bound Optimization 
The simplificative hypotheses introduced in the bounding the- 

orem mathematics (e.g., in (37) and (45)) and the choices (47) 
or (48) or (49) may produce even large differences between 
the values of the real process variables and the values of the 
related bounding quantities. Consequently, it can be advisable 
to sustain a further computational effort (but always lower than 
the one required by a full analysis) in order to obtain more 
stringent bounds. 

With this aim, the authors recognize that the scalar quantities 
on the right-hand side of (46) are susceptible to optimization 
with respect to its arguments and propose the following proce- 
dure in order to make the bounds as stringent as possible. 

If we are interested to the.optimization of Ui in (46a), the 
following minimum problem must be solved: 

U ~  pt = min Ui 

= min l --(~fv&"rAO"dV+f f~(~f)dV ) (52a) 
(&'&,w) co 

subject to 

~o(o'*, ~,  riO) <- 0, in V X (0, At) ,  (52b) 

Cr& r O, in V ,  r ^ r = C,,o" = 0, on S,, (52c) 

where, as previously defined, variables O -~, ~,  co are a time 
independent self stress field, a time independent mechanical 
internal variables field and the perturbation multiplier, respec- 
tively, ~ ( ~ )  is the thermodynamic potential expressed in terms 
of mechanical internal variables, (52c) are the self-stress equi- 
librium equations, ~p(o-*, ,i ' ,/30) is the perturbed yield function, 
being 

o'* ~ /30 "e + & " +  cog. (53) 

Let us define the augmented functional 

u{~ = l {~ fv&"A&'av + 

+f?'fvk*~o(o'*,X, 13O)dVdt 

+ fvu*rCr&~dV- £,u*rCi{'&"dS} (54) 

where ~*/co and u*/co are suitable Lagrange multipliers, with 
co just a scaling factor not subjected to variations. Taking the 
first variation of functional (54) with respect to all the variables, 
taking into account that U{ ~ must have a minimum with respect 
to the variables of problem (52) and a maximum with respect to 
the Lagrange multipliers, the relevant Euler-Lagrange equations 
related to problem (52) turn out to be 

~o(~r*, ~ , /5~)  - 0, ~* -> 0, 

~*~o(o-*, ~(,/30) = 0, in V X (0, At) ,  (55a) 

~,,~= ~ .  &o ~* = - ~ * & P  i n V x ( 0 ,  At) ,  (55b) 
0 ~ *  ' 0 ; ~  ' 

A # ' * =  E dt, A~* ~*dt, in V, (55c) 

Cu* = A& ~ + A~ p*, inV, u* = 0, onS,,, (55d) 

CTO r = 0 in I/, C~&' = 0, on S,, (55e) 

0___~ = $ = A~*, in V, ( 5 5 f )  
Ox 

c ¢ 
Fig. 3 The structure: geometry, mechanical load Pv, PH, and thermal 
load 0 applied in all the elements 

~ I ~ f v & " r A & " d V + £ Q ( * ) d V ]  

t '  
= U?pt = JvgA~.P*dV. (55g) 

Euler-Lagrange Eqs. (55) allow us to deduce the meaning 
of the introduced Lagrange multipliers. Actually, X* is the ficti- 
tious plastic activation coefficient and u* is the displacement 
field produced by the fictitious plastic deformation A~ v*. Equa- 
tion (55g) provides the optimal bound U~pt; comparing this 
last relation with Eq. (46a) we deduce 

max f g r ( x ) , " ( x ,  t)dV <- f gr(x)A,P*(x)dV.  (56) 
Jv 

Equation (56) shows that the optimal bound depends just on 
the fictitious plastic deformation produced in the same region 
of the body where we want to compute the peak value of the 
real plastic deformation (that is the region where g(x) :~ 0 is 
assumed), i.e., the optimal bound has a local character. 

The optimization process utilized to obtain U~ p' can be analo- 
gously applied to Eq. (46b) in order to evaluate the optimal 
bound U~ p~, but this point is here omitted for brevity. 

6 Application 
As an application the truss structure of Fig. 3 has been stud- 

ied. The structure is subjected to the mechanical loads Pv, P .  
and to the uniform thermal load ~9, all cyclically variable in 
time. We assume that the reference mechanical loading path is 
piecewise linear and that along each side the temperature val"ia- 
tion changes linearly (Fig. 4). According to Eqs. ( 18a, b) the 
yield stress is assumed as a piecewise linear function of ~9, i.e., 

0 = 0 . . . . . . . . . . .  0 = 0 

/ i 

=0 
79 T .---'''" 

% 

Fig. 4 Reference piecewise linear mechanical loading path (solid line) 
and temperature variation along the sides (dashed line) 
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O-y = 40 kN/cm 2 for T -< 200°C, 

Cry = 4011 - 0 . 0 0 0 4 ( T -  200)] kN/cm 2 

The 

l =  

g e = 

T /  == 

~= 

P V  

(57a) 

for 200°C _~ T --< 600°C. (57b) 

other data of the problem are: 

200 cm; A = element cross-section areas = 10 cm2; 
thermal expansion coefficient = 0.000012(°C)-~; 
Young modulus = 21,000 kN/cm2; E h = hardening 
modulus = 500 kN/cm 2; 
initial state temperature = 200°C; 
reference temperature variation = 0 + 100°C; 
reference horizontal load = 200 kN; 
reference vertical load = 100 kN. 

As advisable measure of the real plastic deformation the verti- 
cal residual displacement Ux of the hinge H has been chosen 
(Fig. 5 (a ) ) .  According to this choice the perturbation mode g 
identifies with the elastic stress response of the truss subjected 
to a unit load F~ as represented in Fig. 5 (b) .  

In order to specify suitable ranges of the load multiplier/3 
within which to compute the chosen residual displacement and 
its optimal bound, the following problem has been solved: 

/3e = max /3 (58a) 
(/3,Q~,X) 

Subject to: 

NTQ~,/3 + NrQ ~ - NrX - Qy -< 0, (m = 1, 2, 3, 4) (58b) 

CrQ ' =  0, (58c)  

obtaining the shakedown limit load multiplier/3* in the hypoth- 
esis of kinematic hargening (as it is well known, in the case of 
isotropic hardening/3* = c¢). Symbols utilized in problem (58) 
have the usual meaning, i.e.: 

Q~ = residual axial force vector; 
X = mechanical internal variable vector; 
N = matrix of unit external normals to the yield surface; 

Q, = plastic resistance vector; 
m = index of the typical basic load condition (m = 1, 2, 3, 

4) ;  
Q~ = purely thermoelastic stress response to the ruth basic 

load; 

u i 

Fig. 5(a) 

~=1 

Fig. 5(b) 

Fig. 5 Choice of the advisable measure of the real plastic deformation: 
(a) vertical residual displacement u~ of the hinge H; (b) auxiliary load 
condition for the evaluation of the perturbation mode 

g~ (~,n) 

U2% o. , , ,  -I 

8 8  

j ~=  2.5 

II 

Fig, 6 Bound U~ as function of the parameter to for two different values 
of the load multiplier ,8, with O = 0°C, in the case of kinematic hardening 

C r = equilibrium matrix of the relevant structure. 

By imposing Q '  = 0 and X = 0 the solution to problem (58) 
provided the elastic limit load multiplier/3 E. By imposing just 
X = 0 the solution to problem (58) provided the shakedown 
limit load multiplier/3 p of the relevant structure but constituted 
by elastic perfectly plastic material. 

Subsequently, different ranges of/3 have been chosen to rep- 
resent the relevant strain quantities in Figs. 7 and 8. Actually, 
in Figs. 7 ( a )  and 8 (a )  (kinematic hardening) the significant 
range/3e ~ / 3  -~/3* has been taken into account, while in Figs. 
7 (b )  and 8(b)  (isotropic hardening) jus t  a convenient one. 

For a selected value of the multiplier fl, the optimal bound 
U~ pt on the chosen residual displacement u~ can be obtained by 
solving the minimum problem (52),  that in this special case 
transforms into a mathematical programming problem, i.e., 

gt{ pt "~ min ~ (Q " ' A Q '  

+ f~kiarBXkin + f~i~"rBXi~°), (59a)  

subject to 

NT(/3Q~ + a~g) + Nt i s  r N'IX kin T "is,, - - N + X  - Qy ~ 0 ,  

(m = 1 , 2 , 3 , 4 )  (59b) 

CrQ r = 0, (59c)  

where N, Qy, m, Q,~, and C r have the same meaning as before, 
N+ is deduced by N imposing N~ = I NU[ for all i and j ,  and 

Qr = fictitious residual axial force vector; 
i~ k~,, = fictitious mechanical internal variable vector in the 

case of kinematic hardening; 
iso = fictitious mechanical internal variable vector in the 

case of isotropic hardening; 
cv = perturbation multiplier; 
A = diag(lj /EeAj) ( j  = 1 ,2  . . . . .  11); 
B diag (lflEhAj) ( j  = 1, 2 . . . . .  11). 

By imposing, alternatively, X iso = 0 or X kin = 0, the solution 
to problem (59) provides the optimal bound in the case of 
kinematic hardening or in the case of isotropic hardening, re- 
spectively. 

The mathematical programming problem (59) has been 
solved as a parametric quadratic programming problem. With 
this aim a suitable discrete set of selected values cok (k = 1, 2, 
3 . . . .  ) has been assigned to variable cv, the corresponding values 
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Fig. 7 Real residual displacement ul  (solid line) and its optimal bound 
U~ pt (dashed line) as functions of the load mult ipl ier fl, wi th 0 = O°C: (a) 
in the case of kinematic hardening; (b) in the case of isotropic hardening 

Ulk of the bounding quantity has been computed and the optimal 
bound 

U7 p' = rain Uj~ (60) 
(k) 

has been obtained. In Fig. 6 functions U~ (w) for two different 
values of the load multiplier/3 and for ~ = O, in the case of 
kinematic hardening, are plotted. 

For different values of the load multiplier /3, for the two 
assigned values of ~, in the case of kinematic hardening and 
in the case of isotropic hardening the real residual displacement 
Ul has been computed by means of a step-by-step analysis ef- 
fected for a convenient number of cycles, till to reach eventually 
an elastic behavior of the structure. In Figs. 7 and 8 the real 
residual displacement u~ and its optimal bound U~ pt are com- 
pared in the case of ,O = O°C and v ~ = 100°C, respectively. In 
Figs. 7(a)  and 8(a) the relevant quantities evaluated in the 
case of kinematic hardening are compared, in Figs. 7(b) and 
8 (b) the relevant quantities evaluated in the case of isotropic 
hardening are compared. 
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Fig. 8 Real residual displacement Ul (solid line) and its optimal bound 
U~ pt (dashed line) as functions of the load multiplier ,~1, with 0 = 100°C: 
(a) in the case of kinematic hardening; (b) in the case of isotropic harden- 
ing 

Except that for/3 values very close to/3* (actually U7 pt --~ c~ 
for/3 ~ / 3 * ) ,  the proposed technique provided good bounds, 
satisfactorily close to the bounded real displacement. 

It is worth noting that, in all the effected computation, for 
values of/3 such that/3~ <_ /3 .~/3~ </3P (with/3~ analogous 
of/3P and close enough to it, but related with a perturbed yield 
function) the real displacement Ul is very small and (obviously) 
the structure shakes down for the simultaneous presence of self 
stresses Q" and static internal variables X, while the bound 
U~ pt is connected with a fictitious process characterized by van- 
ishing values of X ki,1 and/or X iso. Anyway, in this range of/3, 
U7 I't is very close to ul. 

7 Conclusions 

The present paper concerned the study of a continuous solid 
body subjected to cyclic loads not exceeding the shakedown 

' limit. We assumed that the relevant body is constituted by elas- 
tic hardening material described by means of an internal variable 
constitutive model. The dependency of the yield function on 
the temperature variations has also been taken into account. 
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The shakedown limit ioad multiplier problem related to the 
relevant solid body has been formulated according to both the 
lower and the upper bound theorems. 

In order to obtain upper bounds on suitably chosen measures 
of the real plastic deformation produced in the body during the 
initial transient phase, a deformation bounding theorem, based 
on a yield function perturbation technique and specialized to 
the assumed constitutive behavior of the material, has been 
proved. The bounding quantity expression is a function of some 
fictitious (time-independent) self-stresses and static internal 
variables produced in the whole body, as well as of the perturba- 
tion multiplier. As a consequence, in general, a measure of the 
real plastic deformation produced in a selected region of the 
body is bounded by a quantity depending on variables which 
must be evaluated in the whole body. 

In order to make the upper bound most stringent an optimiza- 
tion problem has been formulated. In particular, we searched 
for the minimum upper bound according t O the plastic admissi- 
bility of the mechanical quantities related to the fictitious pro- 
cess and the equilibrium of the self-stresses. The Euler-La- 
grange equations related to the optimization problem have been 
deduced. They showed that, in optimality conditions, the opti- 
mal bound on the real plastic deformation produced in a selected 
region of the body depends just on some fictitious plastic defor- 
mations evalued in the same region of it, i.e., the optimal bound 
has a local character. 

A special choice of the temperature variation fictitious pro- 
cess allowed us to generalize the proposed technique to the case 
of loads arbitrarily varying in a given domain. 

The effected numerical experiences showed the good features 
of the utilized bounding technique. 

Re ferences  
Capurso, M., Con'adi, L., and Maier, G., 1979, "Bounds on deformations and 

displacements in shakedown theory," Matdriaux et structures sous chargement 
cyclique, Ass. amicale des ing6nieurs anciens cloves de i'E.N.P.C., Paris, pp. 
231-244. 

Cohn, M.Z., and Maier, G., 1977, Engineering Plasticity by Mathematical 
Programming, Pergamon Press, Oxford, UK. 

Corradi, L., and Zavelani Rossi, A., 1974, "A linear programming approach 
to shakedown analysis of structures," Comp. Meth. Appl. Mech. Eng., Voh 3, pp. 
37-53. 

Giambanco, F., Lo Bianco, M., and Pafizzolo, L., 1990, "A bilateral convergent 
bounding technique for plastic deformations," Meccanica, Voh 25, pp. l 81 -- 188. 

Giambanco, F., Palizzolo, L., and Panzeca, T., 1992, "A bounding technique 
for plastic deformations," Computational Mechanics, Voh 9, pp. 153-171. 

Gokhfeld, D. A., and Cherniavsky, O. F., 1980, Limit Analysis of Structure at 
Thermal Cycling, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands. 

Koiter, W.T., 1960, "General theorems for elastic-plastic solids," Progress 
in Solid Mechanics, [. N. Sneddon and R. Hill, eds., North Holland, Amsterdam, 
pp. 165-219. 

K6nig, J. A., 1979, "On upper bounds to shakedown loads." Z Angew, Math., 
Vol. 59, pp. 349-354. 

K6nig, J.A., 1987, Shakedown of Elastic Plastic Structures, Warsaw, PWN- 
Polish Scientific Publishiers, Elsevier, Amsterdam. 

Lemaitre, J., and Chaboche, J.L., 1985, M~canique des matdriaux solides, 
Dunod, Paris. 

Maier, G., 1987, "A generalization to nonlinear hardening of the first shake- 
down theorem for discrete elastic-plastic models," Atti Acc. Lincei Rend. Fis., 
Vol. 8, No. 81, pp. 161-174. 

Maier, G., and Novati, G., 1987, "Deformation bounds for elastic-plastic dis- 
crete structures with piecewise linear yield locus and nonlinear hardening," Com- 
putational Plasticity, D. R. J. Owen, E. Hinton, and E. Ofiate, eds., Pineridge 
Press, Swansea, U.K., pp. 17-31. 

Maier, G., and Novati, G., 1990, "Dynamic shakedown and bounding theory 
for a class of nonlinear hardening discrete structural models," Int. J. Plasticity, 
Vol. 6, pp. 551-572. 

Martin, J. B., 1975, Plasticity: Fandamentals and General Results, The MIT 
Press, Cambridge, MA. 

Melon, E., 1938a, "Der Spannungszustand eines Hencky-Mises'shen Konti- 
nuum bei verfinderlicher Belastung," Sitz. Bet; AK. Wiss Wien, Vol. lIa, No. 147, 
p, 73 

Melan, E., 1938b, "Zur Plastizitfit des rfiumlidhen Kontinuum," lng. Arch., 
Vol. 9, p. 116. 

Polizzotto, C., 1982, "A unified treatment of shakedown theory and related 
bounding techniques," S.M. Archives, Vol. 7, pp. 19-75. 

Polizzotto, C., 1989, "Simplified methods of structural analysis for cyclic 
plasticity," Commission of the European Communities, Nuclear Science and 
Technology, Final Report, Contract N. RD 1-0116 (N) .  

Polizzotto, C., Borino, G., Caddemi, S., and Fuschi, P., 1991, "Shakedown 
problems for material models with internal variables," Eur. Journal Mech., A~ 
Solids, Voh 10, No. 6, pp. 621-639. 

Ponter, A. R. S., 1972, "An Upper Bound on the Displacement of Elastic 
Perfectly Plastic Structures," ASME JOURNAL OF APPLIED MECHANICS, Vol. 39, 
pp. 959-963. 

Zarka, J., and Casier, J., 1981, "Elastic plastic response of a structure to 
cyclic loading: practical roles," Mechanics Today, S. Nemat-Nasser, ed., Vol. 6, 
Pergamon Press, pp. 93-198. 

518 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E. Nakamachi 
Professor, 

Department of Mechanical Engineering, 
Osaka Institute of Technology, 

5-16-10miya, Asahiku, 
Osaka 535, Japan 

Mem. ASME. 

X. Dong 
Department of Plastic Forming Engineering, 

Huazhong University of Science and 
Technology, 

Wuhan, Hubei, China 

Study of Texture Effect on Sheet 
Failure in a Limit Dome Height 
Test by Using Elastic/Crystalline 
Viscoplastic Finite Element 
Analysis 
By combining the crystalline orientation distribution with a hardening evolution 
equation, a new elastic~crystalline viscoplastic material model is established. We 
focus our discussion on looking primarily at the texture effects on the strain localiza- 
tion of  limit dome height (LDH) tests which are simulated using our Dynamic- 
Explicit finite element code. Three crystalline models in addition to the classical 
plastic potential and associated flow law model (J2F) are employed. The results 
demonstrate that, according to our failure criterion, the random orientation model 
shows the earliest indication of failure. The better formability is obtained for  alumi- 
num alloy 6111-T4 and cube texture models than the random crystalline orientation 
model. The J2F model shows no signs of  strain localization. A comparison between 
numerical results' also confirms that the strain localization region and crystalline 
rotation are different, due to the crystalline orientation distribution, which is initially 
set. 

1 Introduction 
The plastic deformation behavior of sheet metal is greatly 

affected by its initial and deformation induced plastic anisot- 
ropy. To describe this plastic anisotropy evolution, classical 
potential theory, such as the associated flow law and the nonas- 
sociated flow law, require many parameters to be determined 
using an enormous amount of experimental data. On the other 
hand, by employing the fundamental process of sliding in crys- 
talline slip systems, the meso-scale constitutive equation--non- 
classical theory--has  been developed to avoid the complexity 
of parameter fitting. Originating from the pioneering work of 
Taylor and Elam, many crystalline plasticity models have been 
proposed. A rate-dependent model has been proposed by Peirce 
et al. (1983). Their model was later modified by Zhou et al. 
(1993) through the investigation of the interaction differences 
between glide dislocations and forests. Bassani and Wu ( 1991 ) 
proposed the hardening moduli evaluation in the deformation 
stage I and II based on their experimental observations. Due to 
the presence of selected orientations it is possible that the easy 
glide stage I may appear during a sheef forming process. We 
proposed the hardening evolution model, which is available for 
the whole stages, I, II, III, and IV (Nakamachi and Dong, 1996). 
In general, the crystalline plasticity model requires a great extent 
of the microstructural parameters as well as the hardening evolu- 
tion description. The great progress in the microstructure mea- 
surement technology offers precise information for modeling 
the crystal aggregate. Through combining this experiment tech- 
nology with FE analysis, we have developed highly accurate 
simulation models. The crystalline orientation distribution of 
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the sheet metal, obtained by X-ray diffraction analysis, is intro- 
duced to the elastic/crystalline viscoplastic model, which is 
embedded in our Dynamic-Explicit finite element code. Two 
kinds of failure criteria, the critical thickness strain and the 
critical gradient of thickness strain--punch height curve, are 
proposed to evaluate the forming limit of the sheet metal in the 
LDH test analyses. 

2 Crystalline Structure Characterization 
Crystalline structure are characterized by their geometrical 

properties. The geometrical features include: 

(1) Lattice structure, e.g., f.c.c, or b.c.c., and multiphases. 
(2) Orientation distribution, or texture of polycrystal. 
(3) Grain shape, size, and boundary description. 

The slip system is determined by the lattice structure, which 
is unchanged when no phase transformation has taken place. 
For polycrystal, texture is the main factor to cause plastic anisot- 
ropy, and it plays an important role for the sheet metal formabil- 
ity. Crystalline plasticity introduces corners on yield loci, the 
radius of which are affected by the textures of the material, as 
discussed by Zhou et al. (1995). Grain shape and boundary are 
also important for the plastic straining and hardening evolution, 
because of the boundary constraint for the crystalline deforma- 
tion and the interaction phenomena between the matrix and 
second-phase particles. In this paper, we concentrate on the 
texture features. This means that the lattice structure and orien- 
tation distribution obtained by X-ray diffraction analysis are 
considered to establish the finite element modeling. 

2.1 Determination of Euler Angles. The orientation dis- 
tribution of f.c.c, sheet metal can be described by Euler angles 
obtained from a crystalline pole figures. Three coordinate sys- 
tems for f.c.c, sheet metals are introduced as shown in Fig. 
l ( a ) ,  (b),  and (c) .  The X, Y, and Z-axes of the specimen 
global coordinate system are chosen as the TD, RD, and ND 
directions of the sheet metal, respectively. The x, y, and z- 
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Fig. 1 Definition of the specimen global coordinate system, the lattice 
local coordinate system and the slip plane coordinate system 

axes of the lattice local coordinate system are defined as the 
crystallographic [100], [010],  and [001] directions. Further, a 
coordinate system defined on the slip plane is introduced, de- 
noted by x 'y 'z ' ,  as shown in Fig. l ( b ) .  Here the unit normal 
to (111) plane is chosen as the base vector e~ along z'-axis. 
The other three independent unit normals of the { 111 } family, 
n~, n2, and n3 are introduced. 

The procedure of the approximation method to determine 
Euler angle can be indicated as follows: 

1st Process: { 111} pole figure, obtained by X-ray diffrac- 
tion analysis, are divided into 640 sect ions-- those have almost 
the same area. The intensity factor of each section by referring 
contours of {111} pole figure is defined. By accounting the 
intensity factor, the corresponding number of points are gener- 
ated in the section. These "generated points," which have coor- 
dinate (X, Y) in the {111} pole figure plane, are randomly 
distributed in the section. Total number of these generated 
points is 160. 

2nd Process: By selecting the coordinate (X, Y) of gener- 
ated point in the first quadrant of { 111 } pole figure, two direc- 
tion angles, such as a and b as shown in Fig. 1 (b) ,  are deter- 
mined as follows; 

a = 2 arctan (X 2 + y2)1/2 

b = arctan . (1) 

3rd Process: The algorithm to find the direction angle c, 
as shown in Fig. 1, can be described as follows: The 480 equi- 
divided "candidate angles" of c (0 -< c -< ~Tr) are defined in 

the first quadrant of { 111 } pole figure. By arbitrarily choosing 
the candidate angle c, three alternative slip planes ( 1-~1 ), (111 ), 
(111),  can be defined. Those slip planes have unit normals, n~, 
n2, and n3, as shown Fig. 1 (c).  

n, = (-212e;  + e;)/3 

n2 = ( ,~e ;  + ~ e ;  + e ; ) /3  

n3 = (-~f6e; + ~/2e; + e~)/3 (2) 

where 

e~ = (cos a cos b cos c - sin b sin c)E1 

+ (sin a sin b cos c + cos b sin c)E2 

e~ = sin a cos bE1 + sin a sin bE2 + cos aE3 

e~ = e; x e; .  (3) 

Those normals n~, n2, and n3, have three "projection points" 
in three quadrants, such as the second, third, and fourth quad- 
rants of { 111 } pole figure. 

4th Process." The distances between these three projection 
points and three points, selected from generated points in three 
quadrants are calculated, and the minimum distance between 
each three points can be evaluated. It means that each candidate 
angle c has the minimum distance. By comparison of these 480 
minimum distances, the angle c, which has smallest "min imum 
distance," can be selected as the correct angle c. Next, the 
selected four generated points are eliminated. 

5th Process." Repeat 2nd, 3rd, and 4th processes, until the 
"generated points" in the { 111 } pole figure are eliminated 
completely. Finally 160 "direction angle" sets are determined. 

6th Process." By using the direction angles, Euler angles ®, 
/3, and ~b can be obtained as follows: 

1 
c o s ®  = ~ ( , ~ s i n a s i n c  + c o s a )  

tan/3 = [,f2 (cos b cos c - cos a sin b sin c) + sin a sin b]/ 

[ - 4 2  (sin b cos c + cos a cos b sin c) + sin a cos b] 

- ( , f 3  cos c + sin c) sin a + ,~  cos a 

tan q~ = _ [(,f~ cos c - sin c) sin a + ~f2 cos a] (4) 

Figure 2 shows { 111 } pole figure of aluminum alloy 6111 - 
T4 obtained by X-ray diffraction analysis. By using 160 Euler 
angle sets determined by the approximation method, { 111 } pole 
figure can be reproduced, as shown in Fig. 7(b-1 ). Many dupli- 
cated points are observed around brass texture. 

2.2 Polyerystalline Modeling. We introduce the orienta- 
tion distribution of polycrystals to represent the inhomogeneous 
material properties. We propose the following finite element 

Fig. 2 
sis) 

RD 

{111} pole figure of 6111-T4 sheet metal (X-ray diffraction analy- 
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modeling : first, Euler angle sets are determined by the approx- 
imation method, as discussed in the Section 2.1. This population 
has P Euler angle sets. Next, Q sets are randomly selected from 
the population and assigned to the integration point of each 
finite element. Using a Taylor assumption, compatibility at each 
integration point is enforced. In case of P = Q, a homogeneous 
material modeling can be established. On the other hand, for Q 
< P, an inhomogeneous one might be. In this paper, each finite 
element is assigned to have one Euler angle set. It means that 
each finite element represents a grain having the same crystal- 
line orientation. This finite element modeling can be understood 
as the inhomogeneous material modeling. 

3 Crys ta l l ine  H a r d e n i n g  E v o l u t i o n  

Strain hardening in each slip system is an intrinsic property, 
it is caused by internal multiplication and interaction of disloca- 
tions in a grain. Other extrinsic hardening phenomena are 
caused by solution, second-phase particles, and grain bound- 
aries. In our study, only strain hardening determined by a mac- 
roscale uni-axial stress-strain relationship is considered. It has 
been confirmed how the hardening evolution affects plastic in- 
stability of a single crystal tension test (Nakamachi and Dong, 
1996). 

We adopt the rate-dependent model proposed by Peirce et al. 
(1983), the shear strain in slip system (a) is obtained by the 
following equation: 

~(a) :a(a) [7.(a)] [ .T(a)](l/m)-I 
(5) 

L g'"> J L ~ 

Here r u,) means the resolved shear stress on the slip system 
(a). gU,) represents the reference shear stress, d ~') the reference 
shear strain rate, and m the strain rate sensitivity. The hardening 
evolution law is introduced to define the evolution of g ( "  and 
is written as 

N 

g(,,) = ~ h./,l~o~l, (6) 
b - 1  

where N is the number of slip systems, h,~,, the hardening mod- 
uli, is expressed as follows: 

h,~, = h ( y ) q , b  (7) 

where a matrix q,~, is introduced to describe the self and latent 
hardening. The parameter q,o proposed by Zhou et al. (1993) 
are employed for the coplanar or colinear slip systems, q~ = 1. 
For the slip systems which have mutually perpendicular Burgers 
vectors, q~ = 1.2. For the others, q~ = 1.3.7 is the accumulated 
slip summation over all the slip systems, h(7)  is determined 
by the following inverse method. Previous attempts at determin- 
ing the hardening evolution parameters of sheet metals adopted 
Taylor's isotropic hardening assumption (see, e.g., Beaudoin 
(1994)). The inverse iterative procedure to find the parameters 
is introduced to fit the experimental uni-axial tension test. In 
this procedure, we assume a uniform initial hardening state and 
account for latent hardening. 

~, ~P, g, and '~ denote the effective stress, effective strain 
rate, the critical shear stress, and the summation of shear strain 
rate over all slip systems, respectively. Employing the Taylor 
factor 

M ~ ~ l g  = ~/I~P = ~3.06, f .c.c 

L 2.83, b . c . c .  

A first trial of the evolution of g can be obtained from the 
experimental effective stress - effective strain relationship 

_ • 105.7 _ 

Fig. 3 Tool geometry of LDH test {180 mm× 100 mm rectangular shoot 
with 0.92 mm thickness) 

= f ( a i ,  U ' ) ,  

by replacing ~ and ~-P with g and 3' as follows: 

1 a 

(8) 

(9) 

Due to the presence of an initial texture and the latent hardening 
effects, parmneters a~ should be adjusted to fit the experimental 
results. 

The effective stress - effective strain relation of 6111-T4 
sheet metal obtained by simple tension experiment is 

= 488(0.00713 + EP)°z32(MPa). (10) 

By fitting the finite element simulation results of rectangular 
block tension test using 2 × 2 × 2 = 8 solid elements, we 
determined the following h (7)  function: 

h ( 7 )  = 18.22810.372(0.002 + 7)]-°65(MPa) (11) 

which corresponds to 

g = 14010.372(0.002 + 7)]°35(MPa). (12) 

In the simulation a cube orientation is assumed and the strain 
rate is maintained at io = 100 s 1 The stress-strain curve ob- 
tained by simulation agrees reasonably with the experimental 
results. Other parameters in this crystalline plasticity model 
include go = 50 MPa, m = 0.03 and d = 0.5 s 1. 

4 N u m e r i c a l  S i m u l a t i o n  o f  L D H  Test  

The NUMISHEET'96 LDH benchmark test problem (Lee et 
al., 1996), was adopted to investigate the effects of textures 
on strain localization and formability of the sheet metal. The 
geometry of the tools are shown in Fig. 3. Only a quarter of 
the sheet is analyzed because of symmetry. For the draw bead 
condition, the maximum draw-in through the draw bead along 
the X-axis is assumed to be 0.25 mm. A detail description of the 
draw bead model can be found in the reference Wang (1994). In 
our simulation, 1125 eight-node SRI (selected reduced integra- 
tion) solid elements arc used. The punch is linearly accelerated 
to a maximum speed 20 rrds within 10 mm punch travel, and 
this speed is maintained throughout the remaining simulation 
steps. The material properties are assumed as Young's modulus 
E = 69 GPa and Poisson's ratio v = 0.33. The cubic elastic 
constants for the crystal are cH = 10,8200 MPa, Cl2 = 61,300 
MPa and c44 = 28,500 MPa. Coulomb's coefficient of friction 
is set as # = 0.1. The hardening law is given by Eqs. (7), (8), 
and (12). Three texture models are introduced: 

Model 1: Single crystal with the cube orientation (cube). 
Model 2: Aluminum alloy 6111-T4, as shown in Fig. 7 

(b- l )  (611 I-T4). 
Model 3: Polycrystal with random orientation distribution 

(random). 
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In addition, two models of J2 flow rule (J2F) and the cube 
texture single crystal with thermal softening effect (cube texture 
with thermal effect) are also employed for the comparison. It is 
assumed in the thermal softening model, the plastic deformation 
energy is transformed into the heat energy. The inhomogeneous 
modeling in case of 611 l-T4 and the random models are em- 
ployed, where the different initial orientations are assigned by 
randomly sampling from their corresponding population of Eu- 
ler angle sets. 

The deformed shapes with the major principal strain distribu- 
tion are shown in Fig. 4. For all the models, the deformation 
and wrinkle pattern are identical, but the strain distribution is 
very different. Since the simulations are executed under the 
same conditions, with the exception of the material models, it 
is possible to isolate the texture effect on the straining. 

These effects are shown more clearly in Fig. 5. Top view of 
major principal strains at punch height (PH) 30 mm (25 mm 
for cube-thermal) are shown in Fig. 5 ( a ) - ( e ) ,  respectively. 
The J2F model has features of homogeneous and isotropic elas- 
ticity and plasticity. The effect of friction is particularly evident 
for this model, giving rise to strain localization region far away 
from center of the hemispherical punch, as shown in Fig. 5 (a) .  

The single crystal with cube texture has also a homogeneous 
nature but includes both anisotropic elasticity and plasticity. 
This leads to the material possessing its own characteristic de- 
formation direction in which strain localizes very easily. As 
shown in Fig. 5 (b).  The rather narrow strain localization region 
occurs at about 55 deg inclined to the X coordinate, it implies 
that only favorable slip systems, which generate the extreme 
thinning along this direction, are dominant. The figure shows 
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Fig. 4 Distribution of major principal strain on the upper surface when 
punch travels 30 mm. (a) J2F model, (b) cube model, (c) 6111-T4 model, 
and (d) random model, 
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Fig. 5 Top view of major principal strain distribution at punch travel = 
30 mm. (a) J=F model, (b) cube model, (c) 6111-T4 model, (d) random 
model, and (e) cube-thermal model. 

that both the friction and the material anisotropy induces local- 
ization conflict one another, with the latter being the more domi- 
nant. 

The random orientation model would produce the isotropic 
yield surface, if the model comprises infinite number of orienta- 
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Fig, 6 The thickness strain versus punch height curves 

tion and finite element, ttowever, for this case where only 160 
orientation sets and 1125 elements are employed, this does not 
represent fully the homogeneous and isotropy material charac- 
teristics. In this random model, the orientation randomness in- 
troduces an initial material imperfection. As shown in Fig. 5 (d), 
the extreme localization, with a maximum strain of 0.353, oc- 
curs rather far away from the center. It means that the combined 
effect with friction and initial material imperfection promotes 
the strain localization, earlier and more far away fi'om the center. 

Aluminum alloy 61 l l-T4, which has a typical brass texture, 
shows material characteristics between those of the cube and 
random models. This is clearly manifested in Fig. 5 (c), where 
the area of extreme strain localization moves fi'om the preferred 
orientated narrow region to the region on the X coordinate. 
Again, because of friction, this occurs a small distance away 
from the center. 

Figure 5(e) shows the thermal softening effect on the cube 
model's strain localization very clearly, where a more pro- 
nounced favorable orientated localization region and excessive 
thinning are observed. 

The relationship between the maximum thickness strain 
l e ....... I and the punch height 2 is shown in Fig. 6. To predict 
the forming limit of the sheet, two criteria are introduced: (1) 
the limit thickness strain l e ....... I, = 0.28 and (2) the limit slope 
(die ...... I/d2) ~ 0.02 (1/mm). The limit punch height in the 
case of criterion ( 1 ) gives 35 mm, 30 ram, and 28 mm, respec- 
tively, for the cube, 6111-T4, and random models. Whereas 
criterion (2) gives 31 mm, 30 ram, and 24 ram, respectively. 
In the case of J2F, no failure was observed. When the thermal 
softening effect is introduced to the cube model, lower limit 
punch heights are obtained, viz: 22 mm for criterion (1), and 
19 mm for criterion (2). These results demonstrate that the 
inhomogeneous and initial imperfection material model, such 
as the random case and the 611 I-T4 case, generate earlier strain 
localization. 

The crystalline orientation distribution, represented by { l 11 } 
pole figures, at the initial, 30 mm and 28 mm punch heights 
are shown in Figs. 7(a) ,  (b), and (c), respectively. Figures 
7(a- 1 ) and (a-2) predict clearly the large rotation from the cube 
orientation at the extreme localization regions. When thermal 
softening is introduced, a greater rotation is observed as shown 
in Fig. 7 (a-3). The 611 l-T4 and random cases also exhibit this 
rotation induces scattering effect, though it is not as pronounced 
as the cube model, as shown in Figs. 7(b)  and (c). For the 
6111-T4 case, the crystals, which have {11 l} directions and 
directions close to RD, show larger rotations than other direc- 

• tions. The random model Shows the least amount of rotation of 
the four models for the same prescribed deformation conditions. 
The deformation compatibility of the finite element boundaries 
imposes rotation constraints, which prevents an increase in the 
slip system activity and as a consequence it limits the localiza- 
tion area. This produces the combined phenomena of small 

rotations with larger shear strains on fewer slip systems. On the 
other hand, the cube case offers the least number of rotation 
constraints, which allows the crystal rotation to induce a strain 
localization expansion along the preferred orientation. 

5 Conclusions  
An elastic/crystalline viseoplastic finite element code has 

been applied to analyze the LDH test problem. In modeling, 
the crystalline material, an inverse iterative method has been 
introduced to detennine the Euler angles of crystal from a { l I 1 } 
pole figure of 6111-T4 aluminum alloy, obtained from X-ray 
diffraction analysis. A new approximation algorithm was also 
proposed to assign the crystalline orientation to each finite ele- 
ment. We adopt five material models, viz: cube texture (single 
crystal), aluminum alloy 6111-T4, random orientation poly- 
crystal, cube texture with thermal softening, and J~F (classical 
plastic potential theory). Numerical results show evidence of 
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Fig. 7 {111} pole figures obtained by simulation. (a-1) Initial pole figure 
of the cube model. (a-2) The pole figure of the cube single crystal model 
when punch height = 30 mm. (a-3) The pole figure of cube single crystal 
with thermal softening effect model when punch height = 28 mm, (b-1) 
Initial pole figure of the 6111-T4 model. (b-2) The pol e figure of the 6111 - 
T4 model when punch height = 30 mm, (c-1) Initial pole figure of the 
random model, (c-2) The pole figure of the random model when punch 
height = 30 mm. 
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texture effects on the strain localization. A strong cube texture, 
i.e., single crystal, is found to postpone strain localization and 
leads to higher formability, while a random orientation distribu- 
tion of polycrystal triggers localization earlier and leads to a 
lower formability. The random nature of this latter model intro- 
duces an initial material imperfection. The results for the alumi- 
num alloy 611 l-T4 show a formability between the above two 
extreme texture cases. The crystalline rotation ~induced by the 
deformation is not affected very much from the texture, whereas 
the formability is. Thermal softening is shown m reduce form- 
ability. No failure is observed in the J2F model because of the 
homogeneous material characteristics and consistently smooth 
yield surface. 
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Stress Singularity of Edge 
Delamination in Angle-Ply 
and Cross-Ply Laminates 
By utilizing the general solutions derived for the plies with arbitrary fiber orientations 
under uniform axial strain (Huang and Chen, 1994), the explicit solutions of the 
edge-delamination stress singularities for the angle-ply and cross-ply laminates are 
obtained. The dominant edge-delamination stress singularities for the angle-ply lami- 

1 1 + nates are found to be a real constant, -~, and a pair of complex conjugates, =~ _ 

i/27r In {(b + ~ - a2)/a}. For the cross-ply laminates, the significant effect of 
transverse shear stresses of the laminate is considered and the dominant edge-delami- 

1 1 nation stress singularities are shown as -~ and -~ +_ i/27r In {(c2 + 

~/c~ - 4clc3)/2cl}. a, b, cl, c2, and c3 are the corresponding combined complex 
constants. In addition, two elementary forms of  edge-delamination stress singularity, 
say, r - m  and r ~, (ln r)~(~, = n - ~, n = 1, 2 . . . )  exist for both the angle-ply and 
cross-ply laminates. Excellent correlations between the present results and available 
solutions show the validity of the approach. The deficiencies of the solutions available 
in the literature are compensated. New results for other angle-ply and cross-ply 
laminates are also provided. 

1 Introduction 
A composite laminate often involves geometric/material dis- 

continuities or structural defects which may reduce load car- 
rying capability of the structure and will be a source of laminate 
failure. The edge-delamination problem has become of great 
concern in laminate failure analysis recently. Basically, edge 
delamination is a fracture problem involving an interfacial crack 
between two anisotropic materials. The stress field of such a 
problem is very complex and is attributed to the singular nature 
which generally occurs at the crack tip. Hence, a rigorous inves- 
tigation on the edge-delamination stress singularity is impera- 
tive. 

The problem of an interfacial crack between two dissimilar 
isotropic materials has received much attention. For an interfa- 
cial crack between two anisotropic materials, however, only 
limited research has been done. Assuming an r ~ stress field, 
Wang and Yuan (1983) employed Lekhnitskii's approach 
(Lekhnitskii, 1963) together with a hybrid finite element model 
to deal with the edge-delamination problem of angle-ply lami- 
nates, r is the radial distance from the crack tip and 6 is a 
complex constant. Due to the drawbacks of the numerical tech- 
niques, an analytical approach for the edge-delamination stress 
singularity in angle-ply and cross-ply laminates was made by 
Wang (1984). However, the explicit expression for the edge- 
delamination stress singularity 15 was not presented for angle- 
ply laminates. Moreover, only the stretching and bending of the 
laminate were analyzed in cross-ply laminates and thus four 
stress components axx, ~ryy, ~rzz, and 7-xy were considered. For 
completeness, the significant role of the transverse shear stresses 
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7-~ z and 7-y~ in the cross-ply laminates is worthy of further investi- 
gation. Ting (1986) employed Stroh's formalism (Stroh, 1962) 
to study the special geometry of composite wedges with singu- 
larity. Although the research also can be used to study tile 
edge-delamination stress singularity, the explicit solution for 
anisotropic materials was too complicated to solve and only the 
case for isotropic materials was illustrated. To compensate for 
these deficiencies in the previous research studies (Wang and 
Yuan, 1983; Wang, 1984; Ting, 1986), a complete and explicit 
analysis on the edge-delamination stress singularity for angle- 
ply and cross-ply laminates under uniform axial strain is carried 
out in this work. 

Recently, some general solutions for the plies with 0 deg, 90 
deg and arbitrary fiber orientations under uniform axial strain 
have been successfully derived and employed to study the free- 
edge stress singularities of general composite laminates (Huang 
and Chen, 1994). In this work, to determine the edge-delamina- 
tion stress singularities, those general solutions are adopted and 
first expressed into appropriate polar forms. Based on those, 
the transcendental characteristic equations [K(~)[ = 0 satis- 
fying the traction-free conditions on crack surfaces and the 
continuity conditions along the ply interface are then estab- 
lished. For angle-ply laminates, K(6)  is a 12 × 12 matrix of 
the complex constant 6. For the cross-ply laminates, assuming 
the transverse shear stresses ~-xz and %.~ to be proportional to a 
r r form, K(6)  can be further categorized as Ka(~) and K ( T ) ,  
where Ka(~) and K(3 ' )  are 8 × 8 and 4 × 4 matrices for the 
complex constants 6 and y, respectively. After tricky and te- 
dious manipulations, the transcendental characteristic equations 
can be expanded with the aid of a symbolic operation technique 
(Pavelle and Wang, 1985). After solving the transcendental 
characteristic equations, the detailed characters and simple ex- 
plicit forms of the edge-delamination stress singularities for any 
angle-ply and cross-ply laminates under uniform axial strain are 
derived analytically and the lack of explicit expression for edge- 
delamination stress singularities in the literature (Wang, 1984; 
Ting, 1986) is compensated. As a result, once the material 
properties of specific composite laminates are provided, the 
researcher can compute the edge-delamination stress singulari- 
ties directly in a simple way. 
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To demonstrate the singular nature of the edge-delamination 
stress field, the graphite-epoxy laminates under uniform axial 
strain are selected as test examples. Comparisons of the present 
calculated results with limited available solutions of angle-ply 
laminates show the validity of the approach. The cases for 
other commonly used angle-ply and cross-ply laminates are 
also studied. 

2 General  Solut ions of  Composi te  Laminates  
Consider a long composite laminate subjected to the uniform 

axial strain ez~ = e, as depicted in Fig. 1, and the edge delamina- 
tion occurs along the interface of dissimilar plies with fiber 
orientations 0~ and 02. Perfect bonding is assumed in the com- 
posite laminate everywhere except in the region of delamina- 
tion. Since the composite laminate is sufficiently long, the end 
effect can be negligible due to the Saint Venant's principle. 
Under these conditions, the displacements (except the displace- 
ment in the z direction, w), strains and stresses in the composite 
laminate can be thus viewed as independent of the z-coordinate. 
For further study, the general solutions of various types of ply 
(Huang and Chen, 1994) are quoted and discussed briefly be- 
low. 

2.1 Arbitrary Fiber Orientations Other than 0 Deg and 
90 Deg. By assuming the stress field near the crack tip as a 
r ~ form and separating the order of singularity 6 into real and 
imaginary parts, say, 6r and 6e, the general solutions of stresses 
and displacements for an arbitrary orientation ply other than 0 
deg and 90 deg can be derived by Lekhnitskii's approach as 
(Huang and Chen, 1994) 

3 

O-xx = 

k=l  

3 

O'yy ~ 

k= l  

T y  z = - -  

3 

~ x z  = 

k= l  

{ C~#~Z ~ 4[cos  (5~ In Z~) + i sin (6i In Z~u)] 

- -  - - 2  - - 6  + C~#kZ~;[COS (6~ In Z~.) - i sin (6i in Zk~)] } 

{ C~Z ~[cos  (6~ In Z~.) + i sin (6i In Z~.)] 

- - - - 6  
+ C~Z~i[cos (6i In Z~.) - i sin (5i in Zku)] } 

3 
6 

Y~ {C~rl~Z 4[cos  (6~ in Z~.) + / s in  (6~ in Zku)] 
k=l  

- - _  - -6  
+ C~r;~Z~;[cos (5~ In Z~)  - i sin (5i In Zk~)] } 

6 
{ C~lkl~eZ g~[cos (6~ In Z~u) + i sin (6i In Ze~,)] 

+ C~r /~Z4[cos  (6i In Z~.) - i sin (6~ In Z~.)] } 

E u  = E 2 2 =  14.5 ( O P a ) ,  

Eaa  = 138 ( G P a )  , 

G ~  = G~a  = Ga~ = 5 . 9  . ( G P a ) ,  

/]~a = /,/3~ = /]a~ = 0.21 . 2 

o J ' (  × 

~ z z  

Fig. 1 Edge delamination of a composite laminate 

3 

T x Y  - -  ~ 6 = { Ck#kZ k; [ COS (6~ in Zk.) + i sin (6~ In Zk.) ] 
k = l  

- -  - - 6  

+ Ck/zkZ~;[COS (6~ In Z~u) -- i sin (51 in Z~.)] } 

1 
a~ = ( e - S,3cr= - S 2 3 0 " y y  - S35r*z) ~Ss-- (1) 

and 

u = L[(6,. + 1) + i6~1 [cos (6~ In zk.) 
k=l  

-- _ - - 6 + 1  

+ i sin (6~ In Zk.)] + CkpkuZk~ [COS (5i In Zk~) 
[(6, + 1) - i6~] 

i sin (6i In Zku)]~ + Sis - ~ ex - w3y + Uo J $33  

k= l  [ ( 6 r  + 1) + i5,] 

+ i sin (5~ In Z~u)] + 

[COS (5i In Zk.) 

- -  - -  - - 6 + 1  

Ckqk~Z k; 
[(5,. + 1) - iSi] 

[cos (61 in Z~.) 

-- i s i n ( S i  l n Z k ~ ) ] }  + co3x + ~ e y  + uo 

~ { Gt,,Z ~+~ 
w = [ cos (6i In Zk~.) 

k= l  [(6r + 1) + i5~] 

- - - -  - - 6 + 1  
. Cktk~Z k~ 

+ i sin (5~ In Zk.)] + 
[(Sr + 1) -- i6~] 

× [COS (6i In Zk.) - i sin (& In Zk~)]} 

c,3  ) 
+ \ s 3 3 e - w 2  x + c o ~ y + e z + w o .  (2) 

All the notations of each variable are referred to Huang and 
Chen (1994). It is noted that the stresses and displacements as 
expressed in Eqs. ( 1 ) and (2) are real and the unknown coeffi- 
cients Ck, Ck, 5,. and 6i for a specific composite laminate with 
arbitrary orientation plies other than 0 deg and 90 deg can be 
determined by given boundary conditions. 

To understand the singularity nature of the stresses and dis- 
placements further, the trigonometric functions as seen in Eqs. 
(1) and (2) can be expanded into infinite series 

6~ 6,' 
cos (6~ in Zk~) = 1 -- ~ (in Zku) 2 + ~.~ (In Zk.) 4 

66 (In Zku) 6 + 68~ - 6-~ ~ (ln Zk.) 8. . .  

and 

6~ (in Zk~) 3 'sin (5i In Z~.) = 5i In Zk~ -- ~ .  

+ 6~ (In Z~.) 5 67 
5-7 - 7.,  ( I n  Z ~ S .  • • 

Although the functions cos (6i In Zku) and sin (6~ in Z~u) are 
divergent, their sum [cos (6i In Z~,) + i sin (& In Z~u)] remains 
bounded. Similarly, the complex conjugate of the associated 
quantity [cos (5~ in Zk.) - i sin (6i in Zk.)] is also bounded. 
Thus, as discussed in Huang and Chen (1994), the stress singu- 
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larity of the arbitrary orientation ply other than 0 deg and 90 
deg in the composite laminate may include three elementary 
forms: r~,; (In r)"; and r~r(ln r)" (n = 1, 2 . . . ) ,  depending 
on the magnitudes of 6~ and 6,. The occurrence of those three 
elementary stress singularities, as seen from Eq. (1) ,  can be 
listed as follows: (i) the r ~, singularity appears as 6i = 0 and 
- 1  < 6r < O, (i i)  the (ln r)" singularity happens as 6i ~: 0 and 
6r = 0, and (iii) the r e,(ln r)" singularity (n = 1, 2 . . . .  ) exists 
as6,  ~ - 0 a n d 6 ~ > - l .  

2.2 The 0 Deg and  90 Deg Fiber Orientations. Simi- 
larly, the general solutions of 0 deg and 90 deg fiber orientation 
plies are presented as (Huang and Chen, 1994) 

2 

a~  = ~ { C ~ 2 Z ~ [ c o s  (6, In Z~;) + i sin (6~ In Z~)] 
k=l 
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The stress singularity of the 0 deg or 90 deg ply in the com- 
posite laminate also may contain three elementary forms: 
( r  6,, r~ , ) ;  (In r)" ;  and ( r e , ( l n  r)" ,  rVr(ln r)")  (n = 1, 2 
. . . ) ,  depending on the magnitudes of (b~, Yr) and (6,,  %) .  
As seen from Eq. (3) ,  the occurrence of those three elemen- 
tary stress singularities may be stated as the similar condi- 
tions of the previous case. 

3 Edge-Delamination Stress Singularity 
Assume the edge delamination between two plies, say, the 

(m)th and (m + 1)th plies, as shown in Fig. I. The polar 
stresses ( a,.,., tree,, azz, Tr4j, T 4Jz, T r z )  and displacements (u,., u¢,, 
uz) can be expressed in terms of (a.,.x, Cryy, crzz, r,),, ~'y~, ~-xz) and 
(u,  v, w), as indicated earlier, by the relations 

or,.,. = a~  cos z ¢ + Cryy sin 2 05 + 2~-xy sin 05 cos 05 

a¢¢ = a.,:~ sin 2 05 + Cryy cos 2 05 - -  2~-~y sin 05 cos 05 

r ~  = (ayy - a,x) sin 05 cos 05 + rxy(cos z 05 - sin 2 05)) 

and 

7 4~ z = 7"y z COS 05 - -  7-xz s i n  05 

~-~z = Wyz sin 05 + 7-x~ cos 05 

O'zz : tyzz 

u, = ucos05  + v s i n 0 5  

u,  = - u s i n 0 5  + v c o s 0 5  

U z =  W .  

To evaluate the edge-delamination stress singularity, the 
complex constants 6 = 6r + i6i and 3, = %. + i'y, which appeared 
in the general solutions of Eqs. ( 1 ) ~ (4) need to be determined 
by satisfying the near-field boundary conditions of the corre- 
sponding composite laminate. This leads to solving an eigen- 
value problem. The near-field boundary conditions include the 
traction-free conditions at the crack surfaces and the continuity 
conditions along the ply interface. The traction-free conditions 
at the crack surfaces of the (m)th and (m + 1)th plies in the 
polar coordinates are (see Fig. 1 ) 

o. (m+ I) ~ ( m + l )  ~ ( m + l )  ~4, = - ~ z  = . , . ~  = 0  on 05 = - T r  

and 

O.(m) (m) (m) ,~, = ~ - ~  =~-r~ = 0  on 05=~r,  (5) 

where the superscripts (m) and (m + 1 ) denote the (m)th and 
(m + 1 )th plies of the composite laminate, respectively. The 
continuity conditions along the ply interface give 

{ ,7 ~+ J~, " ~  ~,,+ ~ , - ,~  ~,,,+ t ~, ~" ~,,,+ 1~ , u~,,+l~, ~.~"<"'+~ } 

f (m) ~ ( m )  ~ ( m )  u ( m )  
= tcr4,4,,'4, . . . .  ~ . . . . .  u~ "~, u~ ''>} on 05 = 0. (6) 

Since the angle-ply and cross-ply laminates are often adopted 
in the practical structural component, the edge-delamination 
stress singularity of the two laminates is examined in the follow- 
ing analysis, respectively. 

3.1 Angle-Ply Laminates .  After expressing the general 
solutions of Eqs. (1) and (2) in polar forms, the system of 
algebraic equation satisfying the traction-free conditions (Eq. 
(5))  and the continuity conditions (Eq. (6))  for angle-ply lami- 
nates is derived as 

K ( 6 ) C  = 0, 

where K(6 )  is a 12 × 12 matrix of the complex constant 6 and 
C is a 12 × 1 column vector made of the complex constants 
C~ ''~ and C~ ''+ ~ (k = 1 ~ 6). To have nontrivial C, the determi- 
nant of K ( 6 ) ,  say IK(6 ) l ,  vanishes. This is 
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I K ( 6 ) I  = e -6in6 

1 1 1 1 1 1 1 1 

T]I ~1 712 ~2 773 ~3 --~1 --~1 
PI# 1~1. PZU ff2U P3~ ff3U Ply ff~. 

t~. t~. t2~ t-~. t3. ~ .  -t~ u - tS .  
A l A 1 A 1 0 0 
0 0 0 0 0 0 1 A 

#iA ~ /.z2A ~2 /.z3A ~3 0 0 
0 0 0 0 0 0 #l ,~A 
' /~iA ~l ~2 A ~2 713A Y]3 0 0 

0 0 0 0 0 0 ~ ~ A  

1 1 1 1 
[A2 ~2 [A3 ~3 

- -  T~2 - -  ~ 2  - -  7~3  - -  ~ 3  

P2u ffa. P3~ ff3u 
q2u q2" q3u (~3~, 

0 0 0 0 
1 A l A 
0 0 0 0 

]-~2 fl2A ~3 9~A 
0 0 0 0 
1~2 ~2A T]3 Y~3A 

= 0 ,  

where A = e 2~'~ . The material constants /~k, ~k, Pk,, qku and tku 
in the adjacent plies of the angle-ply laminates are known as 
~(k m) = ~'(k re+l) -~ ~k, ~,n) -~ --~(k re+l) = ~?k, P~') = e--("+~)k. = 
Pku, q(k~ ) = q(k"~ '+1) = qkV and ,(m) = ,(m+l) ,~, --,~, = t~,. TO avoid 
numerical errors in computing 6, after tricky and tedious manip- 
ulations, the transcendental characteristic equation I K(5) I  = 
0 for the angle-ply laminates is expanded by the aid of the 
symbolic operation technique (Pavelle and Wang, 1985 ) analyt- 
ically instead of using the numerical Muller method (Wang and 
Yuan, 1983), say, 

IK(6)I = A-3(1 - A ) 3 ( A  + 1)[aA 2 + 2bA + a] = 0, (7) 

where the complex coefficients a and b are related to 
material  constants of adjacent plies and given in Appendix 
A. When Eq. (7)  is solved, the eigenvalues 6,, are found 
as 

of algebraic equations for the cross-ply laminates can be 
categorized as 

Ko(5)C = 0 

and 

K ( y ) D  = 0, 

where Kd(6) and K ( y )  are 8 × 8 and 4 × 4 matrices for the 
complex constants (5 and 7, respectively. C and D are 8 × 1 
and 4 × 1 column vectors made of the complex constants 
(C(k m), C~ m+~)) (k = 1 ~ 4) and (k = 5 ~ 6). The nontrivial 
conditions of C and D are IKa(6)l  = 0 and I K ( y ) I  = 0. The 
transcendental characteristic equations can thus be easily de- 
rived as follows: 

]K,i(~5)[ = e =4i~6 

1 1 1 1 1 1 1 1 

p ~ )  ff]'~) p~'~')ff(2~' ) p]~+') ff~'+~) p~'~,+') ff~+~) 
, z~  q]~'+') q(2'; "+') 

A " 1 A 1 0 0 0 0 
0 0 0 0 1 A 1 A 

A~? '~ ~ " )  A ~  °') ~'"~ 0 o o o 
0 0 0 0 ¢~m+,) A(},,,+ l)~(2,n+ l )A~2(m+ 1) 

= 0  

(n = 0, 1, 2 . . . . . . .  ). (8) 

As seen from Eqs, (1) and (8) ,  the explicit solutions of the 
edge-delamination stress singularity for the angle-ply laminates 

I L) + i/27r In {(b + are concluded as 6n = - ~  and (n - 2 - 

- a 2 ) / a  } (n = 0, 1, 2 . . . . . . .  ). Hence, the edge-delamina- 
tion stress singularity of the angle-ply laminates only contains 
the r -~/2 and r e,(ln r)" (n = 1, 2 . . . )  forms. This finding can 
clarify the abstruse solution derived by Ting (1986) and the 
lack of explicit expression for (5 (Wang, 1984; Ting, 1986) is 
thus compensated. 

3.2 Cross-Ply Laminates .  Since the edge-delamination 
stress singularity of the cross-ply laminates cannot be in- 
duced from angle-ply laminates, the transcendental  character- 
istic equation for cross-ply laminates needs to be rederived. 
Again, after substituting the polar form of the general solu- 
tions of Eqs. (3) and (4)  into the traction-free conditions 
(Eq. (5) )  and the continuity conditions (Eq. ( 6 ) ) ,  the system 

and 

I K ( y ) I  = e - ~ ' ~  t ~ ~%') t]'~'+~) ') 
1 0 
0 1 

= ( t ~  + ~ ) -  ~ ' ) ) B  t ( B -  1)(B + l )  = 0 ,  (9) 

where B = e 2~'~. The transcendental characteristic equation 
I Kd(6)l = 0 governing the stresses (crxx, ~L,~, azz, and r~y) and 
displacements (u and v) of the cross-ply laminates can be also 
expanded as 

IKd(6)l = A - 2 ( 1  - A ) Z [ Q A  z + c2A + c3] = 0, (10) 

where the complex coefficients c~, c2, and c3 are the related 
material constants computed from adjacent 0 deg and 90 deg 
plies and given in Appendix B. The eigenvalues 6,, are deter- 
mined as 

6, = n and n -  _+ ~ l n  c2 __-  
2el 

(n = 0, 1 ,2  . . . . . .  ). (11) 
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Hence, as seen from Eqs. (3) and ( 11 ), the explicit solutions 
of the edge-delamination stress singularity for the stresses (~r~, 
Cryy, ~z,  and %.) in the cross-ply laminates are denoted as 6,, 

= (n - ½) _+ i/27r In {(c2 + ~/c~ - 4 c ~ c 3 ) / 2 c ~ }  ( n  = O, 1, 2, 
. . . ) .  In other words, the edge-delamination stress singularity 
of the stresses (eLy, Cryy, ~rz~, and rxy) only contains the r ~,(ln 
r)" singularity (n = l, 2 . . . .  ) in the cross-ply laminates. As 
for the eigenvalue % of the transcendental characteristic Eq. 
(9) ,  the solutions can be obtained as 

% = n  and ( n - ½ )  (n = 0, 1 ,2  . . . . . . .  ). (12) 

As seen from Eqs. (3) and (12),  the transverse shear stresses 
r,z and ryz in  the cross-ply laminates with edge delamination 
have a r -~/~ singularity, which is the same as that of linear 
elastic crack problems. This makes up for the deficiency of the 
previous research (Wang, 1984). 

Therefore, for the cross-ply laminates, the explicit solutions 
of the edge-delamination stress singularities are concluded as 
3 / - 21 and 6,, = ( n  - ½) _+ i/27r In { ( C  2 '-~ 

~/c~ - 4c ,  c3)/2c~ } (n = 0, 1, 2 . . . . . .  ). Thus, the edge-delami- 
nation stress singularity of the cross-ply laminates also contains 
the r ~/2 and r e,(ln r)" (n = 1, 2 . . . )  forms. In addition, % is 
assocfated with the deformations due to antiplane displacements 
and 6,, is associated with that due to in-plane displacements 
in the cross-ply laminates. In the case of dissimilar isotropic 
materials, the eigenvalue 6,, of Eq. ( 1 1 ) can be simplified as 

i t - G(,,,+t) + Gu'o(3 _ 4u(,,,+~))j 

(n = 0, 1 ,2  . . . . . . .  ), (13) 

which agrees with the result obtained by Williams (1959) (the 
result obtained by Wang (1984) can ' t  b e  simplified to Eq. 
(13)) .  G and u denote the shear modulus and Poisson's ratio, 
respectively. 

3.3 D o m i n a n t  Edge-Delaminat ion  Stress Singularity.  
Since the stress distribution in the interior region can be ade- 
quately described by the general solution for the corresponding 
6 = 0 and the singular terms of the near-field solutions should 
have a weak effect on the stress field far away from the crack 
tip, other nonsingular terms of the general solutions (6i = 0 
and 6~ > 0) are negligible in the analysis. In addition, although 
the r e,(ln r)" stress singularity also exists as 6~ w 0 and & > 
0, the strength in this range is much smaller than other singulari- 
ties. Hence, even though the eigenvalues have infinite numbers, 
only the ones with 6,. in the range of - 1 < 6~ -< 0 are the main 
concern. The dominant edge-delamination stress singularities 
for the angle-ply laminates contain a pair of complex conju- 
gates, -½ _+ i/27r in { ( b  + f £ 7  _ a 2 ) / a  }, and a real constant, 
-½. For the cross-ply laminates, the dominant edge-delamination 
stress singularities are denoted as -½ _+ i/27r In {(e2 + 

1 x/c~ - 4 c l c 3 ) / 2 c ~  } and -5. 
Although the expressions of a,  b, c~, c2, and c3 as presented 

in the Appendices are slightly complicated (but explicit), they 
can compensate the lack of explicit expression for 6 (Wang, 
1984; Ting, 1986) and provide the researcher a simple way to 
compute the edge-delamination stress singularities for arbitrary 
angle-ply and cross-ply laminates directly by substituting appro- 
priate elastic material constants into Eqs. (8) and (11).  To 
comprehend the edge-delamination effects near the crack tip, 
however, the eigenvalues 6,, of the transcendental characteristic 
equation are worthy of further thorough examination. 

4 R e s u l t s  a n d  D i s c u s s i o n s  

To evaluate the edge-delamination stress singularity quantita- 
tively, without loss of generality, the graphite-epoxy laminates 

with a delamination lying between 01 and 02 plies (Fig. 1 ) under 
uniform axial strain are examined. The Young's  moduli E, ,  
shear moduli Gij and Poisson's ratios vii in the transverse (1) ,  
thickness (2) and fiber directions (3) of each graphite-epoxy 
ply are shown in Fig. 1. The material constants #k, rJk, q~,, ~k, 
~k, q~;, and tk~ a re  shown to be imaginary and Pk,, tk,, and p< 
are real (Wang and Choi, 1982; Zwiers et al., 1982; Huang and 
Chen, 1994). 

4.1 Angle-Ply  Graphi te -Epoxy Laminates .  Based on 
the previous findings, the asymptotic stress field of the angle- 
ply laminates in the vicinity of the crack tip i ~ e d  by the 
singular terms as 6 = -½ + i/27r In {(b + ~/b 2 - a 2 ) / a }  and 
_t.  For the composite laminates having imaginary terms of #k, 
r/k, and qku, and real Pk, and t~, terms, the transcendental charac- 
teristic Eq. (7) can be simplified as 

[K(6)[  = 8A-3(1 - A)3(1 + A ) [ P t u O %  - ~3) 

+ P2.(~73 - rh) + P3p(~/l - -  ~ 2 ) ]  

x [/_z~(r/2 - ~73) + /-z207~ - ~h) + /-z.~(~h - ~h)] 

x [ a * A  2 + 2 b * A  + a * ]  = 0 

where 

a* = [ # i ( T ] 2  - -  ~ 3 )  -~- # 2 ( ~ 3  - -  771) + # 3 ( ~ 1  - -  7]2)]  

× [#l(qzut3 - q3.t2) + ~2(q3,utl -- qlut3) 

+ #3(qlut2 - - q 2 u h ) ] ,  

and 

b* = a* + 2[#~(qa, - q3,) + #2(q3u - qJ~) 

q- # 3 ( q l f f  - -  q2u)] X [ / Z l ( t 2 J ] 3  - t3#T]2 ) 

+ ~ 2 ( t 3 u ~ l  - -  t b u ~ 3 )  + ~ 3 ( t 1 . 7 1 2  - -  t 2 / u ~ l ) ] .  

The explicit solution of the edge-delamination stress singularity 
for the angle-ply graphite-epoxy composites is thus derived as 

1 
6 - ~ and 6 = ( n  - ½) +_ i/27r In {[b* + 

~/(b*) 2 - ( a * ) 2 ] / a  * } (n = 0, 1, 2 . . . . . . .  ). The dominant 
edge-delamination stress singularities computed by the present 
analysis for the angle-ply graphite-epoxy laminates with various 
fiber orientations are shown in Table 1. Excellent correlations 
between the present results and available solutions (Wang and 
Yuan, 1983; Wang, 1984) are noted. The results for several 
commonly used fiber orientations are also provided. For 0 = 0 
deg and 90 deg, the composite laminates become unidirectional 
and the r ~/z singularity for orthotropic elastic crack problems 
is also noted. 

4.2 Cross-Ply Graphite -Epoxy Laminate .  Although the 
edge-delamination stress singularity of the transverse shear 
stresses ~-~ and ~-y~ in the cross-ply laminates is known as 
r -~/~, that of the stresses ( a~ ,  ~L~,, ~rzz, and %y) needs to be 
further investigated. From the material analysis of the graphite- 
epoxy laminates, the characteristic Eq. (10) for the stresses 
(or=, Cryy, az~, and rxy) and displacements (u and v) of the cross- 
ply laminates can be rewritten as 

IK.(~)l = A - 2 ( l  - 3 )  2 (~]'') - ~'"))2(~]'"+~) - ~"+~))2 

ply laminates can be rewritten as 

( m ) ? ' ( m ) ? ' ( m + l ) g ' ( m + l )  

where 

X [ c ~ A  2 + 2 c ~ A  + c ~ ]  = 0 

c* - c* = 2( [~")~"~(13~ '+') -/~]~'~) - 2/3(2~')1 

- -  ") (4 ( m + 1)] x [ ~ I " * ' ~ ' + ' ~ ( ~ I ~  '+'~ g1~ '~) + , .~=  
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Table I Dominant edge-delamination stress singularity for the graphite-epoxy lam- 
inates with various fiber orientations 

± 0  

0 o 
5 o 

10 ° 
150 

20 ° 
25 ° 
30 ° 
35 ° 
40 ° 
45 ° 
50 ° 
55 ° 
60 ° 
65 ° 
70 ° 
75 ° 
80 ° 
8,5 ° 
90 ° 

Present, 
- 0 . 5  
- 0 . 5  
- 0 . 5  
- 0 . 5  
- 0 . 5  
- 0 . 5  
- 0 . 5  
- 0 , 5  
-0 .5  
- 0 . 5  

--0.5 

Wa.ng (1983,1984) 
- 0 . 5  

- 0 . 5  

- 0 . 5  

- 0 . 5  

Present, 
.-0.5 

-0.5±0.0010698378i 
-0,5±0.0029365319i 
-0.5:k0.0064447201i 
-0.5±0.0116593204i 
--0.5±0.0178610378i 
-0.5±0.0240083815i 
-0.5±0.0291530300i 
-0.5±0.0326769565i 
-0.5±0.0343365146i  

Wang (1983,1!t84) 
- 0 . 5  

-0 .5±0.00642i  

-0 ,5±0.02399i  

-0 .5±0.03434i  
-0 .5  -0.5±0.0341812663i  
- 0 . 5  -0.5±0.0324380924i 
- 0 . 5  - 0 . 5  -0.5±0,0294152218i i -0 ,5±0 .0294% 
- 0 . 5  -0,5±0.0254388209i I 
- 0 . 5  -0.5~0.0208139569i 
- 0 , 5  - 0 . 5  -0.5±0.0157990021i  -0 .5±0.01579i  

-0.5±0.0105880264i 
-0.5±0.0053027852i - 0 . 5  

- 0 . 5  - 0 , 5  - 0 . 5  - 0 . 5  

@ ~]m)~(2m)~]m+l)~(m+l)(]~tln+l)~(2n2t+l) -{- ]~nll)]~(2t2n) ) 

.~ ,Q (m+ 1) f~ (m) l 
+ ~[ -) 22 H 22 J 

and 

c*  + c *  = 2 [ /3~ ' I ' ) (~  "° + ~(2 m/) + /3~'~'+1)(~ "+1> + ~(2m+1))] 

_~. /~(27+,)~]m)~(2m)(~]m+l) + ~ ( m + l ) ) ] .  

Thus, for the composite laminates having imaginary ~k, qk;, and 
tk~ and real Pk~, the explicit solution of the edge-delamination 
stress singularity for the stresses (ax~, Cryy, crz~ , and ray) in the 
[0°/90 °] graphite-epoxy laminates can be found as 6 = (n - 
½) Z i/27r In {[c2" + 4 ( c ~ )  2 -  (c~*)2] /c~}  (n  = O, 1, 2, 
. . . . . .  ) .  For the present cross-ply graphite-epoxy laminate, the 
dominant edge-delamination stress singularity of the stresses 
(ax~, ~ryy, Crz~, and r~y) is computed as 5 = -0 .5  ± 
0.0511803090i. Obviously, the magnitude of the imaginary part 
of 6 in the [00/90 ° ] graphite-epoxy laminate is larger than those 
of the angle-ply laminates. 

5 Conc lus ions  
A rigorous investigation on the edge-delamination stress sin- 

gularities for angle-ply and cross-ply laminates has been suc- 
cessfully achieved. Based on the results obtained, the edge- 
delamination stress singularities for angle-ply and cross-ply 
laminates with two different orthotropic plies can be evaluated 
directly by substituting appropriate elastic material constants 
into Eqs. (8)  and (11 ). The deficiency found in the literature 

also has been modified. The present approach developed can 
be further extended to deal with various types of singularity 
problems, for example, the transverse crack and delamination 
crack originating from transverse crack in the composite lami- 
nates. 
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A P P E N D I X  A 

The  D e t e r m i n a n t  I K(6)  I for Ang le -P ly  L a m i n a t e s  

IK(5)I = A - 3 ( 1  - A ) 3 ( A  + 1 ) [ a A  2 + 2bA + a] ,  

where 

a = - [ ( / . z2  - [£1)(773 - 7~1) - (~3  - [~1)(~2 - 71 ) ]  X [ ( ~ 2  - ~ 1 ) ( 7 3  - 71)  - (~3  - ~ 1 ) ( 7 2  - ~]1)] 

(72.  --  "tl#) (73.  --  71/z) - - (  t l .  "lC 71//) 

(/~2# --  /~1#) (/~3/z --  P ' i , )  ( P l ,  --  Pl/z) 

× (q)u - q , . )  (q3.  - 0-1.) (qlu  - q~.) 
(g2 - g l )  (g3 - g l )  (/Zl - gj) 
(72 -- 71) (73 - ~ )  - ( , i  + 77) 

- ( t z u  - t i . )  - ( t 3 u  - t l , )  
(PE. - Par) (P3u - Pl , )  
(q2. - q l . )  (q3" - qlu) 
(/~2 - # l )  (Iz3 - IZl) 

- ( ' 7 2 - 7 1 )  - ( 7 3 - 7 1 )  
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and 

b = 

(#2 
( r/2 
( t2. 

- # , )  ( ~ 3 - ~ , )  
~7~) (r/3 - rh) 
hu)  (t3. - tl.) 

0 0 
0 0 

( q ~ .  - q ,~ )  ( q 3 .  - q , . )  
( g 2  - ~ , )  (~3 - ~ , , )  
( 7 2  - 7 , )  ( 7 3  - 7 : )  

0 0 
(g2,  -- V ' , )  (P~, -- g : , )  

( q : .  - q l . )  (0"3. - q , . )  

( 7 ~  - 7 , )  (V3 - V , )  

(/*2 - # , )  (,u3 - m )  
(r/2 - r h )  0/3 - r / : )  
(t2u -- t l . )  ( t3u - - / l u )  

0 0 

- # 1  
- - r / I  

- ( 7 : .  + %) 

71 

(P2~ - P~.) 
(q2u - qt .)  
(,az - # , )  

- ( r / z  - r/~) 

r/, 
(p~. - p~.) 
(q l .  - qtu) 
( # * - P * )  

- - 7 1  

( ~  --  ~ , )  

0 
- ( G  - 7 , . )  

(~/2 - 7,  

0 
0 

- ( G  - 7 , . )  
( ~ 2  - g , )  

(p~. - p , . )  
( q 3 .  - -  q l . )  
( m  - # , )  

- ( ~ 3  - St)  

(~2 - ~, ) 

( qzu - q: . )  
( m  - #~ ) 

0 

--  ( 7 3 .  --  7 , u )  
( 7 3  - 7 ,  ) 

(~2.  0 
- F , . )  

x (q2. q, . )  
(~2 g , )  

(7~ 7* )  

0 
o 

- ( G  - 7 : . )  

(V3 - ~ , )  

(P~ - ~ ) (~3 - ~z, ) 
- -  ( ~ 2 - -  r / l )  , (~3  --  r / l )  

( t : u -  t , .)  ( t 3 . -  t , .)  
0 0 

(r/3 - ~ )  
(P3u - -  P , ~ )  
(q3u  - -  ql/u) 

( # 3  - #~) 
0 

0 0 
- ( V 2 -  V,) - ( V 3 -  V~) 
- (72. - 7,.) - (73. - G )  

(g2 - ~:) (~3 - p~) 

0 #~ ( ~  - #~) (#3 - #~) 
(.ff3u - lYl.) (P~u - IYl.) (Pzu - Ptu) ( P 3 u  --  P~u) 
(q'3u - qlu) (qlu - ~I.) (q2. - qtu) (q3.~ - qlu) 
(g~ - ~ , )  - g ,  0 0 
(~3 -- ~I) --(~1 + ~1) --(~2 -- 7/1) --(r/3 -- 771) 

A P P E N D I X  B 

T h e  D e t e r m i n a n t  I Kd(~)l f o r  C r o s s - P l y  L a m i n a t e s  

IKd(6)[  --  A - z ( 1  --  A)2[Cl A2 + c2A + c3]  , 

where 

ct  = ( ~ ' "  - -  ~ ( 2 " ' ) ( ( ~  m + ' , -  ¢ ( ~ " + ' ) )  X { --  ( ] m ) [ ¢ ( Z ~ " ( p ? ~ ' + l '  

-p(2~ '+ '))  + qi'~n+ 0 (p (~  :+l) --  p'(2~ )) 

+ q ~ + ' ) ( f f ~ ' ) -  p ig '* ' ) ) ]  + ( ( z " ) [ O ~ ) ( p ~  :+') - ps i '+ ' ) )  
~(m+ + q]~'+')(P(~'+') - / 7 ~  ')) + qz; 1)(ff~,) _ p~,~,+ u) ]  

+ qi'~ '+ ') (ff~'~') _ ./~i~)) l + ~i  ' '+ ,)[ g~.~,) (p-~.~,) - p~,+ ~)) 

a-On) ( ~  (m+ 1 ) 

c:  = (¢~")  - ( i  ~)) x { ~ i " ) ~  i " + ' ) [ ( q i ~  ') - q i~ '+ ' ) ) (p]~ '+  ~) 

- pi~+ ')) - ( q ~ +  ') - qli'+ ' ) ) ( p i ~  ) -/yi'~'+ a))] 

- ~ ? " ) G m + ' ) [ ( q ~  ~ -- ¢ ~ ' C  % ( P ~ V " -  P~?+ ' ) )  

_ ( q ~ + l )  _ q(z . ,* , ) ) (p i . , ) - /y]~ ,+, ) ) ]  + ~(,.)((m* U[(q]~,) 
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A Theory for Reduced Order 
Control Design of Plate Systems 
This paper describes the theory of wave domain control for the reduced control 
design of plate systems. A transformation, which changes the original system into an 
image system in which the control force is designed in wave domain control and 
wave control, is proposed such that the number of degrees-of-freedom of the undis- 
turbed state in its image system is reduced. The control design in the original system 
is then derived by an inverse transformation. This work focuses on, first, proposing 
a new wave control theory and, second, applying the theory for structural control 
design. 

1 In troduct ion  

Structural analysis using numerical techniques, such as the 
finite element method, involves the use of many degrees-of- 
freedom. It is generally advantageous to reduce the number of 
degrees-of-freedom in control design (Hughes, 1981; Balas, 
1986; Wang and Wang, 1994a, 1994b, 1994c; Wang et al., 
1995a, 1995b). From the higher-order Ricatti equation, it is 
evident that the complexities in computation increase exponen- 
tially with the number of degrees-of-freedom. Also computation 
of higher-order matrix may result in an increase of round-off 
errors in the higher modes. In experimental evaluation of space 
structures (when many degrees-of-freedom are considered), 
many actuators and sensors are used when control design meth- 
ods are employed, for example in the IMSC (Independent 
Modal Space Control), only n number of modes can be con- 
trolled for n actuators and sensors. This makes the whole evalua- 
tion process very costly. Also the hardware, sometime, may not 
be compatible to study structures under a large number of de- 
grees-of-freedom, for example, the capacity of an on orbit com- 
puter. 

There exists two kinds of approaches for the design of the 
reduced order control. The open-loop reduced order in which 
the order of the mathematical model of the original system is 
directly reduced and the usual design of system is obtained 
based on the reduced order model, and the close-loop reduced 
order in which the order of the controller is derived based 
on direct reduction of the original system. In contrast to the 
conventional approaches, a theory of wave domain control in 
structural design was proposed and a reduced order control 
design was developed (Wang et al., 1994a). This is aimed to 
establish a transformation in which the original system is 
changed to an image system. The initial disturbance in the image 
system, which is transformed from the initial displacements or 
other state variables, is defined in a spatial domain so that the 
theory on structural wave domain control can be used to design 
the control force, that enables some states of the image system 
remain undisturbed and reducible. Using the reduced order con- 
trol design in the image system, the control design and the state 
response in the original system can be derived by an inverse 
transformation. If the transformation is nonunique, the problem 
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becomes "how to find a better image system for the control 
design." Following this, a new research path or further study 
into this important topic is needed. 

The aim of this paper is to present a reduced order design of 
a plate system by using the wave control theory. We will high- 
light and discuss how to apply the theory into practical applica- 
tions. A numerical example which simulates a simply supported 
rectangular plate is given to illustrate the details of the theory. 

2 Theoret ica l  F o r m u l a t i o n s  

The state equation of a system can be expressed as 

X = Ax + Bu (1) 

where A and B are the matrices of the system and control, and 
x and u are the vectors of state and control, respectively, namely 

A E R  ~×n, B ~ R  "×r, x E R " ,  u E R " .  (2) 

Before we go into further analyses, we first introduce the 
following symbols: A(i ,  j )  and B(i,  j )  are the matrices with 
their entries consisting of the first i rows and the firstj columns, 
A(i ,  j )  and B ( i , j )  are those with the last i rows and the first 
j columns of the matrices. Also, x(t ,  i) is a vector with the first 
i elements of vector x and x(t ,  i) is that with the last i elements 
of x. P,×j is a matrix, whose column vectors are that of the j 
column vectors of unit matrix I,,×,,. On the other hand, Pn×s is 
a matrix, whose column vectors are that of the n - j column 
vectors of I,×,. And the following notations are defined: 

Bll = B(n - i, r)P, B21 = B(n - i, r)P (3a) 

B21 = B(i ,  r)P, B22 = B(i ,  r)P (3b) 

AN = A ( n -  i , n - i ) ,  A21 = A ( i , n -  i). (3c) 

All the definitions to be discussed are tenable only if the matrix 
P satisfies the following equation: 

R(B( i ,  r)P) = R(B( i ,  r)) (4) 

where R(.) is the spanning space of th e corresponding matrix, 
and B21 + is the pseudo-inverse of B21. Let 

B = B i2  - Bi iB2+iB22,  ~x = All - BilB~-iA21. (5) 

The following definitions and criteria in view of structural wave 
dynamics are defined (Wang et al., 1995b): 

• Definition 1: Equation (1) is wave domain controllable, 
if 3i (i is an integer smaller than n), Vx(0, n - i), 3u(~-) 
(-r > 0), which results in x(t ,  i) = 0 for all t > 0. 

* Definition 2: The degree of controllability of Eq. (1) is 
defined as the integer i in Definition 1. 
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• Def in i t ion  3: A structure is wave controllable which 
means, ~ i ( i  < n ) ,  Vx(0, n - i),  Vt > 0, S u ( z ) ( 7  E (0, 
t)) which results in x ( t ' ,  i) = 0 ( t '  -> 0) and x ( t ,  n - i) 
: 0. 

• Cri ter ion 1 : The degree of controllability of Eq. ( 1 ) is i, 
iff R ( B ( i ,  r ))  D R ( A ( i ,  n - i)) ,  i.e., rank (B( i ,  r ))  = 
rank (B( i ,  r) ,  A( i ,  n - i)) .  

• Cri ter ion 2: A structure is wave controllable, if 
(a) ~i(i < n), R(B( i ,  r)) D R(A( i ,  n - i ) ) .  
(b)  qP ,  which makes rank ( B ,  A B  . . . . .  X(" -~-°B)  = n 
-- i, 

The physical significance of Defini t ions  1 and 2, and Crite- 
rion ! is that they testify whether a given spatial domain is 
undisturbed by an applied control force. A simple proof of the 
criterion and numerical simulation with the model of spring- 
mass system is given in Wang et al. (1995b). However, Defini-  
t ion 3 and Cri ter ion 2 are used to testify whether the structure 
can be controlled to zero state, when (i)  a given spatial domain 
is undisturbed by an applied control force, and (ii) a disturbance 
in a spatial domain is given. The p r o o f  o f  Cri ter ion 2 and some 
numerical simulations with the models of spring-mass system 
is given in Wang et al. (1995b). 

R e d u c e d  O r d e r  Contro l  Des ign  

We define the transformation of system (1) as follows: 

k~O21 q°22J l ) 2  
(6) 

where 

vl E R ~, vz E R ' '-l  (7a)  

~P~l E R TM, ~P=2 E R/x('' o, 

~2~ E R (''-IT×t, cp22 E R (' '--°x('-°. (7b). 

The transformation relies on the following conditions: 

(a) ~o can be inverted. 
(b) [x}0 = [~o]{v}0. 
(c) {v2 }o = [0, 0 . . . . .  0] r ,  Xo and vo are the initial condi- 

tions in different systems, respectively. 
Substituting Eq. (6) into Eq. (1) leads to 

[~p]{0} = A[~p]{v} + Bu. (8) 

Multiplying ~p t on both sides of the above equation, we obtain 

i) =~p ~A~pv + ~p ~Bu = A v  + Bu (9) 

which is called the image system, and vector v is a generalized 
coordinate. 

Now, the control force is designed in the image system by 
the theory of wave control, which makes the disturbance be 
absorbed on the determined spatial domains, so that they are 
undisturbed and are reduced. Then the control design of the 
original system can be derived by the transformation in Eq. 
(6).  Since the degree of controllability of Eq. (9) is i, according 
to Cri ter ion 1, Eq. (9) can be rewritten as 

{ 1)3 ) I All A'2]{ lj3 } I BI. B'21 ~ "1 } = + (10a) 
04 L A21 Az2 P4 B21 Bza J L u2 

where 

v3 E R (" '~), v 4 E R i, ut E R ~r-i), u2 C R i (10b) 

in which A,,,j and B,,j (m = 1, 2 ; j  = l, 2) are the corresponding 
matrices. Assuming Eq. (10a) to be wave controllable, that 
is, Cri ter ion 2 is satisfied. State v4 is reduced, and Eq. (10a) 
becomes 

A21v3 + Bzlul + Bz:u2 = 0 (11) 

1)3 = AllY3 + BltUl + Bl2u2 (12) 

which is the reduced order model on which the control force is 
designed. From the transformation in Eq. (6) ,  we have 

So the following expression is satisfied: 

x4 ~p21v3 J 
(14) 

which is the state response of the original system. 
Through the above procedures, it shows that the theory stud- 

ied is based on the general state (Eq. ( 1 )) and the transformation 
(Eq. (6) ) .  It is expected that a general engineering system 
can be designed according to the theory introduced. A simple 
example applying the above design procedures is given in Wang 
et al. ( t996)  using a spring-mass system model. A reduced 
control design of a plate system will be presented in next section 
according to the above theory. 

4 R e d u c e d  Contro l  Des ign  of  Plate  

Consider a rectangular plate with simply supported boundary 
conditions, its dynamic equation and initial conditions are writ- 
ten as 

vP(x, y ,  t) + D V 2 V 2 w ( x ,  y ,  t) = 0 ( 1 5 a )  

02w 
w ( x ,  0, t) = Ox--- ~- = 0 (15b) 

02w 
w(0, 3', t) - - 0 (15c)  

Oy 2 

w ( x , y , O ) = A ( x , y ) ,  O < - x < - a ,  O < - y < _ b  (15d) 

where the operator ~2~72 = •4/0X4 -}- 2 (O202 /OxeOy  z) + 04 /  
Oy a, a and b are the length and width of the plate, and D = 
~/Eh3/12(1  - y z )  is the plate material parameter. 

Let 

w(x,y, t)= Y~ E ~o,,(x)~O,,(y)rT,,,,,(t). (16) 
m=l n=l 

Substituting Eq. (16) into Eq. ( 1 5 a - d ) ,  the eigenvalue solution 
is given as 

2 ?lm,,(t) + CO,,,,,rlm,,(t) = 0 (17a) 

~o,,,,(x) = sin mTr__{x , qs,,,,(y) - sin nrcy (17c)  
a b 

L L rl,,,,,(O) = w ( x ,  y ,  O)~p. , (x)~b. (y)dxdy (17d) 

where m, n = 1, 2 . . . . .  ~,  
Rewriting Eq. ( 1 5 a - d )  in its discretized form, it leads to a 

lumped parameter free vibration system with an initial condition 
vector: 

[M]{~'~} + [ K ] { w }  = 0 (18a) 

{w}0 = {z}o (18b) 

where M and K are the mass and stiffness matrices M E R "×", 
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and K ~ R "×', and w is the discretized vector of the plate 
w E R " .  

Assuming 

~w} = [~b]{~7}, (19) 

substituting Eq. (19) into Eq. (18a) leads to 

~ + co~7~ = 0 ,  i =  1,2 . . . .  n (20) 

and the modal matrix has the following orthogonal characteris- 
tics: 

[~b] ' [M][~b]  = [11 

[ 4 ] r [ K ]  [qS] = w~ (22) *,, 

The control equation of the plate is given by 

[ M ] { ~ }  + [K]{w} = [B]{u} (23a) 

{w}0 = {z}0 (23b) 

where u is the control vector u E R m, and B is the control 
matrix B E R "xm, whose function is to distribute the control 
vector of the structure. The reduced control design based on 
the wave domain control theory can be achieved as follows. 

According to the method introduced above, the transforma- 
tion is written as 

{w} = [P ]{w '}  (24) 

i.e., 

wz LP2i P22JLw;J  

and the initial form is 

{ wl } : rPl' P121fw[~ 
w~ o L & ,  P~JLw;Jo 

(21) 

(25) 

(26) 

where P is the transformation matrix whose inverse is P - t ,  and 
w~ E R n-~, which expresses the initial disturbance of the image 
system. 

Thus Eq. (23a) takes the form 

[ M ] [ P ] { ~ ' }  + [ K I [ P ] { w ' }  = [B]{u}.  (27) 

Multiplying P IM -~ to Eq. (27) leads to 

[ ~ ' ]  + [ P ] - I [ M ] - I [ K ] [ P I { w ' }  

= [ P ] - I [ M ]  ' [B]{u} (28) 

i.e., 

{W'} + [ K ' l { w ' }  = [B ' ]{u}  

where 

(29) 

[ K ' ]  = [P] ~ [M]- I [K] [P ] ,  

[B'I = [P] - ' [M]  t[B]. (30) 

The following condition must be satisfied before we can begin 
the reduced control design according to the wave domain control 
theory introduced in Cri ter ion 1 expressed in the previous sec- 
tions, 

R ( B ' ( I ,  m)) D R ( K ' ( I ,  n - l)) (31) 

which means the spanning space of the matrix R ( B ' ( I ,  m)) 
must include that of the matrix R ( K ' ( I ,  n - 1)). The physical 
interpretation of Eq. (31 ) is emphasized to assure the existence 

of the control vector u which makes the system (Eq. (29)) be 
wave domain controlled. 

With the existence of control vector u, Eq. (28) becomes 

{~;} + [ K h l { w ; }  = B ' ( n - l , m ) { u }  = {a,} (32) 

[K;~]{w~} = B ' ( I , m ) { u }  = {t72}. (33) 

The transformation matrix P can be expressed as 

PII 
[ P ] =  [P2, ~ ]  (34) 

where Pll ~ R ('-~×(n t), 0 E R (" nxz, P2~ ~ R tx°'-~), I E R t×t, 
and 

[P.]=diag(W~],  i= i ,  2 . . . . .  n - l .  (35) 
\ w f i /  

Therefore we can obtain 

p fL t 

[ P ] - I =  L-P2 ,P l l l  ~ ]  (36) 

where 

/ w ' . \  
[P l l l - t  = d i a g / ' } ,  i =  1,2 . . . . .  n - 1 .  (37) 

\ w~i / 

In order to make P 2 1 ( i , j ) ,  ( i  = 1, 2 . . . . .  l ; j  = 1, 2 . . . . .  
n - l) physical meaningful, we suggest that P21(i,  j )  should 
be formed based on the following principle. Let P2~ (i,  j )  be 
the displacement of point i when a unit force acts on point j .  
Back to Eq. (32) and Eq. (33), we now can investigate how 
to solve the image system. 

From Eq. (32), we find that 

[ K ' . ]  = [P,,]  ' ( [ M ] - I [ K ] ) u [ P H ] .  (38) 

According to eigenvalue problem, the matrix K I~ has the same 
eigenvalue with that of matrix ( M - I K ) ~ ,  and the eigenmatrix 
of K h  becomes 

Ix ' ]  = [P,1l- t[x]  (39) 

where Ix] is the eigenmatrix of  (M IK)H. 
After the control vector ~7 is designed, the reduced order 

vector w'  in its image system is controlled by the theories 
of wave domain control and wave control. Using the inverse 
transformation, we obtain 

i.e., 

wt = P l t w l ,  w2 = P21w[, (41) 

and the control force in the original system is 

{u} = [P ]{ a } .  (42) 

5 Results  and Discussion 

We provide a numerical simulation of a rectangular plate 
to illustrate the above design procedures. Consider a simply 
supported rectangular plate, whose material parameter D = 6 
× 10 s GPa, and the length to width ratio a / b  = 2/3. 

The transformation is 
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Actually, condition in Eq. (31) should be tested with a given 
distribution of control force. We let B '  be a square matrix 
which satisfies condition in Eq. (31). We now investigate this 
problem. 

In Fig. 1, a new model of an image system is given (Section 
I).  The length-to-width ratio of the new model (in the center 
of the plate) is a'/b' = 2/3. The initial disturbances for the 
two models (the original and image systems) are shown in 
Figs. 2 and 3, respectively. The difference method is used in 
discretizing the original system. In the analysis, we use 
( M - t K ) ,  to express the stiffness matrix of the model shown 
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in Section I in Fig. 1. Its eigenvalue problem was stated in Eqs. 
(38) and (39). 

Figures 4 - 9  show the control process of the displacement in 
the image system. The time-step used for these calculations is 
At  = 0.2 s. 

The feedback modal control method is used in the present 
design. The degree-of-freedom of the image system is 10 x 10. 
From the simulation, we observe that the displacement in the 
image system is well controlled after t = 1.2 s (after six time- 
steps). By using the inverse transformation (Eq. 6), we derive 
the control process of the displacement w in the original system 
shown in Figs. 10-15. The degree-of-freedom in the original 
plate system is 20 x 20. The inverse transformation is straight- 
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forward which involves only a single algebraic computation. 
From Figs. 10-15, it is seen that the original plate system is 
well controlled. The computation time has been tremendously 
reduced (by comparing the degree-of-freedom in the two sys- 
tems which results in four times less) by using the reduced 
order control design. 

6 C o n c l u d i n g  R e m a r k s  

A new design of structural reduced order control is introduced 
in this paper, which is based on the concepts and criteria of 
structural wave domain control and wave control. 

By comparing the existing works on the design of structural 
reduced order with our present work, the following characteris- 
tics are concluded ( 1 ) all the design of control is derived based 
on one system the image system and with this image system, 
the theory of wave domain control and wave control can be 
applied; (2) the numbers of the reduced order of the proposed 
method can be very large depending on the selection of the 
image systems; (3) it is realized from the procedures of this 
method that the reduced state in the image system is undisturbed 
by the applied control force, unlike the other existing methods 
in which the state is reduced according to some indexes, for 
example, the degree of state controllability; and (4) since this 
new design is obtained based on the general state (Eq. ( 1 )) and 
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the transformation (Eq. (6)) ,  it provides us a large space for 
applying the theory of structural wave control design into a 
general engineering system, such as the special space domain 
control of a solar panel in space station. 

The research on reduced order control design is only in its 
infant stage. Further research is needed, for example, which 
image system is "better" is still unsolved due to the large 
possible selections of image system with the initial state of the 
original system and the initial disturbance given in the image 

system. From our earlier example, the image system used is a 
rectangular plate, which is only a special case. In actual applica- 
tions, the image system may be of some irregular forms, so that 
the design will encounter some other difficulties. 
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A Layer-Wise Laminate Theory 
Rationally Deduced From the 
Three-Dimenstonal Elasticity 
A layer-wise theory of laminated plates, which accounts for piecewise constant shear 
strain in the thickness, is derived from the three-dimensional elasticity theory by 
imposing suitable constraints on the strain and stress fields. At this aim, the Hu- 
Washizu functional of the three-dimensional elasticity is modified according to the 
Lagrange multipliers theory. In fact, a nonstandard application of the Lagrange 
theory is presented, because ~f the simultaneous presence of constraints on dual 
spaces. The imposed constraints make reactive strain and stress fields arise. Thus, it 
is necessary to distinguish between elastic and total strain and stress fields'. The 
difference between them is emphasized in a numerical application. 

1 Introduction 
A composite laminate is made up of several layers of thin 

laminae bonded together to act as an integral Structural element. 
Because of its specific geometry, i.e. one dimension is fairly 
smaller than the other two, the analysis of a composite laminate 
is usually carried out by means of approximate two-dimensional 
models. The reduction of the three-dimensional elastostatic 
problem to a two-dimensional approximate one is performed 
by considering opportune assumptions on the strain or stress 
fields. Thus, several laminate, as well as plate, theories have 
been presented in the specialized literature, depending on the 
particular hypotheses considered. Two different approaches 
have been proposed to investigate the response of a laminated 
composite plate. They lead to two classes of laminate theories: 
the single-layer theories and the multilayer (or layer-wise) theo- 
ries. 

Single-layer theories are direct extensions to laminates of 
plate theories. They can be regarded as degenerated laminate 
models, since global assumptions on the strain or stress fields 
in the whole thickness of the laminate are adopted. Thus, the 
laminate is reduced to a single-layer plate with equivalent aniso- 
tropic material properties. This is the case of the classical lami- 
nate theory (Reissner and Stavsky, 1961; Stavsky, 1961; Lekh- 
nitskii, 1968; Ambartsumyan, 1970), which is an extension of 
the classical plate theory based on Kirchhoff-Love's assump- 
tions. It neglects the shear deformation in the thickness of the 
laminate. This fact represents a severe limitation to the use of 
the classical laminate theory, since composite laminates usually 
have low shear moduli with respect to the longitudinal moduli 
and hence are subjected to non-negligible shear deformations. 
Furthermore, the transverse stresses (i.e., the shear stress and 
the normal stress in the thickness direction) computed by the 
classical laminate theory are not very accurate. It can be pointed 
out that the interlaminar stresses (i.e., the transverse stresses at 
the interface between two adjacent laminae) play a very im- 
portant role in the damage of composite laminates, since they 
may lead to delamination. A justification of the classical lami- 
nate theory has been presented by Lembo and Podio-Guidugli 
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( 1991 ), on the basis of a procedure proposed by Podio-Guidugli 
(1989) for the analysis of homogeneous plates. 

The first-order shear deformation laminate theory (Yang et 
al., 1966; Whitney and Pagano, 1970) is based on the Reissner 
(1945), Hencky (1947), and Mindlin ( 1951 ) plate theories, 
and accounts for the shear deformation in a very simple way. 
Then, several higher-order laminate theories have been pro- 
posed (Lo et al., 1977; Reddy, 1984; Murthy and Vellaichamy, 
1987). It can be emphasized that the transverse stresses obtained 
by using the constitutive equations are discontinuous in the 
thickness coordinate. Thus, many authors (e.g., Lo et al., 1978) 
suggested to use the local, i.e., three-dimensional, equilibrium 
equations to carry out the stresses in the thickness of the lami- 
nate, but did not justify that procedure. 

The multilayer (or layer-wise) theories are obtained by intro- 
ducing hypotheses on the behavior of each layer of the laminate. 
One of the first layer-wise theories has been proposed by Seide 
(1980). He assumed that the shear deformation is constant in 
each layer of the laminate, but differs from layer to layer. The 
continuity of the transverse stresses was enforced, and the equi- 
librium equations of the laminate were deduced from the equi- 
librium equations of each lamina. Reddy (1987) proposed a 
general approach to the multilayer theories, deducing the equi- 
librium equations by using the Hamilton principle. Barbero and 
Reddy (1989) and Barbero et al. (1990) developed and applied 
to several technical problems a layer-wise theory based on 
piecewice linear displacements in the thickness of the laminate. 
Then, Di Sciuva (1987) and Di Sciuva and Icardi (1993) en- 
forced the continuity of the stresses in the thickness direction, 
and so obtained a model which requires only five generalized 
displacements to describe the kinematics of the laminate defor- 
mation. It is worth to note that also for the multilayer theories, 
the transverse stresses are computed by using the local equilib- 
rium equations, also when the stress continuity at the interface 
has been imposed. Xianquiang and Dahsin (1992) presented a 
refined multilayer theory, by considering piecewise nonlinear 
displacement distribution in the thickness direction. Further- 
more, they imposed the continuity of the transverse stresses at 
the interface of the layers, and computed those stresses by the 
constitutive equations. Fraternali and Reddy (1993) used the 
penalty method to enforce the perfect bonding of adjacent lay- 
ers, and to evaluate the interlaminar stresses. 

Among the several multilayer theories proposed in the litera- 
ture, in this paper the layer-wise theory by Barbero and Reddy 
(1989), which assumes constant transverse shear strains in each 
layer, is deduced in the framework of constrained three-dimen- 
sional elasticity, by using a general procedure presented by 
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Bisegna and Sacco (1995, 1997). In fact, that procedure is 
based on the conjecture that plate theories, as well as laminate 
theories, can be derived fi'om the three-dimensional elasticity 
theory when suitable frictionless constraints on the spaces of 
strain and stress fields are enforced. In other words, the specific 
approximations introduced to define a plate or laminate theory 
are regarded as internal constraints to be imposed on the three- 
dimensional body. 

The constrained elasticity problem is treated by using the 
Lagrange multipliers theory, as suggested also by Antman and 
Marlow ( 1991 ). 

The proposed procedure allows to obtain a rational justifica- 
tion of known plate or laminate theories from the three-dimen- 
sional elasticity. Such a justification is not a speculative issue, 
but leads to a safer technical use of those theories. 

The paper is organized as follows. In Section 2 the elastic 
equilibrium problem is formulated in the framework of the con- 
strained elasticity. Special attention is paid to the case of a 
simultaneous presence of constraints acting on both the dual 
spaces of strain fields and stress fields. Those constraints make 
a reactive stress field and a reactive strain field arise, respec- 
tively. As a consequence, it is necessary to distinguish between 
elastic and total strain or stress fields. 

In Section 3 the problem of laminated plates is introduced. 
The main section of the paper is Section 4. There, the hypothe- 
ses on which the layer-wise theory by Barbero and Reddy 
(1989) relies are recalled and interpreted as constraints acting 
on both the stress and strain fields. On the basis of the results 
reported in Section 2, a Lagrangian functional, derived by the 
Hu-Washizu functional, is built up. Its stationary conditions are 
given, and the classical potential energy formulation of the 
layer-wise theory by Barbero and Reddy is obtained. In particu- 
lar, the use of the so-called reduced constitutive law (Cauchy, 
1829) is clearly justified. 

A numerical application is developed in Section 5. The prob- 
lem of the simply supported laminated plate is considered. Elas- 
tic and total strain and stress fields supplied by the procedure 
presented in this paper are compared with the results given by 
the exact three-dimensional solution (Pagano, 1970; Srinivas 
and Rao, 1970). 

2 Constrained Elasticity 

Let a body f~, i.e., a regular region of the three-dimensional 
Euclidean point space, be given. A Cartesian frame (O, x~, &, 
x3) is fixed. Cartesian components are denoted by subscript 
indices: latin indices imply the values {1, 2, 3 }, while greek 
indices imply the values { 1, 2 }. The Einstein summation con- 
vention is adopted. A comma followed by an index denotes 
partial differentiation with respect to the relevant coordinate 
(i.e., f = Of/Oxi) .  The material comprising f~ is assumed to 
be linearly elastic, and its elasticity tensor is G~h~: It has the 
major and minor symmetries. The body f~ is subjected to vol- 
ume forces b~, and surface forces p~ on the part 0yf~ of its 
boundary 0fL In addition, an assigned displacement field so~ is 
imposed on 0.~ := Of HOsfL 

In the framework of the infinitesimal deformation theory, 
the unique solution of the elastostatic problem is given by the 
displacement vector field &, the symmetric strain tensor field 
e~, and the symmetric stress tensor field cr~ over ~2 which satisfy 
the compatibility, equilibrium, and constitutive equations (e.g., 
Gurtin, 1972). 

The elastic equilibrium problem can be recast by adopting 
several variational formulations (Reissner, 1950; Washizu, 
1968; Oden and Reddy, 1976). Here the Hu-Washizu formula- 
tion is briefly recalled: "find the displacement, strain and 
stress fields which make stationary the Hu-Washizu functional: 

fa f H(&,  eli, cru) := ~ Cohke~jGkdv -- cr~je,idv 

+ f crlj(sij + ~)'i)/2dv - f 

- L ~  pislda - f o j  ~ijnj(si - sol)de," (1) 

where n~ is the outward normal unit vector to 0~, and dr, da 
denote the volume element in ~ and the surface element on 
0~, respectively. 

Laminate theories, as well as plate theories, can be regarded 
as very special elastostatic problems. They can be derived from 
the three-dimensional elasticity, by imposing suitable con- 
straints on the strain and stress fields. 

The Lagrange multipliers theory (Lyusternik, 1934; Luen- 
berger, 1969) can be adopted in order to formulate a general 
three-dimensional constrained elastic equilibrium problem in- 
volving constraints on both the strain field and the stress field. 
This is a quite subtle situation, since both a reactive stress field 
and a reactive strain field arise as a consequence of the imposed 
constraints. 

As a matter of fact, it is shown that two different mechanical 
situations may take place, corresponding to two different La- 
grangian functionals, both derived by the Hu-Washizu func- 
tional. The stationary conditions of those Lagrangian function- 
als are obtained and the reactive fields which arise as a conse- 
quence of the enforced constraints are determined. It is worth 
noting that the representation form of such reactive fields is not 
postulated, but is obtained as a consequence of the machinery 
adopted. 

Let the strain and stress fields he constrained to belong to 
the kernel of the linear (possibly differential) operators Gohk 
and H,>k, both satisfying.the minor symmetries. Two different 
Lagrangian functionals may be adopted, leading to different 
ways of enforcing the constraints (Bisegna and Sacco, 1996): 

Li(si, co, ~ro, XO, coij) 

:= H(~,',, <j, ~,j) - f X,fi~,,~,,~dv - f , (2) 

or 

L, (&,  ¢~;, cry, Xo, c@) 

:= H(si ,  eq, o'ij) - f xijGijhke-hkdV -- ~ ~qHqhkO-hkdV 

-- f~  G3,~X,,kH*,qco,,qdv, (3) 

where the symmetric tensors X0, c@ are Lagrange multipliers 
and G ~,k, H~hk denote the adjoint operators of Gob ~, Ho~,k , respec- 
tively. Note that G~hk, H% are linear operators which may 
contain field and boundary terms. The stationary condition of 
both the functionals (2) and (3) with respect to s~ yields the 
equilibrium equations 

O',j,j + b~ = 0 in ~ 

~ronj = 1)~ on 0~.~; (4) 

that one with respect to e 0 yields the constitutive equations 

~rq + G~hkX~,k = C~,kej, k in fL (5) 

that one with respect to ~r 0 yields the compatibility equations 

I H qhk ¢Ohk ~ij + * : (Sid + S jd )12  in f2 

L si =soi on 0s~2. 
(6) 
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Forthe sake of brevity, let the following definitions be intro- 
duced: the total strain field is the symmetric part of the gradi- 
ent of the displacement field; the total stress field satisfies the 
equilibrium equations; the elastic stress and strain fields are 
related to each other by the linear elastic constitutive relation- 
ships. Hence, by Eq. (4), (5), and (6), it turns out that a0 and 
elj + H~,kwh~ are the total stress and strain fields, respectively, 
while cr 0 + G~heXht and e 0 are the elastic stress and strain fields, 
respectively. As a consequence, the reactive stress and strain 
fields, defined as the difference between the total and elastic 
fields, turn out to be --G,!},eXhk and H~h~coee, respectively. 

The stationary conditions of the fanctional (2) with respect 
to X~; and co;~ yield, respectively, the constraint equations 

G,jhkehk = 0 and H,;,,~a~e = O. (7) 

On the other hand, the stationary conditions of the functional 
(3) with respect to X0 and co o yield, respectively, the constraint 
equations 

Gijhk(£hk + H~kpqCOi, q) = 0 a n d  

H,j,,k( O'hk + G~kpqXpq) = 0. (8) 

As a consequence, the following conclusion can be drawn: 
if the constraints (7), acting on the elastic strain field and on 
the total stress field, have to be enforced, then the Lagrangian 
functional (2) must be adopted; on the other hand, if the con- 
straints (8), acting on the total strain field and on the elastic 
stress field, have to be enforced, then the Lagrangian functional 
(3) must be considered. 

Both those ways of imposing constraints are of integest in 
mechanics. In particular, the latter one is used in the following 
to deduce a layer-wise theory of laminated plates in the frame- 
work of three-dimensional constrained elasticity. 

3 The Problem of  the Laminated Plate 
It is supposed that f2 is a plate-like body, with middle cross 

section 7 9. The Cartesian frame (O, Xl, x2, x3) is chosen with 
the x~ and x2-axes parallel to 79. The laminate f~ is made by N 
perfectly bonded layers. In the following any quantity relevant 
to the lth layer is discriminated by a superscript index ~°, and 
the summation over a repeated layer index (I or m) is excluded. 
The lth layer occupies the region 79 × ]~(J), ~ ) [  = f~ (/), where 
the scalars ~ )  are such that ~ )  = ~![+~). Hence, the thickness 
of the lth layer is h (° = ~ )  - ~ ) .  

The laminate is acted upon by volume forces b~. The bound- 
ary 079 of 79 is subdivided into two complementary parts, say 
0,79 and O~ 79. Such a subdivision subordinates a partition of 
the lateral boundary of ~ (l~ into 0,79 × ] ~(}), ~ )  [=8~f~ (o and 
Ot 79 × ]~o), ~ ) [  = Ot.f~ (t), where the displacement So, and the 
surface tractions/3, are assigned, respectively. On the upper ( + ) 
and lower ( - )  faces of f~ the surface tractions p~ are assigned. 

Each layer of the laminate is composed by a linearly elastic 
homogeneous material, having at least a monoclinic symmetry, 
with the symmetry plane parallel to 79. As a consequence, Cci t t  3 

C33y 3 = O. 
The Hu-Washizu functional ( 1 ), specialized to the case of a 

laminate, can he written as 

H : ,-,(o ~(i)~(,)M,, -- ~_,ijhkCi j Chk~V 
l : l  2 ~(" 

f t'r(l)l(e(') s.}:))/2 e,J)]dv "~ ~,j LkOid + -- 
/=1 ~(I} 

J~ __(1),, ,,,,(t, s~ol))dldx3_ J~ - o) loll, da - -  - -  Pi Si _ 

1=1 ~ ~2(1) 

N-I L + Y~ ~i3'~(t~l)(sll+l). _ s}O)l~,,da 
/=1 

f~ ,  4 (N) -- p ,  S i ];?~da, ( 9 )  

where • 1;~) is the value of (-) at x3 = ~ ) ,  and dl,  dx3 denote 
the arc element along 079, and the line element along x3, respec- 
tively. 

The stationary conditions of the functional H with respect to 
sl t), a}J), eli ) yield the equilibrium, compatibility, and constitu- 
tive equations governing the elastic equilibrium problem for the 
laminate f~, regarded as a three-dimensional body. 

4 A Layer-Wise  Theory 

The layer-wise theory by Barbero and Reddy (1989) is based 
on the following hypotheses: 

(i) the normal stress in the thickness direction is assumed 
to vanish; 

(ii) the normal strain in the thickness direction is assumed 
to vanish; 

(iii) the transverse shear strain is assumed to be constant in 
each layer (the constant value may be different in differ- 
ent layers). 

The hypotheses (i), (ii), and (iii), which of course introduce 
approximations in the equilibrium problem for the laminate, are 
regarded here as constraints for the three-dimensional body fL 
In particular, the operators G~jhk and H0.hk in the lth layer are 
such that 

r'ZU) ~(t) = 0 c23,3~(0 / ~ijhkChk ~(l) I E(I) ~( ' )  
\ 13,3 c23,3 c33 / ij 

(i ° o°t and u(,) _~o 0 (10) llijhkU hk = 
~(1) 

0 l" 33 / ij 

It can be emphasized that the hypotheses (ii) and (iii) are 
used by Barbero and Reddy (1989) to represent the displace- 
ment field: hence, they are constraints on the total strain field. 
On the contrary, the hypothesis (i) is introduced into the consti- 
tutive equations; hence, it is a constraint on the elastic stress 
field. 

As a consequence, the Lagrangian functional (3) must be 
used to deduce the layer-wise theory from the three-dimensional 
elasticity. To this end, starting from the Hu-Washizu functional 
reported in Eq. (9), the Lagrangian functional for the laminated 
plate, leading to the layer-wise theory, is 

\ ~ 3 3 ~ J 3 3  + }C33~33 
U) 

/=1 

O. ( I )~(I ) , .1 ,  ~ f , ( / ) .  (I).4 , (11) 
I=1 J[2(1) 

The stationary conditions of this Lagrangian functional with 
respect to s! t), (t) e~j), , , , )  X~!) or,) , _ q , and ~ yield the equilibrium, 
compatibility, constitutive, and constraint equations governing 
the elastic equilibrium problem for the laminate fL regarded as 
a three-dimensional constrained body. They are reported in Ta- 
ble 1. 

540 / Vo!. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



In particular, it turns out that the total and elastic stress fields 
are, respectively, 

~ ( / ) /  I < i  ) 4 1  ) ~ ,  ~(o ~(~) a(~)] and 
\ c ~ 1 3  u 2 3  3 3 /  

t a l 3  - -  ~ 1 3 , 3 ~  
ff(l)/2 ~ ( l )  ~ ( l )  . ( l )  | 

ta 22 w 23 ~ 23,3 / 
~ ( l )  . (I) (,) . . ( / )  (/) ~ . ( I ) /  
c~13 - -  .)(~L3,3 0-23 - -  X23 ,3  0"33 "~ ..~33 / 

(12) 

while the total and elastic strain fields are, respectively, 

e]~) .(~) Ai) I and ~(o ~(o ~ (o /  c22  ~23 - -  c1 2  c 2 2  c2 3  • 
~(1) .(l) ~(/) ± ,(l)] (~) ~(I) ~ ( l ) 1  
~13 c23  c33  w t a w 3 3 /  ~13 E23 c 3 3 /  

(13)  

(1) and e~ ) When the stationary conditions with respect to a0 
are a priori satisfied and substituted into the Lagrangian func- 
tional L, a potential energy functional • is obtained: 

~ 1  f~ r~(,) ~(~) ~,-)'~'~°(° ,,~,...(t)%,~ s~l~)/2 
/=1 

i'~(I) fo ( l )  o(l) \ [ o ( I )  ,(/),~ /~(/)  ( o ( I )  , , ( I )x2 q- ,,._,a1333\~,~a.13 + ofl,,~)ko3,3 - -  taF33 ) -}- ~.~3333\o3,3 - -  ta¢33 / 

,.-,(o ,.,.(i) ~(o. ,r .( t)  ~(I)~]dv 
-}- ~. .~3~3k,~3,a  q- a a , 3 3 \ ~ 3 ,  fl q- a /3 ,3 )~  

- -  " i  " i  u u  - -  [ / - " i  ° i  u ~ c ~ a 3  

f p  7 S  ~1) 1 (P I~ + (N) -- + P i  S~ ; ~ > ) d a  

+ ~ J ~  r..(,) co(o o(,) ,  . ( , ) . , ( , ) , .~ .  /=1 2 II) I _ A a 3 , 3 k a 3 , a  -I- a a , 3 /  - -  ~ 3 3 ~ 3 , 3 . 1  taw, (14) 

It should be noted, however, that • depends upon the reactive 
fields and is defined on the manifold: 

S} / )  o(I) ( / ) ,  = o0i on 0,~2 l =  1 . . N  

s ~ ' + ' ) = s ~  ') on 79× {4~)}, l =  1 . . N -  1 

X(~) 0 on 79× {4~)}, I = 1 N. (15) c¢3 ~ . .  

In order to obtain a potential-energy functional which does 
not depend upon the Lagrangian multipliers, it is sufficient to 
make the stationary conditions of qg with respect to the La- 
grangian multipliers a-priori satisfied. The stationary condition 

, (o is of '.I~ with respect to w 33 

l) (l) S~1~)/2 + C 3 3 3 3 S t ,  3 (16) C~3otfl(Smfl + (l) l) f"~(I) ,,(I) = ~.~ 3333 v j  33 , 

The stationary conditions of • with respect to X~ ) and X ~  are, 
respectively, 

~.,(~) ,,(o~ = 0. (17) ~(o = 0 and ~o3.~ + o,.3~.3 ~3,3 

Equations (16) and (17) hold in ~2 °), for l = 1 . .  N. 
From Eqs. (17),  the following representation formulas for 

the displacement field can be deduced: 

s~')(x,, x~, x~) = u~')(x,, x~) + x~o~°(x , ,  x~) 

S~I)(xl ,  X2, X 3 )  = W(I)(XI,  X2) , (18) 

where u~ ), ~o~ ~), and w (~) are unknown functions. The scalar 
function w (~) is the deflection of the /th layer. The functions 
u~ ) and ~o~ ~) are the in-plane dispacement and rotation of the 
fibers parallel to x3 of the /th layer, respectively. As a conse- 
quence of Eqs. (15),  it follows that the unknown functions 

w (t), u~ °, and qo~ ° must satisfy the following continuity condi- 
tions in 79, for l = 1 . .  N - 1: 

w ('+') u(2 +1) ¢~+~) " u~ ') ¢%ofJ), = w °/, + cp~ + - + (19) 

and the following constraint equations on 0.,.79, for l = 1 . .  N: 

W(I) = .(I) 
a03  , 

u~ t) + x3~o<, t) = ~0,,°(° for x3 E 14 "),_ 47)[. (20) 

From Eqs. (19) and (20) some compatibility conditions on the 
data s~09 can be easily deduced. In fact, the prescribed transversal 
dispacement must be constant in the thickness, while the pre- 
scribed in-plane displacement must be continuous and piecewise 
linear. 

In order to make the continuity conditions (19) a priori satis- 
fied, the following representation for the functions w "~, u~ °, 
and ~o~ ° is introduced, for l = 1 . .  N: 

w ~t)= w, u~, ° = u~ ) hU ) 41/) and 

h(Z) , (21) 

where w and ~ 0 ,  l = 0 . .  N, are unknown fimctions of x~ and 
x2, The former one is the out-of-plane deflection of the laminate, 
while the latter ones are the in-plane displacements of the upper 
and lower faces and of the interlaminar surfaces. 

By substituting -,33'(° from Eq. (16) and sl t) fi'om Eqs. (18) 
into Eq. (14),  and then performing an integration in the thick- 
ness variable x3, the potential energy functional • is trans- 
formed into 

~ / 2 d a  ~ t  3~ 

t=l 2 J~ 

,=1 6 -J~o '~"~ '  (~p-- 

, . ) , , . . ) +  w. ))da q- v. a3fl3kWo¢ q- vv,a )kWfl  
I=, 2 Jr,  

~ f ~  (l). (1) - -  ( r a  ~ce (1) (,) + m .  ~p. + r ~ ) w ( ° ) d a  
l=1 

_ ~ ( o , , ( o  + ~m, ,~ (o  ~ ~ O w m ) d  l 
k l c e  ~ e e  , , ~  "l-'oe ! 

f p + (N) - [pd (u~ ' )+4<g)~o~ ' ) )+po , . (u~  +4!u)qo~ v)) 

+ p ~ w  (~) + p ~ w ( m ] d a  (22) 

where the functions w ~), u~ °, and ~p~o have to be substituted 
fi'om Eqs. (21),  and 

~ 4  (1) = h ( ' )  ~_ 4(+/) - -  45_/) ' ~ ( 4  (1)2) = 4(+/)2 - -  4 ( !  )2 ' 

~X(U) ' )  = 4~) ~ _ 4~) ' ,  

= b~°dx3, m~ 0 =  x3b~')dx3, 

-- d ; ~  r ,  ¢ ; 9  

= = p ,  axe. (23) rh~ ° ~ '  x3p~, 3, o~!!1 
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Table 1 Equations of the layer-wise theory obtained as stationary conditions of Lagrangian 
functional L (11) for the laminate 

Dual variable Equations 

if(I)  b~) = 0 in riO), l = 1..N _L J_ 
(~t~ ~ T u 3 3 , 3  T 

- e a  o n  OrS (I), l = 1 . .N 
~(1)  - -  ~ -  

0,0+1) ~(I) 33 =~,~3 on 79Xv,:111, t =  1 . . N -  f f ( I  "1 1 

3ot a' T ~33 ,3  + = 0 i n  l = 1 . . N  
.(*) ~ - ,a(0 ~3,~'o,~ - e3 on Ol~lu) , I = 1 . . N  
~) = - p ~  on P x {~2 )} 

O+x) _ ~(0 0"33 - -  ~33 on 79 x {~)},  l = 1..N - 1 

e(') ~(' )  - t , ( ' )  + s ~ ) , . ) / 2  i n  a ( ' ) ,  l = 1 . . N  
s(t) _ o(0 a -- o0a on 0sF/(0, l = 1..N 

C(0 -- (o(0 ~C0 ~3 -- t°a,a + s(a'~)/2 in l = 1..N 
,~(*) o(0 _ o(0 ~ 3  03  - ° 0 3  o n  0 8 f l  ( 0 ,  l = 1 . . N  

s~ + l )=s~)  on P x { ¢ ~ ) ) ,  l = l . . N - 1  

aU) o(0 ± ,(0 s(0 in f/C0, l = i . .N 
33 ~33 T ~ 3 3  "~" 3,3 

s(3 `+') = s(3 ') on 7 9 x {~; ) ) ,  l =  1..N - 1 

~ f~C0 ~(0 p(0 ~(~} - a (0 in ~{0, I = 1..N 

e(0 of,0) A0 ~(0 ,,(0 in ~(0, I = 1..N 
X(0 a3 = 0  on 79X{(~)}, I = i . . N  

~u} f,(o ~(o ± p ( 0  ~(~} ~{o ± , ( 0  in £(o, l = 1..N 
~33 ~ 3 3 ~  T ~ 3 3 3 3 c 3 3  ~ ~ 3 3  T A33 

X~'3 ) ~33A° T ± ~33'0) = 0 in ~I (=), l = i . .N 

i 

X(0 I - in iI (0, I = I . .N 
i 

(i) N 

i 
¢o(0 ~(~) ± .  (0 _ 0 in ~(0, 1 = 1..N 33 ~ 3 3  T A33 - -  

T h e  func t iona l  ~ ,  d e p e n d i n g  on w and  ~ ] ) ,  is the  c lass ical  
potent ia l  ene rgy  func t iona l  of  the  l ayer -wise  theory  ( B a r b e r o  
and  Reddy,  1989) .  It is e m p h a s i z e d  that  the  so-cal led  r e d u c e d  

c o n s t i t u t i v e  l a w  enters  the  expres s ion  of  ~5: 

1 
C ( l )  _~. (~(I)  - -  C(~33C~6)33  * ( 2 4 )  o~By6 I.-'aB~6 C(~a)a a 

3333 

T h e  p re sen t  der iva t ion  clear ly shows  that  the  appea rance  o f  
C ~ , ~  is a s t r a igh t fo rward  and  ra t ional  c o n s e q u e n c e  of  the con-  
s t raint  ( i )  ac t ing  on  the  elast ic  s tress  field and  lead ing  to the 
cons t ra in t  Eq. ( 1 6 ) .  In o ther  words,  the  r educed  cons t i tu t ive  
t ensor  C~t~re c o m e s  out  f rom the  m a c h i n e r y  adopted  and  is no t  
a pr ior i  enforced.  This  is an  impor t an t  d i f fe rence  b e t w e e n  the  
p resen t  app roach  and  P o d i o - G u i d u g l i ' s  ( 1 9 8 9 ) ,  whe re  an ad 
hoc  cons t i tu t ive  law was  used.  In addi t ion,  it can  be  po in ted  
o u t  tha t  by us ing  the  p roposed  t echn ique  no  con t rad ic t ion  ar ises  
b e t w e e n  the  cons t ra in t s  ( i )  and  ( i i ) ,  s ince  the  lat ter  one  acts  
on  the  total  s t ra in  field. 

The  s tat ionary condi t ions  of  the funct ional  ,.b supply  the well-  
k n o w n  equat ions  of  the layer-wise  theory,  which,  for  the sake of  
brevity,  are no t  repor ted herein.  They  al low to compu te  the un-  
k n o w n  funct ions  w and u~,~ ) , and thus the d i sp lacement  field s (~) . 

In m a n y  techn ica l  p r o b l e m s  the i t em of  in teres t  is the  total  
stress field, i.e., the  stress field w h i c h  is in  equ i l ib r ium wi th  the  
appl ied  loads.  Indeed,  jus t  that  stress field shou ld  be  c o m p a r e d  
aga ins t  the s t rength  o f  the  cons t i tuen t  mater ia ls ,  in order  to 
p reven t  a fa i lure  of  the  s tructure.  

Acco rd ing  to ( 1 2 ) ,  the  total  s t resses  ~ r~  are equal  to the  
co r r e spond ing  elast ic  s t resses  and  h e n c e  they can  be  c o m p u t e d  
by  us ing  the  cons t i tu t ive  equat ions :  

G(l~ = " a f l T  ¢~(I)T 8 + (n(/)  ~(1) ~_ ~ ( I )  ~(I)  t.- ~fl33 c 33 ~-~ cq3"y8 c T8 

= r( ,z ,~. . . )  u~'.~)/2 + ~4'.~)/21 (25 )  v , , ~  t ~-  ~,~ + x3 (~o ~/,~ + . 

O n  the  o the r  hand ,  the  cons t i tu t ive  equa t ions  canno t  be  used  
to c o m p u t e  the  t r ansverse  total  shear  s t resses  G~.~ or the  t rans-  
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X3 ~ / / / / / ~ X  2 

/ / . . / "  

Fig. 1 Scheme of the middle plane of the laminate 

verse total normal stress trot3 ). In order to compute those stresses, 
the equilibrium equations, given by the stationary conditions of 
the Lagrangian functional L with respect to s~ t~ and s3(t), and 
reported in Table 1, must be used. Hence, this procedure for 
the computation of the stresses, proposed by many researchers 
for single-layer as well as multilayer laminate theories (e.g., 
Lo et al., 1978; Barbero and Reddy, 1989), is completely justi- 
fied herein in the framework of constrained elasticity. 

According to this procedure, the interlaminar stresses, i.e., 
the interaction between two adjacent layers, are carried out. It 
is emphasized that those interlaminar stresses are defined with- 
out any ambiguity, when the total stress field, instead of the 
elastic one, is considered. Thus, at the interface between the 

- (o and a normal layer l and the layer I + l,  a tangential stress a ,3 
~ ( l )  stress a33 are computed by the equilibrium equations, and have 

the following expressions: 

~.(l)  (l) (l) , (1)'~ . {t) 

1 / 

= - P S -  ~ r~ m) ~ mrO,,)~O,O /.~,,) 
m=t  m=l  

I 
__ y ~  A g ; , ' ( m ) 2 h ~ ( m )  / ( m )  , ^ ( m ) ~  I A  

L..~I ~ ) ~ " - ' a ~ ' y b ( ~ ' g . 6  -~- ~[. '6,71,fl  I w  

m= I 

I 
.(I) = _ ~,(I) 

33 A 3 3  = - - P ~ -  ~ r~ m) 
m = I 

I 
- -  Z A F ( m ) ( " ( m )  [ , ^ ( m )  w ( m ) ~  ~ ~,~3~3tw, + ., ).,. (26) 

m = 1 

Then, it is easy to compute ~3~(t) and ,,33~(~) in the lth layer: 

x 3 

..1_ [ ( ~ 7 ) ) 2  2 1 ~ ( / )  [ (I) 

0.5 

0.0 

-0.5 
-1.0 

x3/H 

3D 

........... Total 

-0.5 0.0 0.5 1.0 

Fig. 3 Dimensionless in-plane normal stress & .  versus the dimen- 
sionless thickness variable xJH 

u 33 = ~ 33 + tJ  3~r,a t4-,'~3. 
x 3 ~ x 3 

(27) 

5 A p p l i c a t i o n s  

A numerical application is presented, in order to emphasize 
the difference between the elastic, reactive, and total strain and 
stress fields. A square cross-ply 0°/90°/0° laminated plate with 
side A and thickness H is considered. The Cartesian fi'ame is 
chosen such that the axes xt and x2 coincide with two edges of 
the plate, as shown in Fig. 1. The material is orthotropic tetrago- 
nal, with EL/ET = 25, GLr/Er = 0.5, G'rr/ET = 0.2, L / L T =  

vrr = 0.25, where L represents the fibers direction and T the 
orthogonal direction. The plate is simply supported along its 
boundary, has a side/thickness ratio R = A/H  = 4 and is loaded 
on the upper face by a transversal load p~ = q0 sin (TrXl/A) 
sin (Trxz/A ). 

Elastic aud total strain and stress fields computed by means 
of the procedure presented in this paper are compared with the 
results given by the exact three-dimensional solution (Pagano, 
1970; Srinivas and Rao, 1970). In particular, the following 
quantities are plotted versus the dimensionless thickness vari- 
able x3/H: 

(a) dimensionless in-plane normal strain and stress in the x~ 
direction at the point C (Figs. 2 and 3) 

0.5 

0.0 

-0.5 f 
-0.5 

i i .i i [ , , o -  

X3,.=~ , , "  f a  I 

, ' "  _ _  3D 

Total 

7 lO ,l 
, ~,..r ¢" ~ , I , , , , 

0.0 0.5 

Fig. 2 Dimensionless in-plane normal strain ~1~ versus the dimen- 
sionless thickness variable xJH 

0.5 _ i q %  i 

0.0 

-0.5 
o.o 0.5 

_ _  3 D  

........... Total 

m 

I i _ l l l _ a _ _ _ 2  

1.0 1.5 

Fig. 4 Dimensionless transverse shear strain ~13 versus the dimen- 
sionless thickness variable xalH 
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0.5 

0.0 

-0.5 
-0.3 

~ I ~  ~ ' 

x3/H 

" x  \ ', ', 

fi I ,; 
_ _ 3 D  --~" 

Total I . . . . . . . . . . .  i 

. . . . . .  Elastic i 

. . . . . . . .  Reactive i 

\ I 
! I 

0.0 0.3 

Fig. 5 Dimensionless transverse shear stress ~~3 versus the dimen- 
sionless thickness variable x3/H 

ET• I I 0"11 
~ll  = qoR2  , ~ l l  = qoR2  ; (28) 

(b) dimensionless transverse shear strain and stress in the x~ 
direction at the point M (Figs. 4 and 5): 

ETEI3 O13 (29) 
gel3 qoR  ' ~13 qoR  ' 

(c)  dimensionless transverse normal strain and stress at the 
point C (Figs. 6 and 7): 

ETa33 0"33 
~33 - -  ~33 = - -  • (30) 

qoR  2 ' qo 

The numerical results show that the stress solutions are very 
satisfactory. Moreover, as far as total stress fields are consid- 
ered, the transverse shear stress and the transverse normal stress 
are continuous functions along the thickness of the laminate 
and satisfy the equilibrium boundary conditions on the upper 
and lower faces. 

6 Conclusions 
The layer-wise theory of laminated plates proposed by Bar- 

bert and Reddy (1989) was framed in the context of constrained 
elasticity. In fact, the governing equations of the layer-wise 
theory were rationally deduced from the three-dimensional elas- 
ticity theory, by enforcing suitable constraints on both the strain 

0.5 

0.0 

- 0 . 5  
-0.1 

i i ~ i i [ i i e i ~  i - -  
\ , / \ 

x3/H ~\x i / /  \ 
, i , j 

\ \  i /'/ 
3D r ,  ) 

/ 
. . . . . . . . . . .  Total ~ I I / 

t',' 
. . . . . .  El tic 1 / 
. . . . . . . .  Reactive l,i~ / 

/ ; \ 
/ ,  , x 

, l \ 

/ 1 \ 
z" 

/ 
33 

0.0 0.1 

Fig. 6 Dimensionless transverse normal strain ~33 versus the dimen- 
sionless thickness variable xJH 
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0.0 

-0.5 
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/ 3:oDt 
. . . . . . . . . . .  al 
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. . . . . . . .  Reactive 

, 

0.0 0.5 1.0 

Fig. 7 Dimensionless transverse normal stress ~r33 versus the dimen- 
sionless thickness variable xJH. The total field and the reactive field 
coincide, since the elastic field vanishes. 

field and the stress field. To this end, a nonstandard application 
of the Lagrange multipliers theory, which takes into account 
the simultaneous presence of constraints on the dual spaces of 
strain and stress fields, was adopted. 

The reactive fields, arising as a consequence of the imposed 
constraints, were computed. As a matter of fact, they can be 
regarded as an error estimate between the layer-wise solution, 
i.e., the constrained elasticity solution, and the exact three-di- 
mensional unconstrained solution. 

A justification for computing the transverse shear stress and 
the transverse normal stress by using the equilibrium equations, 
instead of the constitutive equations, was supplied. According 
to this procedure, no ambiguity arises in the computation of the 
interlaminar stresses. 

Finally, it is emphasized that the technique presented clarified 
the role played by the various hypotheses on which the layer- 
wise theory relies. In particular, the adopted machinery allowed 
to rationally obtain the correct reduced constitutive law. 
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Transient Analysis of a Subsonic 
Propagating Interface Crack 
Subjected to Antiplane Dynamic 
Loading in Dissimilar Isotropic 
Materials 
In this study, the transient stress fields and the dynamic stress intensity factor of a 
semi-infinite antiplane crack propagating along the interface between two different 
media are analyzed in detail. The crack is initially at rest and, at a certain instant, 
is subjected to an antiplane uniformly distributed loading on the stationary crack 
faces. After some delay time, the crack begins to move along the interface with a 
constant velocity, which is less than the smaller of the shear wave speed of these two 
materials. A new fundamental solution is proposed in this study, and the solution is 
determined by superposition of the fundamental solution in the Laplace transform 
domain. The proposed fundamental problem is the problem of applying exponentially 
distributed traction (in the Laplace transform domain) on the propagating crack 
faces. The exact full-field solutions and the stress intensity factor ate found in the 
time domain by using the Cagniard-de Hoop method (de Hoop, 1958) of Laplace 
inversion. The near-tip fields are also obtained from the reduction of the full-field 
solutions. Numerical results for the dynamically extending crack are evaluated in 
detail. The region of the stress singular field dominated in the transient process is 
also discussed. 

1 Introduction 
For the last two decades, the importance of composite materi- 

als has increased very rapidly in engineering applications be- 
cause of their high strength and light weight. However, flaws 
contained at the interfaces of composite bodies due to improper 
adhesion may lead to serious danger, and a better understanding 
of interface fracture mechanics is needed. The interface crack 
problem is also important in engineering and seismology appli- 
cations. Since the inherent time dependence of a dynamic frac- 
ture process results in mathematical models that are more com- 
plex than equivalent quasi-static models, most of the analyses 
done regarding cracked composite bodies are quasi-static. How- 
ever, there is still substantial interest in the dynamic fracture 
problem due to its importance in many engineering applications. 
The problem is encountered in impact damage to fan blades, and 
automotive and aircraft windshields. There is also considerable 
interest in the problem of arrest of a fast running crack, espe- 
cially in large structures like pipelines, ships, and nuclear reac- 
tors. 

Problems of crack propagation in a homogeneous medium 
have "been studied by many authors. A stationary crack lying 
along the interface between dissimilar isotropic materials sub- 
jected to static loading was first considered by Williams (1959) 
for plane-strain conditions. Further investigations of the prob- 
lem were conducted by England (1965), Erdogan (1965), and 
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Rice and Sih (1965). They derived the expression of the stress 
fields near the crack tip and discussed the singularities given 
by Williams (1959). In the field of propagating interface cracks, 
Willis (1971) investigated the energy release rate of a steadily 
extending interface crack by means of the local form of the 
Griffith virtual work argument. He also derived an explicit frac- 
ture criterion which involves a suitably defined "stress concen- 
tration vector." In recent years, Wu (1991) treated the similar 
but anisotropic problem and derived the crack-tip fields and 
energy release rate successfully by employing the Stroh formal- 
ism for anisotropic elasticity. Deng (1992) used the Radok 
complex function formulation with a two-term complex eigen- 
expansion technique to analyze the near-tip fields for steadily 
growing interface cracks in dissimilar isotropic materials. Yang, 
Suo, and Shih (1991) have analyzed the problems of steadily 
propagating interface cracks in dissimilar isotropic and ortho- 
tropic bimaterials. They solved the crack-tip fields by the Stroh 
formulation and discussed the singularities for antiplane and in- 
plane deformations carefully. The stress singularities and the 
angular stress distributions near a propagating interface crack 
in different transonic regimes for both antiplane and in-plane 
cases were determined by Yu and Yang (1994, 1995). Because 
of mathematical complexity and difficulty, many of the investi- 
gators mentioned above have investigated only the near-tip 
fields. However, transient full-field solutions for the problem 
of a propagating crack in a homogeneous material or in a bimat- 
erial are rare. 

Brock and Achenbach (1973) analyzed the extension of an 
interface crack under the influence of a transient horizontally 
polarized shear wave. It is assumed that the adhesive behaves 
as a perfectly plastic material, so that the stress in the zone of 
interface yielding is uniform and equal to the yield stress. Ana- 
lytic solutions for the time of rupture and for the interface stress 
ahead of yield zone are obtained by applying integral transform 
methods. Brock (1974) followed the approach of Freund 
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(1972b) and solved the problem of a partially loaded interface 
flaw which extends at a nonuniform rate. The external load was 
assumed to be a time-independent antiplane shear traction and 
was applied over the newly created surfaces. He derived the 
stress intensity factor and the difference in the particle velocities 
at the edge of the nonuniformly extending flaw. Recently, 
Chung and Robinson (1992) solved the transient problem of a 
mode-III crack propagating along the interface between two 
different media. In their study, the compound body is loaded 
by a constant shear traction at infinity such that the problem 
becomes "self-similar." This self-similar problem can be 
solved effectively by the method of self-similar potentials 
(SSP). In a series of papers, Freund (1972a, 1972b, 1973, 
1974) developed important analytical methods for evaluation 
of the transient stress field of a propagating crack in a homoge- 
neous material under quite general dynamic loading situations. 
These particular cases analyzed by Freund are also self-similar, 
but they are solved by means of integral transform methods 
rather than by direct application of similarity arguments. An 
indirect analytical approach proposed by Freund is based on a 
superposition over a fundamental solution. Based on the super- 
position method proposed by Freund, a series of problems for 
nonplanar crack propagation in an infinite domain was solved 
by Ma and Burgers (1986, 1987, 1988) and Ma (1988, 1990). 
A thorough summary of analysis for transient problems under 
antiplane loading in dynamic fracture has been given by Coussy 
(1984). For the aforementioned problems (except for the SSP 
method), either the direct application of the well-known Wie- 
ner-Hopf technique (Noble, 1958) is used or the superposition 
method proposed by Freund is performed to solve the problem. 
However, if a crack is subjected to incident nonplanar waves, 
none of the known methods can be used directly to obtain the 
transient solutions. 

In this paper, the transient problem of an interface crack 
propagating with a subsonic speed in an infinite medium is 
considered. At time t = 0, the crack is at rest and a uniformly 
distributed antiplane loading acts on the stationary crack faces. 
After some delay time t/., the crack begins to run along the 
interface with a constant velocity v as shown in Fig. 1. A new 
fundamental solution is proposed and it is successfully applied 
towards solving the problem. The fundamental problem is the 
problem of applying an exponentially distributed traction on the 
propagating crack faces in the Laplace transform domain and 
is demonstrated as an efficient methodology to solve similar 
problems. The alternative superposition scheme has been used 
to solve many transient problems for a homogeneous medium 
successfully, e.g., Tsai and' Ma (1992) for a stationary crack 
and Ma and Ing (1995) for a propagating crack. The transient 
full-field stresses and the stress intensity factor for the problem 
considered are obtained and expressed in a closed form. The 
stress singular solutions are obtained from the reduction of the 
full-field solutions and the region of the stress singular field 
dominance is also investigated in detail. 

2 Required  F u n d a m e n t a l  So lut ions  

Consider a fundamental problem of antiplane deformation 
for an extending interface crack in dissimilar materials. The 
crack propagates with a constant velocity v, which is less than 
the minimum of the shear wave speed of these two materials. 

Fig. 1 Configuration and coordinate system of a propagating interface 
crack in bimaterial medium 

Figure 1 shows the interface crack geometry and the coordinate 
systems. Materials 1 and 2 occupy the two half-spaces. The 
coordinate ~ defined by ~ = x - vt is fixed with respect to the 
moving crack tip. In analyzing this problem, it is convenient to 
express the governing equations of wave motions in the moving 
coordinates ~ - y as follows: 

( 1  - b~v 2) 02wj 02wj 02wj 02wj 
+ --Oy 2 + 2b~v ~ - b~ ~-~- = O, 

j = 1, 2 (1) 

where the subscript j ( j  = 1, 2) refers to the lower and upper 
media, respectively; w i are the out-of-plane displacements, and 
bj are the slownesses of the shear waves given by 

bj = Csj 

in which c,: are the shear wave speeds, and #j and p: are the 
respective shear moduli and the mass densities of two materials. 
Without loss of generality, we assume bj > b2; that is, the shear 
wave speed in the lower material is less than that in the upper 
material. The nonvanishing shear stresses are 

Owj Owj 
%'-J = #J ~ y  , %~J = #i --~x " (2) 

The solution for an exponentially distributed loading applied 
at the crack faces in the Laplace transform domain will be 
referred to as the fundamental solution. Then the boundary con- 
ditions on the crack surfaces expressed in the Laplace transform 
domain can be described as follows: 

~y~l(~, 0, s) = ~y~2(~, 0, s) = e TM, -cc < ~ < 0 (3) 

where s is the Laplace transform parameter and rl is a constant. 
The overbar symbol is used for denoting the transform on time 
t. The one-sided Laplace transform with respect to time and 
the two-sided Laplace transform with respect to ~ are defined 
by 

~(~,  y, s) = f ~  w(~, y, t)e-~tdt, 

w*(X, y, s) = f ~  ~(~,  y, s )e  '~d~. 

The displacements and shear stresses must be continuous on the 
interface, which gives the following conditions on the interface: 

~yzl (~, O, S) = ~yz2(~, 0,  S )  = e 3 . . . .  0 < ~ < ~ (4) 

~v,(~, 0, s) = w~(~, 0, s). 0 < ~ < ~.  (5) 

The solution of the proposed fundamental problem can be 
obtained in the usual way by making use of integral transform 
methods. Apply a one-sided Laplace transform with respect to 
t and a two-sided Laplace transform with respect to ~ on (1). 
General solutions in the transform domain, which are bounded 
as y - '  -o~ (and +0% respectively), can be expressed as 

~7~(k, y, s) = Al(s ,  k)e s";C×)y, (6) 

W~(k, y, s) = A2(s, k)e -''";<~', (7) 

where 

= a ~ ÷ ( k ) c ~ L ( k ) ,  j = 1, 2 (8 )  

and A~, A2 are unknown functions. We define bj.j = b:/( 1 + 
bjv) and bj.2 = bJ(  1 - bjv). The branch cuts of a*  are intro- 
duced to ensure Re(a*)  -> 0 in the entire cut complex k-plane, 
where "Re" denotes the real part. 
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Application of the Laplace transforms to the boundary condi- 
tions (3) to (5) yields 

e ~ ( x ,  0, s) = ~ ( X ,  0, s) - -  
s (~  - x,) 

+ "rye+, (9) 

O~(h,O,s) = ~ ( h , O , s )  =A+, (10) 

where %z* + and A+ are unknown functions that are analytic in 
Re(h) > -b~.2. 

From Eqs. (6), (7), (9), and (10), the transformed displace- 
ments and shear stresses along the crack line y = 0 are 

uv~(k, 0, s) = A~ = A, + A~_, (11) 

uv~(k, 0, s) = Az = A+ + A~-, (12) 

/.ZlSa~(h)A1 = - # 2 s a ~ ( k ) A 2  = ~ + ~y~+. (13)  
sO7 - X) 

In Eqs. ( I I )  and (12), A~_ and A2- are unknown functions 
analytic in Re(k) < b~a, respectively. Eliminating A+ through 
(11) to (13), we have 

A_ #~c~(X) + #~c~*(X) [ 1 + , ] 
= - -  ~yz+ , (14) 

_1 

where A_ -= A~_ - A~_ is the transformed crack-opening dis- 
placement. At this point it is convenient to introduce a new 
function Q*(X) by defining 

where 

u,a ,*(x)  + u~a~*(x) Q*(x )  = 
#~#:ka*(M 

(15) 

k= 'U' ¢l - b~v ~ + lag #l - b~v ~ 
~1#2 #I - b~u z 

The function Q*(X) has the properties that Q*(k) --' 1 as 
[XI ~ 0% and that Q*(X) has neither zeros nor poles in the k- 
plane by cuts along b2.~ < k < bu and -bL~ < k < -b~,2. 
From the general product factorization method, Q*(R) can be 
written as the product of two regular functions Q*(X) and 
Q* (k), where 

Q~(k) = e x p { ~  f::'f tan-~ [~..~'ce~*(-z)]] ~ - - ~ }  (16) 
L ,lOt ~ (--Z) 

and 

Q (h) = exp{@ £ii:  tan-' L #,a (z) 

In view of the previous discussion, Eq. (14) may be rewritten 
as 

sa~_ (k)A_ kQ+*07) 
Q_*(h) s07 - h)o~z*+07) 

_ ~ [ Q*(R.____~) O*(rl) ] + kQ+*(k) ' f~+. (18) 

The left-hand side of this equation is regular for Re(k) < b~,~, 
while the right-hand side is regular for Re (X) > -b2,z. Applying 
the analytic continuation argument, therefore, each side of Eq. 
(18) represents one and the same entire function, say E(k) .  
By Liouville's theorem, the bounded entire function E(X) is a 
constant. The magnitude of the constant can be obtained from 

order conditions on E(k) as [Xl ~ c~, which in turn are obtained 
from order conditions on the dependent field variables in the 
vicinity of ( = 0. Furthermore, uT~_((, 0, s) - ~_(~ ,  0, s) is 
expected to vanish as ( ~ 0-  to ensure continuity of displace- 
ment, and %~+((, 0, s) is expected to be square root singular 
as ~ ~ 0 + for the subsonic case. Consequently, from the Abel 
theorem, E(k)  vanishes completely, and then from Eq. (18), 
we find 

A _  ~- A , _  - A 2 -  = k Q + * O T ) Q - * ( R )  (19) 
s:07 - X)o~+(V)o~L(X) 

Making use of Eqs. (11) to (13) and eliminating -* Tyz- I_ , w e  

obtain 

A+ = - /.hal*(X)A1- + /z2a~(k)Az- (20) 

Substituting A2- from (19) into (20), the amplitude of Wl* in 
the transform domain can be found as 

At = Q ~ ( ~ ) ~ ( R )  (21) 
s2# ta~(~) (~  - X)a~(R)Q~(R) 

Similarly substituting A1- from (19) into (20), we have 

-Q~(~) 
A2 = . (22) 

s2>2a~+(~)(~ - k)a~_(X)Q~(X) 

In view of Eqs. (21), (22), (6), and (7), inverting the two- 
sided Laplace transform, we obtain the solutions of stresses 
and displacements for the fundamental problem in the Laplace 
transform domain as follows: 

1 f Q+* ( r l )~+(h)  ~yzl(~, y, s) = ~ a~+07)(~ - X)Q*+(X) 

x e'";(x)Y+SX~dX, (23) 

~ , ( ~ ,  y, s) = _ L  f 
k__Q *+~ ~7 ) c~ ~+ ( x _ _ _ . ~  

2rri a L 0 7 ) ( ~  - k)a~(k)Q+*(k) 

× e~"~°')Y+"X~dk, (24) 

Q *____(~7_) oz*+ (k_.._..~) 
27ri d s#~a*÷(rl)(r ? - k)cc*(k)Q*(k) 

× e~x)Y+Sa~dk, (25) 

1 f Q ~ (rDa2** (k) 
~yz2(~, y, s) = ~ /  a L 0 7 ) ( ~  - X)Q~(h) 

X e-S";(x)Y+SX~dX., (26) 

1 f - hQ+*(z?) 

× e-"";(x)Y+S×~dX, (27)  

f -Q+*(r/) ~2(~, y, s) = 2@/ s#2aL-(o)(r~ - X)a~_(X)Q;~(X) 

× e-'~;(×)Y+'Xedk. (28) 

The corresponding result of the dynamic stress intensity factor 
in the Laplace transform domain is 
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2 
.? 

Fig. 2 Wave fronts of the incident and diffracted waves for t > t~ 

K(s) = lim ~ - ¢ ~ : , ( ¢ ,  O, s) = lim ~]~%:=(¢,  O, s) 
~-,0 ~0 

- ~/2(1 - b2v)Q*(rl) 
= (29) 

~,~ (~) 

3 Transient Analysis for a Propagating Crack Sub- 
jected to Antiplane Loadings 

Consider a bimaterial medium composed of two homoge- 
neous, isotropic, and linearly elastic solids. Materials 1 and 2 
occupy the lower and upper half-planes, respectively. A semi- 
infinite crack lying along the interface of the bimaterial is ini- 
tially stress-free and at rest. At time t = 0, an antiplane uni- 
formly distributed dynamic loading with magnitude r0 is ap- 
plied at the crack faces of the stationary semi-infinite crack. 
The time dependence of the loading is represented by the Heavi- 
side step function H(t).  At time t = t I, the crack suddenly 
propagates along the interface of these two materials with a 
constant velocity v as shown in Fig. l. The loading does not 
expand over the newly created crack faces, but it continues to 
act on the original crack faces. For the subsonic case considered 
here, we assume v < b{ ~ < b2 ~. The pattern of wave fronts 
for t > t s is indicated in Fig. 2. The transient elastodynamic 
problem is solved by superposition of the fundamental solutions 
obtained in the previous section in the Laplace transform do- 
main. The transient solutions are composed of incident and 
diffracted fields, which are denoted by superscripts of i and d 
(or g), respectively. The incident waves are presented by two 
propagating plane waves that are induced by applying a uni- 
formly distributed loading on crack faces. The diffracted waves 
include two parts, the first one is induced from the stationary 
crack tip by the application of a uniformly distributed traction 
on the crack faces and the second one is generated from the 
propagating crack tip as the crack starts to move. We now focus 
the analysis on the diffracted field generated by the stationary 
crack due to the incident plane wave (i.e., t < tl). The incident 
field of the plane wave expressed in the Laplace transform 
domain can be expressed as follows: 

e~(x, O, s) = ~ f ~ e~XXdX. (30) 
2:ri d sX 

The applied traction on the crack faces, as indicated in (30), 
has the functional form e'XL Since the solutions of applying 
traction e ~ on crack faces have been obtained in Section 2 (by 
setting v = 0), the diffracted field generated from the stationary 
semi-infinite crack can be constructed by superimposing the 
incident wave traction that is equal to (30). When we combine 
(23), (24), (26), and (27) by setting v = 0 and (30), the stress 
fields for the lower and upper planes in the Laplace transform 
domain can be obtained as follows: 

 yS(x' y's) = f "-° 

× f Q+(rh)a2÷(rl2) e.~.%y*.%Xd~72}d~ 
0t2+(771)(771 -- r]2)Q+(y]2) 

1 f roQ+(0)~2+(h) e.,.%y+~.×Xdk ' (31) 
= 27r'---i ~-22s kQ+ (k) 

~x"z~(x,y, s) = 1 f 7-0Q+ (0)oL2+ (h) 
27r'--i ~2saa(N)a+(h) e'%Y+SX*dN' (32) 

1 f 7-oQ+(O)a2+(k) e .... ~'z2(x, y, s) = ~ i  _ ~ s h Q + ( k )  2y+shxd~k' (33) 

- I  f roQ+(0) e_,.%y+,X~dk 
~Jz2(x, y, s) = ~ i  v~sa2_(h)Q+(k) , (34) 

in which 

Q(K) = Q+(h)Q_(h) = Q.~(k)t~=0QL*(h)l~=o, 

/(#lbl + #2b2) 
Q+(o)  = Q _ ( o )  = "V -+ - . 7 - £  ' 

~j(x) = aj+(x)~j_(x) = ~?+(x)lo=oc~L(x)10=0 

Applying the Cagniard-de Hoop method of Laplace inversion 
(see Appendix), the solutions of the stress field for the station- 
ary crack in a time domain are obtained as follows: 

roO+(o) f l  c~>(X?) 
= - -  ImP 7 ; - - 7 Z  -/ d r  ~-¢za(x, y, t) ~.,~ ,R L x, Q+(x, ) J,=~ 

- roH(t + b~y)H(-x)  

+ ~r---~- Im[. ~ 7 - x ~  . j , = d r [ n ( t  - t,,) 

- H ( t -  biR)]H c o s q o -  , (35) 

Ira| ot / y ,  = 

 oQ÷(o) ' r 1 + fo'm/ O'|d<"(t-t,,) 
L~, (kh) Q+ (hh) J,=~ 

- H(t  - b~R)]H(cos ~P - b~ ) , (36) 

, o l2+ (M- )  
roQ+(O) £ ,--7-X--7~, ~-~, r~2(x, y, t) = ~ Im dT 

~R L X.2 Q+ (h2) J,= 

- roH(t - b2y)H(-x ) ,  (37) 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 549 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



" t )  mxza(x, y, 

0x~ ] 
~ ~ 0 Q ~ ~ 0 ~ f ot 

#~, Im k+ - dr,  
ri~£2~ 2~ oz2_(k~-)O+( 2 ) t = r  

(38) 

where 

k] =-~--tcos~o + isinR ~o (t 2 _ b~R2)~12 ' j =  1,2,  

- t  sin ~o 
kh = - -  COS qO + ' (b~R 2 = t2) it2 + ie, 

R R 

t , ,=baRIcos~ol  - R s i n ~ m .  ~ - b ~ ,  

The corresponding stress intensity factor expressed in the 
Laplace transform domain is 

e<,(s) = 1 f r o  ; (x d x 
277. x t j 

_ ~roQ+(O) 
s 3/2~2 (39) 

The dynamic stress intensity factor of the stationary interface 
crack induced by a diffracted d wave expressed in a time domain 
will be 

Kd(t) = 2'roQ+ (0) 2 / ~  ~ /2t(#tb_______2 ++_~2bz._.__)#2) 
= Z, roV,lrbib2(i.zl . (40) 

/ I 

The first terms in Eqs. ( 3 5 ) - ( 3 8 )  represent cylindrical 
waves which are radiated from the stationary crack tip due to 
the applied loading. The second terms in Eqs. (35) and (37) 
represent the corresponding plane waves in two half-planes. 
The last terms shown in (35) and (36) describe head waves 
generated by the mismatch bimaterial. The stress intensity factor 
expressed in (40) is equal to the one for a homogeneous medium 
multiplies a material-dependent function Q+ (0). If/z~ = #2, b~ 
= b2, in a homogeneous material, we have Q+(0) = 11 The 
stress singular fields can be obtained by letting R ~ 0 in Eqs. 
(35) - (38) and finally yield 

rJd(x ,  y, t) .= d .... ryzatX , y, t) 

- cos , (41) 
71" 

d.s = -r~=2(x,  y,  t) r~ l ( x ,  y, t) a>, 

(42) 

At time t = t¢, the dynamic stress intensity factor is assumed 
to reach its critical value and the interface crack starts to propa- 
gate with a constant subsonic speed v along the interface with 
uniformly distributed loading applied only on the original crack 
faces -co < x < 0. The applied uniformly distributed stress r0 
on the original crack faces written in the Laplace transform 
domain for the moving coordinate system will have the follow- 
ing form: 

.2_ P • • 0 d 
Y~,~({, O, s) = l e"X(e-%)dk, (43) 

27ri a sX(X - d) 
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in which d = 1/v is the slowness of the crack velocity and 
= x - v(t  - ti). The applied traction on the crack faces, as 
expressed in (43), has the functional form e "~. Since the La- 
place transform solutions of applying traction e s'~ on the crack 
faces have been solved in the previous section, the stress fields 
generated from the propagating crack tip can be constructed by 
superimposing the fundamental solutions and the stress distribu- 
tion in (43). The results of shear stresses expressed in the 
Laplace transform domain will be 

1 f -rod _s,h% 
~1(~ ,  Y, s) = ~ srh(r]j - d) e 

X ~ 7  Og~+('~,)('[]l - ~h)Q*(zh) 

X e*e]Y+*';72(dr]z}d771 

_ 1  f Q+*(d)e %] 
2rri sQ+*(k) ~/~k ~ ( a  - d) 

× e'<<{Y+SXedk, (44) 

± £ 
%~(& y, s) = / 

27ri d sa * ( k ) Q * ( X )  

[ Q*(0) Q*(d)e-S9~ , , 
X L -~xzx ,[~--~7 ~ d-TJe'%Y+"XedX, (45) 

! £ T0~+ (~) 
~z2({, Y, s) = l 

27ri a sQ*(k)  

x [ Q+*(0) , -s,: , 
~. 2k - ~ d ~ 7 ~ ] e  "%'+"Xedk' (46) 

m ~  /, T0]k 
~g=2(G Y, s) = / 

27ri d s o l * ( h ) O * ( k )  

* --stf 
×[Q+*(0)~R ~ c ~ ( ( k d ~ ]  e'Gy+saedk" (47) 

Inverting the Laplace transform of ( 4 4 ) - ( 4 7 ) ,  the exact 
transient solutions for a propagating interface crack at an un- 
bounded bimaterial medium in time domain can be obtained as 
follows: 

u ( G y ,  t ) = - -  T yzl roQ+*(o) I m / " 7 - ~ - -  - - "  dr  

~L(x;) 
"roQ*(d) f'-ts Im . . . . . . .  dT 

+ roQ ~ (o)~.~2 fo' Im L XHQ ~ ( N H ) ' - - -  J,=~. d'r 
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.o 'mk}x;: 

X [ H ( t -  t ~ ) - H ( t -  td , ) lH Cos~p-- , (48) 

r.{z,({, y, t) = 

, + 0M ] 

i ,  a>(X. ) 
- r o Q * ( 0 )  I r a /  - - 7 7 - ~ , +  t d r  

~r,,/~ .... L,~(X~)Q,(X~ )J,=~ 

+ * + Oh + ] 

~r~@ I m -  • . . . .  

..... Lee, (M)(M- - d)O~*(M)J,=~ 

, ~>(X.) 
-roQ+*(O) Im . . . .  d r  

rc~22 e~ ~ ( hH ) Q T ( X. ) ,=~ 

roQ~(d )  f£  9 Im . . . . . .  d r  
- d)Q+*(X,,) ,=~ 

X [ H ( t -  t H ) - H ( t -  t,,1)]H c o s c p -  , (49) 

rfz2(¢, y, t) = - -  ~-oae(o) I' I m / -  at.| a~- 

, + 0M ] 
r t-tj 0*~ 2+ ( ~ku'~ ) 0"----7- ToQi~(d) 

~-~d |d ~,~ Im d r ,  
L(AZ - d)Q~(M)J ,=~ 

(50) 

g r~a(L y, t) - - r o Q ~ ( O )  I '  Im[  Ok~Ot '] 

r o Q ~ ( d ) £ ' - O [  
r r ~  I m -  • + ,.., ka~ (X4 

Ot 
)(x~ 7-J)Q+*(x~)J,=~ dr' 

(51) 

where 

- ( ¢ t  + b~-2vy2) + ilyl~/t z - b~_2[y 2 + (~ + to) ']  
X] = ~2 4_ ( l  2 2 2 -- bj_2v )y 

X H 

j =  3,4,  

~/b2~ 2 - ( ~ t  + b~vy 2) + ]y , ty  + ((  + tv)2] 
{2 + (1 - b~v2)y ~ 

bj{biv ~ + [~2 + (1 -- b~v2)y2] 1`2} 
tdj = 1 -- b2v 2 , j = 1..2, 

b.~ - yCg{- b~ 
tH= 

1 - b2v 

The results expressed in ( 4 8 ) -  (51) reveal a very interesting 
phenomenon. The full-field solutions of an interfacial crack 
propagating with constant speed subjected to loads applied on 
the original crack faces can be expressed by two parts, each 
one having its own physical meaning. The odd terms represent 
the first part due to applying the uniform loading on the original 
and new crack faces for a crack which begins to grow at constant 
speed at time t/after the loading is applied. The functional form 
of the first part is the same as the solution of the problem with 
a uniform loading applied on the original and new crack faces 
with no delay time. The only dependence on delay time is 
through the definition of ~. The even terms represent the second 
part for a crack which starts to propagate at time tf with loading 
applied uniformly on the new crack faces only. 

The dynamic stress intensity factor for a propagating interface 
crack can also be constructed in a similar manner. The result 
in the Laplace transform domain can be obtained from (29) 
and (43) and is expressed as follows: 

f - r o d  e_~X~, l 
2rri d sh(X - d) 

× {-~/2(Lzb2v)O+*(h)~dX.  (52) 
qs~L(x) J 

The inversion of the Laplace transform (52) to the time domain 
will have the following form: 

2~/2(1 -- b2v) To 
Kg(t)  = r- 

VTr 

For the limit case b~ = b 2 ,  the solutions of ( 4 8 ) - ( 5 1 )  and 
(53) for the propagating interface crack in a bimaterial can be 
reduced to that obtained by Ma and Burgers (1988) and Ma 
and Ing (1995) in a homogeneous material. If the propagating 
speed v approaches the lowest shear wave speed Csl , then the 
dynamic stress intensity factor approaches zero. 

The singular stresses near the propagating crack tip can be 
deduced from the full-field solutions expressed in (48)--(51 ), 
and the results are 

2¢1 - b2vTo 

E .4, cos~-  Q*(0)  - "V d J '  

2~/1 b2v'r o 
rflf(~, y, t) = (1 - b~v27r~ 

× s i n 0 ' [ 2  Q ~ ( 0 ) ~ - Q _ ~ ( d ) ~ / ( f ] , ~ 2  (55) 

2VII - b2vro 

cos~-  Q~(0)  - ~ d J '  
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Fig. 4 The ratios of the transient solution r ~  to the stress singular field 
a,~ for different values of b~lb~ for the stationary crack Tyz2 

--2T0 
~" t ) =  

× sin O~ [ Q + * ( O ) ~  - Q+*( d ) ~ d  tz - tf , (57) 

where 

rl = [~2 + (1 = b21v2)y2] ~/2, 

0~ = tan ~ ((1 - b~vZy/() ,  -7 r l2  < O, < O, 

r~ = [~2 + (1 - b~v~)y z]~/2, 

02 = tan -~(~1 - b~v~y/~),  0 < O~ < 7r/2. 

4 Numerical Results 
In the previous section, the transient full-field solutions and 

the stress intensity factors for the problem of an interface crack 
subjected to antiplane uniform loading in a bimaterial are de- 
rived. For time t < ts, the stress intensity factor of the stationary t. 0 
crack is given by (40).  It can be seen from the solution that 
the material-dependent function Q+(0) is the only influence 
factor on the stress intensity factor for different material combi- 
nations. For the case we have studied, namely b~ > b2, Q+ (0) o..9 
is always less than one for any combination of two material 
constants. This means that the dynamic stress intensity factor 
of a bimaterial is always less than that of a homogeneous mate- ~ 
rial. For the special case of #~_P_z___ 0% then Q+(0) ~ 1, and "~b2~°' 8 
for ,u~/#2 ~ 0, then Q+(0) ~ Vbz/b~. 

The ratios of the full-field stress 7"~z 2 evaluated from (37) to "~ 
the stress singular field (41) have been computed numerically I-.- 
for different values of #~/P2 and bt/b2, and the results are 
shown in Figs. 3 and 4. Assume that for a ratio of 0.9, the 
actual stress is accurately described by the stress singular field. 0.7 
Then the region of the stress singular field will be valid only 
fox" material points very close to the stationary crack tip, within 
a distance from the tip of 0.2 percent ~ 0.4 percent of the 
distance to the cylindrical shear wave front of material 2. The 
region of validity of ~/he stress singular field is time-dependent o, 6" 
in the highly transient process. Hence, the use of the singular 
field to approximate the actual stress field should be carefully 
considered, especially in the early stages of the dynamic tran- 
sient field. The transient stress field along the interface normal- 
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ized by the singular field for different material combinations is 
shown in Fig. 5, which indicates that the homogeneous case 
has the largest region of a singular field for the stationary crack. 

Figures 6 and 7 show the dimensionless stress intensity fac- 
tors of a propagating crack versus dimensionless time t/tf  for 
various values of #~/#2 and hi~b2, respectively. It is shown in 
Fig. 6 that the smaller #~/#2 is, the smaller the stress intensity 
factor for constant v and b~/b2. In addition, Fig. 7 indicates that 
the smaller b~/b2 is, the smaller the stress intensity factor for 
constant v and ¢j /#2.  Figure 8 plots the dimensionless stress 
intensity factors versus dimensionless time t~ t s for different val- 
ues of crack velocity v for b~/b2 = 10 and #J/#2 = 0.8. It is 
also noted that the stress intensity factor decreases as the crack 
running velocity increases; that is, the stationary crack (v = 0) 
will induce the maximum dynamic stress intensity factor among 
those different running cases. Because the crack-tip speed 
changes discontinuously at t = tj, the stress intensity factor also 

b ~ b z = 2  
. . . . . . .  br ibe=5 
................. b l /bz=1,  ~l~l~z=l 

~\ o Iz,/Izz=0.5 
7~', [] Iz,/#z= I. 0 
,,% , , , / , , = , . 5  I 

i i i l , , i  , i i i  i i i  , :  i i  , i  , l i : l ,  i ,  i ~ 1 ~ 1 : ~ 1 , : ~  

tO gO ,30 40 50 
bzx / t  ~,o-" 

Fig. 5 The transient stress field along the interface for different material 
combinations for the stationary crack 
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Fig. 6 Stress intensity factors of a propagating interface crack for differ- 
ent values of P4/P,= 

changes abruptly at the same time. In all cases, the magnitude 
of the stress intensity factor immediately after the jump is 

Q'~(O)" f i -~ -~( (# ,  + #2)b~ 

~/#tbl + #2b2 

times the magnitude just before the jump. 
In order to investigate the effect of the crack propagation 

speed on the stress singular field, we have also calculated the 
ratio of the exact stress (50) around the propagating crack tip 
and the singular part of the stress field (56). In Fig. 9 the 
position of the fixed ratios 0.9 and 0.8 for the full field and the 
singular field is plotted for applied uniformly distributed loading 
on the original crack faces only (i.e., along -oc < x _< 0). If 
we compare the results for the propagating crack case (Fig. 9) 
with the results of the stationary crack case (Fig. 3 and Fig. 
4), it is very surprising to find that there is a large difference 
in the area around the crack tip dominated by the singular field 

~ t / / x ~ = 0 . 8  v=O. l e.1 

b , /b~= l 0 
. . . . .  b l / b 2 = 7  

(; ooooo o~/.o2=o / 
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~ blab2= 1 .5  
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2 
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Fig. 7 Stress intensity factors of a propagating interface crack for differ- 
ent values of bl/b2 
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Fig. 8 Stress intensity factors of a propagating interface crack for differ- 
ent values of crack velocity v 

for the slow crack-tip speed (bl /d = 0.1) and the stationary 
crack case. Moreover, we found that the region for the singular 
field is large for higher crack speed. The stress along the inter- 
face for the propagating crack is shown in Fig. 10 and it also 
indicates that the stationary crack has the smallest region of 
stress singular field. We try to find out what is the significant 
reason that influences the region of the singular field, i.e., the 
mismatch of the material properties or the loading condition. 
We plot the transient stress field along the interface normalized 
by the singular field for a homogeneous crack case (i.e., bt/b2 
= 1, #~/#~ = 1) and the result is shown in Fig. 11. A similar 
result as for the bimaterial interface crack is also obtained, that 
is the singular field is large for higher crack speed. Finally, the 
contour of fixed ratios for the full field and singular field for 
applied uniformly distributed loading on the original and propa- 
gating crack face (i.e., along -oo < ~ ,~ 0) is shown in Fig. 
12. An interesting result is obtained: the size Of the region for 
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g Fig. 9 The ratios of the transient solution Tyz2 to the stress singular field 
~-~ for the propagating interface crack with loading applied on the origi- 
nal crack faces only 
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Fig. 12 The ratios of the transient solution ~z2 to the stress singular 
field ~-~j~ for the propagating interface crack with loading applied on the 
original and newly created crack faces 

the singular field is large for lower crack speed. Hence we can 
conclude that the region of the singular field is strongly depen- 
dent on the loading condition applied on the crack faces. 

For in-plane homogeneous crack propagation, Ma and Freund 
(1986) and Ma and Chert (1992) also indicated that the region 
of the stress singular field will be valid only for points verry 
close to the crack tip. They found that the extent of the stress 
singular field during dynamic crack growth is more limited than 
a steady-state analysis would indicate. In the case of dynamic 
loading on a stationary crack, the ability to find a stress singular 
field over a region of some minimal size near the crack tip 
may hinge only on waiting for the wavefronts to pass and the 
transients to die away. In the case of dynamic crack propagation, 
however, the transients are being continuously refreshed. 
Freund and Rosakis (1992) used a higher order asymptotic 
expansion of crack-tip fields for transient in-plane crack growth. 
They found that the transient nature of the stress field during 
the early phase of crack growth prevents a complete stress 
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b 
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Fig. 11 The transient stress field along the interface for the homoge- 
neous case 

singular field to be established, which suggests that higher order 
transient terms should be included in the analysis. 

5 Conclusions 
The mechanical behavior of many newly developed multi- 

phase materials are mainly controlled by the response of the 
interface. Many researchers have devoted effort to investigating 
the field of dynamic debonding along a bimaterial interface. 
The transient problem of a propagating interface crack in an 
infinite bimaterial is considered in this study. The equivalent 
steady-state problem has been studied by many investigators in 
the past twenty years, but the transient solution was not found. 
In this paper, the transient full-field solutions and the stress 
intensity factor are obtained by superposition of a useful funda- 
mental solution in the Laplace transform domain. The proposed 
fundamental solution is an exponentially distributed traction 
applied on the propagating crack faces. This fundamental solu- 
tion is successfully applied towards solving this transient prob- 
lem and is demonstrated as an efficient methodology to solve 
other similar problems. 

In the study of dynamic crack propagation phenomena, it is 
very important to have available as complete a description of 
the prevailing mechanical fields as possible. Interest in the stress 
intensity factor in considering dynamic crack growth stems from 
its potential as a driving force for the fracture process. From 
the experimental point of view, measurements of the field quan- 
tities near the crack tip are used to obtain the stress intensity 
factor. Interpretation of the stress field near the edge of a crack 
in terms of a stress intensity factor magnitude is usually based 
on the assumption that a stress singular field does indeed exist. 
Whether or not the data obtained from the experimental obser- 
vations are within the stress singular field is important in the 
determination of the correct stress intensity factor. In order to 
investigate the region where the stress singular field is valid for 
the propagating crack, a detailed investigation is made in this 
study between the singular part of the stress field and the com- 
plete transient stress field near the propagating interface crack. 
It is found that the region of the stress singular field will be 
valid only for material points very close to the crack tip, within 
a distance from the crack tip of 0.2 to 2 percent of the distance 
to the largest value of the shear wave front. It is also indicated 
in this study that the size of the stress singular field is strongly 
dependent on the loading condition applied on the crack faces. 
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The stress singular field will propagate out from the crack tip. 
If we fix a material point near the moving crack tip, the ratio 
of actual stress and stress calculated from the stress singular 
field will increase as time increases and this material point wilt 
eventually be inside the stress singular field. Hence, the stress 
singular field needs time to build up over a region of given size 
near the propagating tip in the highly transient process. 
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A P P E N D I X  

By inspecting Eqs. (31 ) - (34),  one must evaluate two inver- 
sion integrals to obtain solutions in the physical (time) domain. 
To execute this step, de Hoop (1961) proposed a powerful 
technique introduced earlier by Cagniard (1962) to invert two 
transforms in one operation. In this study, we used the so-called 
Cagniard-de Hoop method for the inversion of the Laplace 
transform to obtain the transient results of shear stresses and 
stress intensity factor. Here we would like to perform the La- 

-,l in some detail. We rewrite place transform inversion for .7-yzl 
Eq. (31) as 

7ydz,(X. y .  S) = ~ f T o Q + ( 0 ) c e 2 + ( h l )  e,..,y+.,,X,~dki ' ( A 1 )  
27ri 'f~sk,Q+ (hi) 

and then the change of variable is used by letting 

a l y  + k l x  = - t .  (A2) 

Equation (A2) can be solved for hi to yield 

k( - t  i sin ~p _ b ~ R 2 ) l / 2  ' = - -  cos cp ± (t 2 (A3) 
R R 

where 

The path of integration for hi in Eq. (A1) is initially parallel 
to the imaginary axis and satisfies -b2 < Re[hi]  < 0 in the 
complex krplane. The branch cuts and the only pole at the 
origin for the kernel of the integration are shown in Fig. 13. 
The idea of the Cagniard-de Hoop method is to deform the path 
of integration in the complex hi-plane. In view of Eq. (A3) ,  
the change of path for hi can be classified into three various 
cases for different observed positions. 

(a) -~r  < q9 < -~ - /2 :  In this case, the path of integra- 
tion will be changed to the right half-plane and a simple pole 
at k~ = 0 will be enclosed as shown in Fig. 13. Then Eq. (A1) 
can be written as 

Im[X] 

Fig, 18 

(0) (b) 

/ / / / / / j -  - 

X 

Re[x] 

\ 

Gagniard-de Hoop contours in the complex Xl-plane 
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[f,R = ot2+(ki-) Ok~ e-"dt -d (x, y, s) ToQ+(O) 
TYzl 27ris~/-~z [ ki-Q+(ki-) Ot 

ffR a2+(x?) 0h{ ] + k +'q rk+ e-"tdt , (A4) 
1 ~ + \  1 )  Ot 

plus the contribution of the pole at k, = 0. Using Eq. (A3),  
Eq. (A4) may thus be written as 

~ry~,(x, y, s) - roQ+(O) 
zrs~2 

f = I m [  c~2+(k~-)_ Ok~]H(t_ b~R)e_,,dt" (15 )  
× do LX+Q+(X~) ot 

Since the inverse Laplace transform of the integral part in 
Eq. (A5) can be obtained by inspection 

L- I{  f ~  Im[Lki~Q+(ki~ )°~2+!k~) ~ t  ~* ]H(t -b lR)e-S 'd t}  

. [ a2+(k~) OUf]H(t_bIR) ,  (A6) 
= Ot 

the inverse transform of Eq. (A5) may be carried out by the 
convolution theorem and the result is expressed as 

r~z l  (x, y, t )  = - -  

, a2+(X?) 
r0Q+(0) P 

l Im/- ~-'-7-7-~ / d r .  (A7) 
,b,R L 

On the other hand, the contribution of the pole hi = 0 must 

be taken into account for this case and the contribution from 
the pole is 

,Toesbly 
~Jzl(x, y, s) - (18 )  

S .  

The inverse Laplace transform of the corresponding wave in 
Eq. (A8) is 

7-yzld (X, y, t) = -7-oH(t + bly)H(-x) .  (A9) 

(b)  - n ' / 2  < q~ < - c o s  -~ (b2/bl): The path of integra- 
t ion will change to the left half-plane and the new path does 
not cross the branch cuts in the complex kl-plane. No pole 
should be taken into account in this case. Following the same 
procedure mentioned above, the final result of inversion can be 
obtained and the solution has the same form as Eq. (A7).  

(c) - c o s  -~ (b2/bl) < ~o < 0: In this case, the path of 
integration will change to path (c) in the left half-plane as 
shown in Fig. 13. The new path consists of a hyperbola plus 
an indentation between the branch points k~ = -b2 and ~ = 
- b l .  The contribution from the path of hyperbola has the same 
formulation as Eq. (17) .  Furthermore, the integral of a straight 
line around the branch cut can be inverted and the result is 

Tyz I(x, y, t) = ~ I m  - - - -  • 

× [ H ( t -  th)-  H ( t -  blR)]H cos q o -  . (A10) 

Combining the results obtained in (A7),  (19 ) ,  and (A10),  
a (x, y, t) is expressed in the transient full-field solution for 7-y~, 

Eq. (35). 

556 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V. Y=ldmm 
Associate Professor, 

Department of Mechanical Engineering, 
C ukurova University, 

01330 Balcah, Adana, Turkey 

In-Plane and 0ut-of-Plane Free 
Vibration Analysis of 
Archimedes-Type Spiral Springs 
The in-plane and out-of-plane free vibration frequencies of  Archimedes-type spiral 
springs are computed by the transfer matrix method. Taking into account the eJy~cts 
of  the axial and the shear deformations and the rotary inertia, the overall dynamic 
transfer matrix is computed up to any desired numerical accuracy by the complemen- 
tary functions method. Since there are no restrictions for  the number of  coils and for 
the form of  the spring (close-coiled or open-coiled), the presented method is general. 
After having verified the soundness of  the computer program devised, the effects of  
the number of  coils, of  the axial and shear deformations, of  rotary inertia and of  the 
boundary conditions on the frequencies are also investigated. 

1 Introduction 
The problem of the free vibration of bars whose axes are in 

the form of a curve in-plane has been investigated by many 
researchers. Using the Bernoulli-Euler beam theory, Volterra 
and Morrell (1960, 1961a, b),  have obtained the fundamental 
frequencies of both the in-plane and the out-of-plane free vibra- 
tions of curved bars having the center line in the forms of a 
cycloid, a catenary, or a parabola. Suzuki et al. (1978) have 
also worked out the out-of-plane free vibration of curved bars 
with clamped ends having the center lines in the form of ellipses, 
sines, catenaries, hyperbolas, parabolas, and cycloids by the 
classical beam theory. Lee and Wilson (1989) have investigated 
parabolic, sinusoidal, and elliptic arches, both theoretically and 
experimentally. The axial deformations and the rotary inertia 
have been considered in their paper. Neglecting the shear defor- 
mations they have reported the effect of rotary inertia on the 
in-plane natural frequencies. 

As is known, the spiral springs are used in many practical 
applications in the area of mechanical engineering. Wahl (1963) 
has summarized the basic analysis of the spiral springs. The 
fundamental analytical formula used in the statical analysis is 
based on the assumption that the spring has many close coils. 
However, this assumption restricts many practical applications. 
In addition to this disadvantage, the problem of buckling arises 
when the spring has many coils. 

Although there is considerable research on the free-vibration 
analysis of bars whose central lines are any plane curves such 
as parabolas, cycloids, etc., papers about the free vibrational 
problem of the spiral springs exist scarcely in the literature 
(Naraikin, 11976; Haktamr, 1993, 1994a).It  is believed that the 
gap in the field of the free-vibration analysis of the spiral springs 
can be filled up a little by the present work. 

In this study, first all the geometrical properties of the Archi- 
medes-type spiral springs have been determined. The free-vibra- 
tion equations, which are in the form of differential equations 
of first order with variable coefficients, have been obtained 
using Timoshenko's beam theory. The transfer matrix method 
has been employed in the free-vibration analysis. The standard 
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solution of the transfer matrix by series expansion cannot be 
achieved because the elements of the differential matrix, which 
can be determined from the governing differential equations of 
the spiral springs, are variables and not constants. Thus, the 
overall transfer matrix has been obtained by the numerical inte- 
gration of the set of equations using the complementary func- 
tions method. Since there is no sufficient numerical data in the 
literature, the free vibration frequencies obtained by the com- 
puter program devised in the present study have been compared 
with the finite element's results computed by the software AN- 
SYS. The effects of some parameters on the free-vibration fre- 
quencies have also been investigated. 

2 Geometrical Properties of Archimedes-Type Spi- 
ral Springs 

Figure 1 (a)  represents a spring whose central line is a plane 
Archimedes spiral curve. The parametric equation of the spiral 
in polar coordinates is 

r(O) = aO (1) 

where a is the radial distance between the centroids of the two 
adjacent sections (Fig. 1 (b)) ,  and is obtained from 

r(O + 2~r) - r(O) = a = h + 6. (2) 

In Eq. (2),  ~ and h stand for the radial clearance between 
two adjacent sections and width of a rectangular section, respec- 
tively. Denoting the beginning and the end radial coordinates 
of the spiral by r~ and r2, for the number of coils of spring, the 
following can be written 

n = (r2 - rl)/2:ra (3) 

where n needs not be an integer. The total length of the wire is 

L = (r~ - r~)/Za. (4) 

Using the parametric equation of the spiral given in Eq. ( 1 ), 
the infinitesimal length of the curve is obtained as 

ds = a(1 + 02)tt/2)dO = z(O)dO. (5) 

The curvature of the spiral, which varies along the axis, as 
given by Haktamr (1993, 1994a) as 

2 + 0  2 
x(O) = (6) a(1 + 02) (3/2). 

3 Free-Vibrational Equations 
The free vibrational equations of a spatial bar made of an 

elastic, isotropic, and homogeneous material having a double 
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Fig. 1 Geometrical properties of an Archimedes-type spiral spring 

Table 1 The in-plane natural frequencies ( rad /s )  of the spiral spring (rl 
= O, r2 = 10 mm, n = 5.305, L = 0.167 m, a = 0.3 mm) 

Modes 
Present Study 

ANSYS (212 elements) 

l 1 2 3 4 5 266.6. 
741.1 1111.4 1265.9 1615.0 2096.4 
703.6 1093,7 1263.7 1581,7 2030.2 2624.0 

T = T,t + T ,n  + Tbb M = M,t + M,,n + Mob ( l l a )  

U = U,t + U,,n + Ubb ~ = f~tt + ~ ,n  + ~bb, ( l i b )  

where n and b are the normal and bi-normal unit vectors, respec- 
tively. 

The free-vibration equations of any planar bar can be obtained 
from Eqs. (7) with the help of the Frenet formulae, Eq. (10), 
as follows: 

d U , / d s  = xU,, + ( 1 / E A ) T ,  (12a) 

dU, , /ds  = - x U ~  + ~h + (a , , /GA)T , ,  (12b) 

dUb/ds  = - t~ , ,  + ( a J G A ) T b  (12c) 

df~,/ds = X~2,, + ( 1 / G I J M t  (12d) 

d ~ . / d s  = - Xf~, + ( 1 / E I . ) M , ,  (12e) 

dFtb/ds = (1/EIb)M~, ( 1 2 f )  

d T J d s  = xT,, - co2pAU, (12g) 

d T . / d s  = - xT t  - w2pAU,, (12h) 

d T J d s  = - co2pAUb (12i) 

symmetrical section in the vectorial form are as follows ( H a k -  
tanlr ,  1993; Ylldlnm, 1996): 

d f l  D I .M 0 d U + t  × f~ C- IT  0 (7a) 
ds ds 

d T  + c02pAU 0 dM + t × T + co2H.~ 0 (7b) 
ds ds 

where the displacement, rotation, internal force, internal mo- 
ment, and the tangential unit vectors are denoted by the U, [1, 

• T,  M, and t,  respectively, w designates the angular frequency, 
A stands for the cross-sectional area, and p is the mass density. 
The elements of the rigidity tensors C and D are 

[ A0 00 l D = 0 El,, C = 0 G A l e n  (8) 
0 0 EIb 0 0 G A / o  6 

and H is 

° o°] H = 0 P/n • ( 9 )  
0 0 pl~ 

In (8) and (9),  E is the Young's modulus, G is the shear 
modulus, ~n and ab are the Timoshenko's coefficients,/~ is the 
torsional moment of inertia, and I,, and Ib are the moment of 
inertias of cross section about the principal axes. 

The Frenet formulae for any planar curves are given by So- 
kolnikoff and Redeffer (1958) as 

dt xn  dn d b = o  (10) 
dS = ds  = - X t  d-7 

and the Frenet components of the vectorial quantities in Eq. (7) 
are defined as below, 

d M , / d s  = x M . -  wZpI, f~, (12j)  

dMn/ds  = Tb -- x M , -  w2,oln~,, (12k) 

d M J  ds = - T.  - aj2plhf~l, (12l) 

As can be seen from the above equations, they can be divided 
into two equations set governing the in-plane and out-of-plane 
free vibration of a planar bar, respectively. 

Substituting the curvature and the infinitesimal length of the 
spiral into Eqs. (12), the free-vibration equations are found in 
the in-plane case as 

dUt z (O)  
- x ( O ) z ( O ) U .  + - ~ - : - - ~ =  x ( O ) z ( O ) U n  + A D  (13a) 

dO gA  

d ~ ,  z(O)~, ,  
= - x ( O ) z ( O ) U t +  z ( O ) ~ b  + T,, 

dO GA 

= - x ( O ) z ( O ) U ,  + z(O)f~b + SD (13b) 

d a b  z(O)  

dO EI~ 
- -  M~, ( 1 3 c )  

dTt = x ( O ) z ( O ) T ,  ' _ z (O)pAw2Ut  (13d) 
dO 

dT. 
= - x ( O ) z ( O ) T ,  - z(O)pAaJzu, ,  (13e) 

dO 

Table 2 The in-plane natural frequencies ( rad /s )  of the spiral spring (rl 
= 5 mm, r2 = 15 mm, n = 5.305, L = 0.333 m, a = 0.3 mm) 

I Modes 
Present Study 

ANSYS (212 elements) 
I1F2F3 0 16[ 240.9 358.3 383,3 4 .4 6 A 681,0 

241.9 359.4 384 .7  483 .4  603 .6  683.8 

558 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 3 The out-of-plane natural frequencies ( rad /s )  of the spiral spring 
( r l  = 5 mm, r2 = 15 m m ,  n = 5.305, L = 0.333 m, a = 0.3 m m )  

Mod= 
Prc,.cnt Smdy 

ANSYS (212 elements) 

1 2 3 [ 4 5 6 
313.2 506.4 547.3 [ 634.4 8063 952.2 
315.0 508.6 549.5 637,9 810.8 957.2 

dMb 
dO 

- z(O)T,,  - z(O)plbwZf'lb = - z ( O ) T , ,  -- D1 (13f )  

and the out-of-plane case as 

dU~, z (  O )c~b 
- z ( O ) f ~ , ,  + T~, = - z ( 0 ) ~ 2 , ,  + SD (14a) 

dO GA 

df~---2 = z ( O ) z ( O ) ~ ,  + z (O)  M, (14b) 
dO GI  

df~. z (O)  
= - x ( O ) z ( O ) f 2 ,  + M ,  (14c) 

dO El,, 

dTb = _ z (  O)pAwZU b (14d) 
dO 

dM, 

dO 
- x ( O ) z ( O ) M , ,  - z (O)pAwZI ,  f~, 

= x ( O ) z ( O ) M , , -  D I  (14e) 

dmn 
dO 

- -  = - x ( O ) z ( O ) M ,  + z(O)Tb -- z(O)p~v21.~,,  

= - x ( O ) z ( O ) M ,  + z(O)T~, - D I  (14f )  

The terms A D ,  SD,  and RI  in Eqs. ( 13 ) and (14) represent the 
axial deformation, shear deformation and rotary inertia effects, 
respectively. If all A D ,  SD,  and R I  terms are neglected, then 
the analysis is the Bernoulli-Euler analysis. 

Equation (13) or (14) can be written in matrix notation as 

d ( S ( O ) }  
- [ A ] { S ( O ) }  ( 1 5 )  

dO 

where [A] is the dynamic differential matrix and { S} is the 
state vector. The solution of Eq. (15) associated with the dy- 
namic transfer matrix, IF],  is given as follows (Inan, 1964): 

{S(0)} = [ F ( O ) ] { S ( O ) } .  (16) 

Since the curvature of the spiral spring varies along the axis, 

Table 4 The in-plane natural frequencies ( rad /s )  of the spiral spring (r t  
= 5 m m ,  a = 0.3 m m ,  RI  = rotary inertia, AD = axial deformation, SD = 

shear deformation) 

I Medea 
r= (ram) I neglect 1 2 I 3 ] 4 5 6 

fixed- fixed 
3988,9 11042,9  23778.0 I 40949.9 62266.1  87343,6 

7 RI 3989.0 11043.2  23779,7 i 40955.9 62281.8 87376.7 
RI+AD+SD 3990.0 11052.1 23810.3  41030.0 62429.0 87640.7 

20 - -  99.9 153,5 161.3 201.7 263,1 287.1 
RI+AD+SD 99,9 153.5 161.3 201.7 263.1 287.1 

fixed - hinged 
2395.1 8619,9 20363 .8  36683.8  57107.1  81340.3 

7 RI 2395.2 8620.1 20365 .2  36688.9  57121.0  81370.2 
RI+AD.I-SD 2395.6 8625.1 20385 .3  36741.2  57230.1 81571.8 

20 - -  66.2 121.2 157.2 187,3 234,8 275,0 
RI+AD+SD 66.2 121.2 157.2 187,3 234.8 275.0 

fixed- flee 
- -  1505.2 2465,9 4814,0 12975.2 25809,2 43087.8 

7 RI 1505,2 2465.9 4814.1 12976.0  25812.6  43097.6 
Pd+AD+SD 1505,3 2466.2 4815.7 12984.0  25838,2  43157.9 

20 - -  43.8 88.5 88.7 149.8 220,3 226.7 
R]+AD+SD 43,8 88.5 88.7 149.8 220.3 226.7 

the overall transfer matrix cannot be numerically obtained from 
the standard solution which is in the form 

[F(0)]  = d A~° = [I] + O[AI 

02[A] 2 03[A] 3 04[A] 4 
+ + + + . . . .  (17) 

2! 3! 4! 

In this study, the overall transfer matrix has been obtained 
by the numerical integration of Eqs. (13) and (14), employing 
the complementary functions method. As known, the comple- 
mentary functions method is the method of initial value prob- 
lems. In this method, the homogeneous solution of Eqs. (13) 
and (14) is given as (Lance, 1960; Akta~, 1972; Haktamr, 1993, 
1994a, b, 1995) 

6 

{ s ( o ) }  = .,y.., c, , , {uo"Xo)}  = [ g ( o ) ] { c }  
m - -  ] 

=[{U(~},{U(2~}, . . . . .  (U(6'}]{C} ( 1 8 )  

where the matrix [U(O)] is composed of the six homogeneous 
solutions of the following differential equations 

d{ W"(O) } 
- [ A ] { U m ( O ) }  (19) 

dO 

with the boundary conditions: mth element of the state vector 
equals 1 as its other elements are all zero. In the solution (18), 
the matrix { C } has constant elements which are obtained from 
the given boundary conditions at both ends of spiral. 

It can be shown without difficulty that the overall transfer 
matrix is identical to the matrix [ U], and elements of both the 
state vector at 0 = 0 and { C } are also the same. 

IOOOOO ~ I n - 0 1 a n e  

10000 ~ k ~  

(0 ( r  a d/~ )0 0 0 ~ , , ~  / 0 ~  
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1 0 "  ' ' ' ' ' ' ' ' ' ' ' ' ' 
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I O0000C 
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Fig. 2 Variation of natural frequencies w.r.t, r2 (rl = 5 mm, a = 0.3 mm) 
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After computing the overall transfer matrix, the frequency 
equation can be obtained from the boundary conditions given 
at both ends using Eq. (16).  Boundary conditions are deter- 
mined for a fixed end as 

U, = U,, = fib = 0 (in plane) 

Ub = ~ = ~ ,  = 0 (out-of-plane) (20) 

for a hinged end as 

Ut = U, = Mh = 0 (in plane) 

Ub = Mt = M,, = 0 (out-of-plane) ( 2 t )  

and for a free end as 

Tt = T,, = Mt, = 0 (in plane) 

Tt~ = M, = M,, = 0 (out-of-plane). (22) 

The natural frequency is determined by setting the determi- 
nant of the coefficient matrix equal to zero. 

4 Test Examples 
In order to illustrate the efficiency of the present method, 

consider an Archimedes-type spiral spring fixed at both ends 
as an example with the following fixed properties: 

p = 7850 kg/m ~ E = 2.1 10 II N /m 2 u = 0.3 

b = 2 m m  h = 0 .2 ram o~,,= a o =  1.2 

where u is the Poisson's ratio and b is the height of section 
(Fig. 1 (b)) .  

4.1 In-Plane  Case. As a first in-plane problem, a spiral 
spring whose first end is placed at the origin is considered. The 
results are presented in Table 1 in a comparative manner. 

As a second example, the spiral spring whose first end is not 
placed at the origin is chosen as in practice. In this example 
the number of coils is the same as in the previous problem. The 
results are tabulated in Table 2. 

Table 1 and Table 2 show that the reliable solutions are 
obtained by the program devised in this study. Although the 
number of coils is chosen as the same in the two examples, the 
frequencies are different. The reason for this is the difference 
between the values of the total length of the spring. 

As can be seen obviously from the Eq. (6) ,  the curvature 
decreases with increasing 0 (a = constant). That is, for small 
0s the curvature is great and the radius of  the curvature is small. 
The length of  the inner coil is also less than the others. If  inner 
coils have been constructed by few straight beams which have 
the same length, then the real geometry of inner coil cannot be 

represented actually. Consequently, since the approximation to 
the construction of the inner curve is not a sufficient value for 
the representation of  real geometry of curve, the ANSYS results 
obtained in Table 1 are different from the exact frequencies 
obtained in this study. The fundamental frequency, especially, 
is affected from this condition. 

4.2 Out-of-Plane Case. In this example, the out-of-plane 
fx'ee-vibrational frequencies of the spiral having the same prop- 
erties given in the previous problem are computed and presented 
in Table 3. There is a very good agreement between the results 
of the present study and ANSYS. 

5 Effects of the Number of Coils, the Shear and Axial 
Deformations, the Rotary Inertia, and the Boundary 
Conditions on the Natural Frequencies 

In order to illustrate the variation of the natural frequencies 
with the number of coils, first, the number of coils is determined 
by attributing different values to the radial coordinate r2 under 
the condition that all the other properties are the same. The 
number of coils is computed using Eq. (3).  In this way the 
range of 7 -< r2 -< 35 corresponds to the range of 1.061 -< n 
-< 15.915. The results are presented in Fig. 2 for both the in- 
plane and the out-of-plane case. As can be expected, when the 
number of coils is increased, the frequencies decrease. For the 
small values of r2, a fast decline is observed. Increasing of the 
number of coils causes an extension of the total length of the 
spring. 

As seen in Eq. (3) ,  the different number of coils can also be 
obtained using various values of the radial distance. The incre- 
ment of the values of the radial distance between the centroids 
of two adjacent sections means a decrement of the number of 

Table 5 The out-of-plane natural frequencies (rad/s) of the spiral spring 
(r~ : 5 m m ,  a : 0 . 3  m m ,  RI = r o t a r y  i n e r t i a ,  SD = shear deformation) 

I Modes 
r7 (ram) n~lect 1 2 I 3 4 5 I 6 

fixed - fixed 
- -  5373.2 18793 ,3  4 8 5 1 6 , 2  98394,0 170410.9 265294.0 

7 RI 5383.0 18912 ,1  4 9 1 4 1 . 4  100553.6  176113.1 277767,5 
RI+SD 5384.4 18933 .3  4 9 3 2 4 . 2  101427.1 179070.7 285741.8 

20 - -  132.0 218.1 231.0 259.3 347.1 ] 401.9 
RI+SD 132.0 218.2 231.2 259.3 347.2 j 402,1 

f i x e d  - h i n R e d  
- -  2420.8 6824.8 2 5 5 5 8 . 3  6 2 7 0 6 . 1  121392,0 203483.3 
RI 2424,5 6862.9 2 5 8 5 3 . 0  64004.1 125372,6 213171.5 

RI+SD 2424.7 6864.2 2 5 8 8 0 . 6  6 4 2 1 6 , 3  126341,9 216389A 
- -  82.5 102.4 165.0 242.8 306.4 336,8 

RI+SD 82.5 102.5 165.0 242.8 306.5 337.0 
f i x e d  - free 

1966.5 3488.6 9795.7 31296.7 71374.4 I 133067.6 
RI 1967.6 3500.9 9902.5 31920.0 73662,2 : 139316,5 

RI+SD 1967.9 3501,0 9905.3 3 1 9 6 0 . 5  73935,8 i 140487,4 
- -  72,7 100.3 104.6 193.8 292.5 325.2 

RI+SD 72.7 100.3 104.6 193.8 292.6 325.4 
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coils provided that all the other properties of the spring are the 
same. The variation of the natural frequencies versus to the 
value a is shown in Fig. 3. The natural frequencies become 
smaller with a decrease of the values of a, and with an increase 
of the number of coils. 

The effects of changes of the boundary conditions, the axial 
and shear deformations, and the rotary inertia on the natural 
frequencies are given in Tables 4 and 5. 

Since the effects of the axial and shear deformations seem 
to be more pronounced from the Table 4, the effect of rotary 
inertia (maximum relative error = 0.04 percent) may be ne- 
glected in the case of the in-plane vibration. 

For the out-of-plane vibration, the effects of both the rotary 
inertia and the shear deformations should be taken into account. 
If the rotary inertia only is neglected, a maximum relative error 
of 4.7 percent results. For the case where both the shear defor- 
mations and the rotary inertia are neglected, maximum relative 
error of 7.7 percent for fixed-fixed ends of 6.3 percent for fixed- 
hinged ends and of 5.6 percent for fixed-free ends is observed. 

For small values of the number of coils, generally, the rotary 
inertia and the shear and axial deformations are of importance 
at higher frequencies. 

6 Conc lus ions  

In this study, the analysis of free vibration of uniform spiral 
springs is numerically treated with the help of the transfer matrix 
method. The real geometry of the spring is considered in the 
formulation. The complementary functions method is employed 
for the accurate computation of tbe overall transfer matrix for 
a large nmnber of coils which is changeable with respect to the 
value of the radial distance, a. All the effects of shear and axial 
deformations and rotary inertia have been taken into account. 
Calculation of the mode shapes associated with the natural fre- 

quencies is not considered. The solution method can be applied 
to any planar bar. 

References 
Akta~, Z., 1972, "Numerical solutions of two-point boundary value problems 

with initial value problems," Habilitation thesis, Middle East Technical Univer- 
sity. 

Haktamr, V., 1993, "In-plane fi'ee vibration of Archimedes spiral springs," 
Ptv)c. 6th National Symp. on Machinery Theory, Trabzon, pp. 411-420 (in Turk- 
ish). 

Haktamr, V., 1994a, "Free vibration vertical to its plane of Archimedes type 
spiral springs," 15th Anniversary Symposium of Fac. of  Eng. and Arch. o[ {2ukur- 
ova University, Vol. 1, pp. 301-311 (in Turkish). 

tlaktamr, V., 1994b, "A new method for the element stiffness matrix of arbi- 
trary planar bars," Compt. & Struct., Vol. 52, No. 4, pp. 679-691. 

Haktamr, V., 1995, "The complementary functions method for the element 
stiffness matrix of arbitrary spatial bars of helicoidal axis," htt. J. Numer. Meth. 
Engng., Vol. 38, No. 6, pp. 1031-1056. 

Inan, M., 1964, Tran,~[er Matrix Methods in Elastomechanics, Tech. Univ. of 
Istanbul, Faculty of Civil Engineering, No. 585 (in Turkish). 

Lance, G. N., 1960, Numerical Methods for High Speed Computers, lliffe and 
Sons, London, pp. 64-68. 

Lee, B. K., and Wilson, J. F., 1989, "Free vibrations of arches with variable 
curvature," 3". Sound and Vibration, Vol. 136, No. 1, pp. 75-89. 

Naraikin, O. S., 1976, "Natural vibrations of spiral springs," lzvestiya Vysshikh 
Uchebnykh Zavedenii, Mashinostroenie, Vol. 8, pp. 21-29 (in Russian). 

Sokolnikoff, I.S., and Redeffer, R. M,  1958, Mathematics of Physics and 
Modern Engineering, McGraw-Hill, Tokyo. 

Suzuki, K., Aida, H., and Takahashi, S., 1978, "Vibrations of curved bars 
perpendicular to their planes," Bulletin of  the JSME, Vol. 21, No. 162, pp. 1685- 
[695. 

Volterra, E., and MoreIl, J. D., 1960, "A note on the lowest frequency of elastic 
arcs," ASME JOURNAL OF APPLIED MECHANICS, Vol. 27, pp. 744-746. 

Volterra, E., and Morell, J. D., 1961a, "Lowest natural frequency of elastic arc 
for vibrations outside the plane of initial curvature," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 28, pp. 624-627. 

Volterra, E., and Morell, J.D., 1961b, "Lowest natural frequency of ehtstic 
hinged arcs," '/7.w Journal of the Acoustical Society of America, VoL 33, No. 12, 
pp. 1787-1790. 

Wahl, A.M., 1963, Mechanical Springs, McGraw-Hill, New York. 
Yildirim, V., 1996, "Investigation of parameters affecting free vibration fre- 

quency of helical springs," Int. Numer. Meth. Engng., Vol. 39, No. 1, pp. 99-  
114. 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 561 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



L. M. Brock 
Department of Engineering Mechanics, 

University of Kentucky, 
Lexington, KY 40506-0046 

Fellow ASME 

H. G. Georgiadis 
Mechanics Division, 

NTUA, 
1 Konitsis Street, 

Zographou 15773, Greece 
Mem, ASME 

Steady-State Motion of a Line 
Mechanical/Heat Source 
Over a Half-Space: 
A Thermoelastodynamic Solution 
An asymptotic solution within the bounds of  steady-state coupled thermoelastody- 
namic theory is given for  the surface displacement and temperature due to a line 
mechanical~heat source that moves at a constant velocity over the surface of  a half- 
space. This problem is of  basic interest in the fields of  contact mechanics and 
tribology, and an exact formulation is considered. The results may serve as a Green's 
function for  more general thermoelastodynamic contact problems. The problem may 
also be viewed as a generalization of  the classical Cole-Huth problem and the 
associated Georgiadis-Barber correction. Asymptotic expressions are obtained by 
means of  the two-sided Laplace transform, and by performing the inversions exactly. 
The range of validity of  these expressions is actually quite broad, because of  the 
small value of  the thermoelastic characteristic length appearing in the governing 
equations. 

Introduction 

An important problem concerning such diverse fields as wave 
propagation, contact mechanics and tribology is the rapid mo- 
tion of a line mechanical and/or thermal load over the surface 
of a half-space. Indeed, this is the case when (a) ground motion 
and stresses are produced by surface blast waves due to explo- 
sives or by supersonic aircraft, (b) high-velocity rocket sleds 
moving on guide rails, or (c) mating systems in brakes or 
bearing seals (e.g., those used in submarines) are pressed 
against each other and undergo relative sliding motion accompa- 
nied by dry friction. Such dynamical mechanical/heat loading 
may produce severe deformation and temperature rises in a thin 
zone near the half-space surface, and thereby cause excessive 
wear and even cracking near the contact zone. It is therefore 
useful to analyze this class of problems by using a formulation 
that is as exact as possible, and to provide results for surface 
and/or near-surface field quantities (displacements, tangential 
stresses, temperature) that may be required for design purposes. 

In many cases, the above-described problem can be modeled 
as a plane-strain steady-state situation involving an elastic half- 
plane under a concentrated line mechanical/heat loading which 
moves over the half-plane surface at constant speed. This is the 
problem examined here and, in order to fully incorporate ther- 
mal aspects, its solution is obtained by considering a material 
response governed by coupled thermoelastodynamics (Biot, 
1956; Lessen, 1956; Chadwick, 1960; Francis, 1972). 

To relate the present study and previous work, we first note 
that, in the absence of thermal effects, our study degenerates 
into the well-known problem of steady-state elastodynamic mo- 
tion of a line force along a half-plane surface considered by 
Cole and Huth (1958) and Georgiadis and Barber (1993a). 
When thermal effects are included, one can find in the literature 
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several approaches which commonly use uncoupled thermoelas- 
ticity and exclude inertial (dynamic) effects. Also, many of 
these studies do not address the case of a mechanical loading, 
but only that of a heat source moving at constant speed over 
the half-plane surface. Important examples of this type of inves- 
tigation are due to Ling and Mow (1965), Mow and Cheng 
(1967), Kilaparti and Burton (1978), Ju and Huang (1982), 
Barber (1984), Huang and Ju (1985), and Bryant (1988). In 
particular, Barber (1984) introduced an interesting superposi- 
tion scheme that employed transient results based on uncoupled 
thermoelasticity (Barber and Martin-Moran, 1982) and was thus 
able to obtain exact results for surface displacements, stresses, 
and temperature. In addition, useful comparisons were made 
with earlier results (Barber, 1984). Also, it should be noted 
that Bryant (1988) provided results for subsurface quantities 
as well, while Kennedy (1,984) presented in a review paper 
interesting discussions of the associated heat checking problem 
(brake and face seal surface cracking due to both mechanical 
and thermal effects caused by moving asperities). 

At this point, it must be emphasized that direct comparison 
between the aforementioned work dealing with moving heat 
sources and the present one is difficult because of the different 
assumptions employed. Under the steady-state assumption, 
however, the present formulation more completely accounts for 
both inertial and thermal-coupling effects. The corresponding 
transient coupled-thermoelastodynamic problem, which in- 
volves, of course, the most general formulation, has also been 
considered by the present authors, and its solution will appear 
soon in a separate paper. Nevertheless, the steady-state assump- 
tion employed here has its own justification in the dynamic 
analysis of moving sources (see, e.g., Fung, 1965; Eringen and 
Suhubi, 1975; Georgiadis and Theocaris, 1985; Brock, 1994, 
1995) and may yield reliable results when the mechanical/ 
thermal load in question has, as here, been applied and moving 
for a long time. 

The results reported in this study for surface displacements, 
stresses, and temperature are derived from a rather robust as- 
ymptotic solution of the title problem obtained through use of 
the two-sided Laplace transform and exact inversions. Subsur- 
face results can also be obtained from general expressions pre- 
sented here through a more elaborate scheme. 
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Fig. 1 A line mechanical/heat source moving a constant velocity v over 
the surface of a half-plane (P and S are the mechanical loading compo- 
nents and kQ is the thermal loading intensity) 

P r o b l e m  S t a t e m e n t  

Consider a thermally conducting linearly elastic body in the 
form of a half-space x2 >- 0 under plane-strain conditions. This 
otherwise unloaded body is at rest at a uniform temperature 
To(K),  but is then disturbed by the motion of a mechanical/ 
thermal source over the half-space surface (see Fig. 1). The 
concentrated line load depicted has components P and S, 
whereas the line heat source has intensity kQ pet" unit length 
per unit time, with k denoting the thermal conductivity and Q 
being a multiplier expressed in degrees of temperature. Then, 
with respect to a fixed Cartesian coordinate system (O'x~,  
O'x2),  the governing equations according to coupled thermo- 
elastic theory are written as 

~ j  = X6ju~j + #(u~j + u;j) - (3X + 2#)6o/300, (1) 

02b!i 
#u~js + (k + #)us.j~ - (3k + 2#)/3o0~ = p - ~ - ,  (2) 

O0 Oui.i 
kO,~ - pc~ - ~  - (3h + 2#)/307,, - ~ -  = 0, (3) 

where indicial notation is employed, with ( ),~ denoting x~- 
differentiation, the indices (i ,  j )  take on the values 1 and 2 
only, b'~ s [s the Kronecker delta, ~7~j (=as~) is the stress tensor, 
u~ is the displacement vector, (k, #) are the Lam6 constants,/3o 
is the coefficient of linear expansion, 0 ( = T  - 7",,) is the change 
in temperature, p is the mass density, t is the time and c~ is the 
specific heat at constant deformation. 

Equation (1) is the thermoelastic Hooke's law, whereas (2) 
and (3) can be regarded as, respectively, the generalized Navier- 
Cauchy equations and generalized heat conduction equation. It 
is also noted that the third term in the 1.h.s. of both Eqs. (2) 
and (3) arises from the interaction of elastic deformation with 
heat conduction. The presence of the dilatational time rate in 
(3) indicates that only mechanical energy expended in volume 
change is converted into heat (see, e.g., Chadwick, 1960) and, 
consequently, that dilatational and not shear waves are modified 
by thermal straining. 

Now, if the mechanical/heat source has been applied for 
some time, and is moving at a constant speed v, then a steady- 
state can be assumed to prevail in the neighborhood of the load 
as seen by an observer using the moving load as a frame of 
reference. It is this steady-state response that will be the object 
of the analysis, and we shall not be concerned with initial behav- 
ior, a course of action followed in similar problems by, for 
instance, Cole and Huth (1958),  Fung (1965),  Eringen and 
Suhubi (1975),  Georgiadis and Barber (1993a),  and Brock 
(1994, 1995). 

Under this assumption, considerable simplification can be 
gained in analyzing the problem at hand. Specifically, the Gall- 
lean transformation x = x~ - vt, y = x2 can be introduced, so 
that the time derivative in the fixed Cartesian system becomes 

0 0 
v (4) 

Ot Ox" 

In the steady-state, an observer in the moving frame sees no 

variation with time, so that the partial derivative w.r.t t in (4) 
can be neglected and then ( 1 ) -  (3) can be written as 

1 mZ Out Ouy 
- c ~ x  = " + ( m  2 - 2 )  + /30, ( 5 a )  

1 Ou~ m. 20uy 
- -  O ' y  = (m 2 - 2) - -  + - -  + /30, (5b) 
# Ox Oy 

1 Our Ouy 
- r x y  = ~ + m ,  ( 5 c )  
# Oy Ox 

VZu~ + 0[(m 2 -  1)A + /30] _ m2c202u~ = 0, (6a) 
Ox Ox 2 

V2u,  ' + O[(m z -  1)A + /30] _ mzczO2uy = 0, (6b) 
Oy Ox 2 

mc O0 O A 
k V20 + c~ - -  - -  - flTocv, O, (7) 

v 2 0 x  Oxx = 

where (ax, ay, ~-x~,) and (ux, uy) are the components of the stress 
tensor and displacement vector, respectively, m = Ul/V2 > 1 

with v~ = ~/(k + 21-t)/p being the dilatational wave speed in the 
absence of thermal effects and v2 = ~/#/p being the shear-wave 
speed, /3 = /3o (4 - 3m 2) < 0, while c -= Mi = v/v~ and me 
=- 342 = v/vz are the Mach numbers, A = (Oux/Ox) + (Ouy/ 
Oy) is the dilatation, and Vz = (O2/Ox 2) + (02/03,2) is the 
two-dimensional Laplacian operator. 

In addition, the boundary conditions of the problem can be 
written as (see Fig. 1 ) 

~y(X, y = O) = - P 6 ( x ) ,  (8a)  

.r,~,.(x, y = O) = - S 6 ( x ) ,  (8b )  

O0(x, y = O) 
- Q6(x ) ,  (8c)  

Oy 

for all -c~ < x < 0% where 6( ) is the Dirac delta distribution. 
Note that (8c)  implies that no heat flows across the half-space 
surface except under the load; this insulated surface condition 
is a situation often (see, e.g., Barber, 1984; Bryant, 1988) as- 
sumed in contact problems. We now proceed to attack the sys- 
tem of equations ( 4 ) -  (8).  

I n t e g r a l  T r a n s f o r m  A n a l y s i s  

The problem formulated in the previous section will he ad- 
dressed by means of the two-sided Laplace transform pair (van 
der Pol and Bremmer, 1950) 

f * ( q ,  y)  = f ( x ,  y )e-q~dx,  (9a)  

1 fB f ( x ,  y)  = ~ f * ( q ,  y)e'J~dq, (9b) 
r 

where Br denotes the Bromwich path in the complex q-plane. 
Application of (9a)  to the field equations (6) and (7) results 
in a coupled set of ordinary differential equations having the 
following general solutions that are bounded for y > 0: 

u* = -qX+ - qX_ + B,  10) 

u;,* = c~+X+ + cr A~. + q/~, 11) 
b 

0* m2 
= - -  (M+A+ + M_A_), 12) 

b 

where 

A+ = A.,=e-"- +s, B- = B e  ~'Y, (13a ,  b )  
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Fig. 2 The cut complex q-plane for the function V ( q )  = ~ - q~, where 
~- is a positive real constant 

with (A+, A_, B) being arbitrary functions of q and 

c~ - ~/c(r~ + r_) 2 + q ~ - q, 

b = ~ ( -  m2c 2 ~ -  q2, 

2 ~  = ( ( ~  ~ - q + 1 / ~ )  2 + (~ /h) ,  

M,= = -cq[(r+ _+_ r )2 + cq], 

(14) 

(15) 

(16) 

(17) 

when the source speed is subsonic (v < v2). In ( 1 4 ) - ( 1 6 ) ,  ~- 
is a real positive vanishingly small number that is introduced 
merely to clarify the definition of the pertinent branch cuts for 
(c~+, b). Once the transforms are inverted by use of (9b), 7- 
will be allowed to vanish. This procedure is a standard one in 
solution by transform methods, e.g., Carrier, Krook and Pearson 
(1966). The necessary restriction (in view of the forms chosen 
as being bounded for y > 0) that Re (c~+, b) -> 0 in the cut q- 
plane leads to the conclusion that both functions o~_(q) and 
b(q)  should have branch cuts along IRe(q)l > 7- for Im(q) = 
0 (see Fig. 2), while c~+(q) should exhibit branch cuts along 
Re(q) > r,  Re(q) < - [1  + e/(1 - c2)](c]h)  for Im(q) = 
0. It should be noted that two important quantities have been 
introduced in (14) and (16): the thermoelastic characteristic 
length h and the dimensionless coupling constant e. These are 
defined by 

h kv2 T,,(13v2t2 - , e = - -  - -  (18a ,b)  
[zmcv cv \ m / ' 

For typical conducting materials of engineering interest (e.g., 
aluminum, copper, lead, titanium, 4340 steel) the orders of 
magnitude of these two constants are 

h = O(10 H))m, c = O(10-2). (19a ,b)  

Finally, (c~+, M±) can also be written in the alternative forms 

o l + = ~ U M ~ - ( l - c 2 ) q  2, M + = - c q ( p + + p _ . ) 2  (20a, b) 

2p~ = ~/(~ ~ + 3 f ~ )  2 -~ 1/h. (21) 

We complete the general transform solution of the governing 
equations by obtaining from (5), (9a), and ( 1 0 ) - ( 1 2 )  the 
stress transforms 

1 
- or* = T+.4+ + T_,4 + 2q/7, (22a) 
# 

1 
--c~;~. ' = -TA+ - TA - 2qB, (22b) 
[L 

1 ~_, -2qce+AT+ 2qoe /T + T/~, (22c) 
/z b 

where T = (m2c 2 - 2)q 2 = Kq 2, T~ = 2ce~ - m2cZq 2. 
However, before passing to the transformed boundary condi- 

tions that will yield expressions for A+, A_, and B, we note 
that the general solution ( 1 0 ) - ( 1 2 )  and (22) will need to be 
modified for regimes other than the subsonic (v < v2). Some 
of these modifications must await discussion of the asymptotic 

forms mentioned at the outset, but that involving the function 
b(q)  can be introduced now: when the source~eed v > v2 (mc 
> 1), (15) must be replaced with b = q~/m2c 2 - 1, where it 
is understood that evaluation is along the Bromwich contour 
Re(q) = 0, - ~  < Im(q) < c~. This new form is compatible 
with the pertinent radiation condition that states that the solution 
field should not exhibit disturbances that originate at infinity 
and converge toward the source. Indeed, one can observe that 
multiplying the term Bexp(qy~ /~2~  - 1 ) by the term exp(qx) 
appearing in the inversion o p_ey!gjg_R_(gb) gives the solution 
form B e x p [ i l m ( q ) ( x  + y~m2c z - 1)] which, of course, is 
consistent with the physical condition that for v2 < v the material 
in front of the moving source is not disturbed by shear stresses 
and, therefore, that only backward shear waves should exist, 
the term containing x - y m ~ c  2 - 1 being rejected fi'om the 
solution. 

Now, by operating with (9a) on the boundary conditions (8) 
and employing (12) and (22), a system of three equations 
results that can be solved to give 

A+ = _pKa_M__ S2~_bM_ + Q~(K2q  2 + 4a_b) ,  (23a) 
#G #qG m2G 

A = P Ka+M+ + S 2a+bM+ Q ~(KZq 2 + 4a+b) (23b) 
#G #qG m2G 

2c~+c~_b(M4 - M_)  Kb(c~+M+ - ca_M_ 
B = P  - S  

#qG #G 

2/3Kbq(a+ - c~_) 
+ Q m2G 

where the thermoelastic Rayleigh function G is given by 

(23c) 

G = K2q2(a+M+ - a M ) + 4a+a_b(M+ - M_).  (24) 

Combining (10) - ( 12 ) and ( 22 ) with ( 23 ) provides transforms 
for the displacements, stresses, and temperature. These will be 
inverted according to the operation (9b) in the next section for 
some interesting particular cases. 

T r a n s f o r m  I n v e r s i o n  a n d  R e s u l t s  

Equations (23) and (24) show that the transforms ( 1 0 ) -  
(12) and (22) are analytic when Re(q) = 0. Therefore, the 

contour Br in the LaPlace transtbrm (LT) inversion operation 
(9b) can be taken as the entire Im(q)-axis. However, Cauchy 
theory can be used to replace this path in the expressions re- 
sulting from Eqs. (10) - (12), (22), and (23) by integrals along 
a real axis that can be performed numerically. Alternatively, if 
analytical forms are of no interest, then one can resort to a 
direct numerical inversion using (9b) (see, e.g., the method of 
Dubner-Abate, 1968; Crump, 1976; Georgiadis, 1993; Geor- 
giadis et al., 1994, 1995). In this first-step study, however, we 
are interested in analytical forms, and so obtain exact inversions 
for the surface (y = 0) displacements and temperature by first 
extracting pertinent asymptotic expressions for o~± and M+ and 
then employ contour integration and LT inversion tables. The 
surface field itself is useful in this type of problem because any 
related experimental measurements are likely to be made on the 
surface and, in practical situations, wear and cracking occur 
near the surface. 

By asymptotic results, we mean those that are valid when 
either [ x /h  I >> 1 or I x/hl  < 1. Because the thermoelastic 
characteristic length is so small (see (19a)), the first case is 
not very restrictive and, indeed, we will here take the interval 
O(10 6)m < Ixl < c~ to be range of validity. This choice, 
which easily satisfies the asymptotic inequality above, follows 
from Brock's (1994, 1995) study of the similar problem of 
steady-state crack growth using, respectively, full expressions 
and results valid for I x/hl  >> 1. The second case is admittedly 
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not as usefu ! , unless solution behavior very near the moving 
sources is of major interest. Some rather representative results 
for this case are given here mainly for purposes of completeness. 

The expressions for M±, a+, and b arising from asymptotic 
considerations are first recorded, and then some aspects of the 
resulting inversion operations are outlined. It will be seen that 
the very form of the asymptotic expressions depends somewhat 
on the value of the source speed, v. Specifically, by considering 
the case of small Iql (Ix~hi > 1) and large Iql ( I x / h i  < 1), 
we obtain the following results: 

( l a )  Ix/hi > 1 and v < v2 (subsonic range) 

M + ~ - c [ ( l + e ) / h ] q ,  M _ ~ . - c 2 [ e / ( l  + e ) l q  2, ( 2 5 a , b )  

c~+ ~- x/c(1 + e) /h  ~ - q, 

ol ~- ~ - c2/(1 + e) f ~ 5 _  q2, (26a, b) 

b = "~1 - m2c 2 ~ - q2. (27) 

( lb )  Ix /h i  > l a n d v 2 < V < V l ( 1  + e (transonic range) 

M+, a± given by (25) and (26), respectively, and 

b = q ~ 7 7 -  1. (28) 

( lc )  Ix~hi > 1 and v > vl ~/1 + e (supersonic range) 

M±, ol+, b given by (25), (26a), and (28), respectively, and 

a_ ~ q~/c2/(1 + e) - 1. (29) 

(2a) Ix~hi ~ l and v < v2 (subsonic range) 

b given by (27) and 

M+ ~- - ( 1  + e)cZq 2, M _ - ~ - c q e / ( 1  + e)h, (30a, b) 

,~+ ~ 4 7 7 - 7  ( U -  qL 

0/_ ~ ~ ~ T  2 -- q2. (31a, b) 

(2b) Ix/hi ~ 1 andv2 < v  < v t (transonic range) 

M±, a±, b given by (30), (31), and (28), respectively. 

(2c) Ix~hi ~ l and v > v~ (supersonic range) 

M±, a+, b given by (30), (31a), and (28), respectively, and 

a ~ q c ~ -  1. (32) 

Inserting now the above asymptotic expressions in Eqs. (10) - 
(12), (22), and (23) results in forms for the transformed sur- 
face field which in most cases can readily be inverted. Because 
displacements in a steady-state analysis can be determined only 
to within an arbitrary rigid-body motion, the quantities (Oux/ 
Ox, Ouy/Ox) for y = 0 will be obtained by operating on the 
expressions (qu* ,  qu* ) with (9b). These quantities will then 
be integrated indefinitely w.r.t.x. Because no rigid-body motion 
is involved, the inversion of 0* for y = 0 can be performed 
directly. Typical forms of the surface field in the q-plane contain 
terms of the ty_pe 1, 1/9_L__~__,/7- q, l / ( r 2  _ q2), 
r Z ~ - q a / c C 2 -  7 -2 and q l , / r  2 -  q2. Indeed, the first four 
terms yield upon use of LT tables (see, e.g., van der Pol and 
Bremmer, 1950k__Bracewell, 1965) the functions 6(x), 
(1/2) Sgn (x), 4 - T r x H ( - x )  and (1/2r) e x p ( - r l x l ) ,  respec- 
tively, where .sgn ( ) is the signum function, H( ) is the 
Heaviside step function and r is of course a real number such 
that r > 0, 7- ~ 0. The last two of the typical q-forms can be 
inverted by contour integration. For instance, LT inversion of 
the term q / ~ r  2 - q= that appears in ( q u f ,  qua)  for y = 0 
involves the integral 

I ( x ) =  1 I"1 i~ qe q., 
2rr---ii d-.i~ ~ dq, (33) 

where the branch cuts run along (-oo < Re(q) < - r ,  Ira(q) 
= 0) and ( r  < Re(q) < ¢% Ira(q) = 0). Then, by deforming 
the original Bromwich path onto one that includes the large 
quarter-circular paths at infinity in the Re(q) < 0 half-plane 
connecting the point pairs (Re(q) = 0, Ira(q) = +oz), (Re(q) 
= -o% Im(q) = 0 +) and (Re(q) = - ~ ,  Im(q) = 0 ), (Re(q) 
= 0, Im(q) = -oo) and also the straight paths ( - ~  < Re(q) 
< - r ,  Im(q) = 0+), ( - 7  > Re(q) > - ~ ,  Im(q) = 0 ) 
along the pertinent branch cut, and by using Cauchy's integral 
theorem, we conclude that l ( x )  can be expressed as 

1 f l  ~ .qe -qx l ( x )  = -- 7 ~ dq, x > 0. (34) 

An analogous expression for x < 0 can be obtained by de- 
forming the contour in (33) into the right half-plane Re (q) > 
0. The integral in (34) can be obtained directly from the entry 
3.387-6 in the table by Gradshteyn and Ryzhik (1980) as - ( r /  
7r)K~(rx).  Here K~ is the modified Bessel function of order 
unity, and behaves as K~(z) ~ 1/Trz, z ~ O. Therefore, (34) 
becomes 

-1  
l ( x )  = - -  (35) 

rrx 

and it is noted that the parameter r in this case has dropped 
out. The indefinite integral of (35) w.r.t x i s ~ r r ) ~ n  (I x I). 
By a similar procedure, the inversion of ,/72 - qZ/,/q2 _ T2 is 
found to give 1/Trx. 

Some representative expressions for the surface temperature, 
displacement and stress are now given, with the interesting case 
I x /h  I >> 1 presented first for all speed ranges: 

(a) subsonic range (v < v2) 

Pm 2 c 2¢.K 
O(Ixl >> h, y = O) = 6(x )  

/z/3(1 + e)R, 

2Smecaefl2 1 Q~I~ H ( - x )  
+ (36) 

+ rr#/3(1 + e ) R , x  ~/rrc(1 + e) - ~ x  ' 

u~(lx[ >> h, y = O) = P(2fll~fl2 + K) sgn (x) 
2#R, 

Sm 2 c 2/32 2Q/3hc/32 
- - l n ( I x l )  + ln(Ixl), (37) 

7r/zR~ 7r(1 + c)R~ 

uy(lxl > h, y = 0) - Prn2c2/3'----------~ In ([xl) 
7r#R~ 

S(2flt,/32 + K) Q/3hcK 
+ sgn (x) + sgn (x), (38) 

2#R~ 2(1 + e)R, 

~ ( I x l  > h, y = O) = - 2Qtzfl~fh H ( - x )  
mZ~/Trc(1 + e) - ~ x  (39) 

Here /31~ = ~/1 - cZ/( l  + e ) ,  f12 = ~/1 - m2c 2 and R~(v) = 
4 / 3 ~ f l 2  - -  K 2 is the steady-state thermoelastic Rayleigh function 
(Chadwick, 1960). This function has the properties R0 > 0, v 
< VR, and R, < 0, v2 > v > vR,, with VR, being the thermoelastic 
Rayleigh-wave speed defined by the equation RdvR,) = 0, which 
can be solved to yield (Brock, 1994) 

m2vR, = ~/2 (m 2 - 1 ) Go, (40a) 

= _1 ~ "  _dt 
lnGo 

7r J~/¢iTi t 

× tan- ~ 4t2~/~--Z-t 5 (t 2 - 1/(1 + e) (40b) 
(m 2 - 2t2) 2 
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In Eq. (39), only the results for a moving heat source are given 
because they are of particular interest in the type of problems 
we discuss (Barber, 1984). 

(b) transonic range (v2 < v < Vl41 + e) 

0(Ixl >> h, y = O )  p m 2 c 2 e K  IK 6(x) 4/3  Y=1 
#/3(1 + e)X~ L . ~x j 

~/3(1 + E)X~ 

o,g g(-x) 
+ ~/~c(1 + e) ~ " 

uy(Ixt > h , y = 0 )  

- pm2c2/31~ [ ~  l n ( ] x l ) - 2 / 3 t ~ T 2 s g n ( x ) ] l l x X  ~ 

(41) 

S [ 2m2c2~ff/31"T21n(Ixl) a 
I~X~ 

2 2 K 3 ] 
8/3 re'y2 - sgn (x) ] 2 

+ (1Q/3hc---------K--+ e)X, 4 Y 2 1 n ( l x l ) _ _ ~ _ s g n ( x )  ' (42) 

= m 2 2 Here 72 m a c  2 1 and X, = K 4  + 16/3~,'y2. The stress 
Crx([X[ > h, y = 0) due to a.heat source only (P, S = 0) would 
again be given by (39). 
(c) supersonic range (v > Vl41 + e) 

O(Ixl >>h,y :0)=  
pm2 c2eK 

#/3(1 + e)R, 
2Srn2c2eYz ~5(x) 

6(x) -I #/3(1 + e)R, 

Q4-h H ( - x )  
+ 47rc(1 + e) ~ - x  ' (43) 

Pm2c2yt, S(K - 2yl,y2) 
- -  + Uy(lXl ~ h , y  = o) = [ 

2#R, 2~R, 

Q/3hcK ] 
+ 2(1 + e)R~ sgn (x). (44) 

Here Tie = 4c2/(1 + e) -- 1 and now R~ = -4yl~Y2 - K 2 and, 
again, the stress Crx(lXl >> h, y = 0) for (P = S = 0, Q :~ 0) 
remains the same as in the subsonic case. 

It should be noted for the displacements that the relation 
sgn (x) = 1 - 2 H ( - x )  can be introduced by removing rigid- 
body displacements, a procedure used by Eringen and Suhubi 
(1975) in analogous problems. 

As one check on these results, we allow/3 --, 0 in the govern- 
ing equations ( 5 ) -  (7) and Q ~ 0 in the boundary condition 
(8 c), thereby approaching the nonthermal (purely mechanical) 
limit problem. Appropriately, the present results are found to 
become identical to the Cole-Huth (1958) solution in the sub- 
sonic regime (see also Eringen and Suhubi, 1975) and the Geor- 
giadis-Barber (1993a) solution in the transonic regime. 

Finally, the following observations on Eqs. ( 3 7 ) - ( 4 4 )  can 
also be made: (a) the term multiplying Q in the expressions 
for 0(Ix] >> h, y = 0) remains unaltered in the three different 
speed ranges, (b) the In (Ixl)-term multiplying P in the expres- 
sions for Uy(Ixl >> h, y = 0) in the subsonic and transonic 
ranges disappears in the supersonic range, (c) the In (Ixl)- 
term appearing with both S and Q in the expression for this 
displacement in the transonic range disappears in the subsonic 
and supersonic ranges, (d) some field quantities exhibit "reso- 
nance phenomena" when v ~ vR, (see, e.g., Georgiadis and 

Barber (1993b) for a discussion of this phenomenon in the 
nonthermal case). 

We close this presentation by recording without comment 
some expressions for the perhaps less useful case Ix~hi ~ 1 
in the subsonic speed range: 

O(Ixl ~ h, y = o) 

Pm2Kce(41 + ec - x[1 - c z) 

~x(Ixl 

2/z/3(1 + e)h(K 2 - 4 1 +4~-~ec lx/]--f~- c241 m2c 2) 

Q ~  In ( Ix l ) ,  (45) 
× sgn (x) 7r41 + ec 

2Q#/3(41 + ec - 41 - c ~) 
~ h , y = 0 ) =  - 

7rm2c2(1 + c)R 

× [(K/3, + 2 / 3 2 ) K 4 1  + ec R]  l n ( I x l ) .  (46) 

Here R(v) = 4/3~/32 - K 2 is the classical steady-state Rayleigh 
function, with properties R > 0, v < vR and R < 0, v > vR, 
here vR being the nonthermal Rayleigh wave speed. This speed 
satisfies the equation R(vR) = 0 (see, e.g., Eringen and Suhubi, 
1975), and can, therefore, be obtained from Eq. (40) merely 
by setting e = 0. It should also be noted that (45) presented 
the special case S = 0, while P = S = 0 in (46). 

Conclusion 
In this work, the problem of a line mechanical/heat source 

moving over the surface of a half-space was analyzed. This 
problem has applications in contact mechanics and tribology. 
The steady-state coupled thermoelastodynamic theory was em- 
ployed, and the two-sided Laplace transform along with exact 
asymptotic inversions provided expressions for the surface tem- 
perature, displacement, and stress. These expressions showed 
generally that a significant rise in the magnitudes of the field 
quantities occurs in the vicinity of the moving source. Also, the 
behavior of the various field quantities changes radically when 
the source velocity crosses a characteristic wave speed (vR,, u:, 
Vl 41 + e) and passes into a different range. The use of asymp- 
totics was justified because of the extremely small magnitude 
of a thermoelastic characteristic length, h, yet the resulting 
expressions showed clearly the influence of thermal pm'ameters. 
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Diffraction of SH-Waveby 
Interacting Matrix Crac k 
and an Inhomogeneity 
This article presents" an analytical treatment of the dynamic interaction between a 
crack and an arbitrarily located circular inhomogeneity under antiplane incident 
wave. The method is based upon the use of a pseudo-incident wave technique which 
reduces the interaction problem into a coupled solution of a single crack and a single 
inhomogeneity problems. The newly proposed pseudo-incident wave technique avoids' 
the numerical integration commonly used in the boundary element and volume inte- 
gral methods and thus provides reliable and accurate analytical solutions. The re- 
sulting dynamic stress intensity factor of the crack is verified by comparison with 
existing results and numerical examples are provided to show the dependence of 
dynamic shielding and amplification upon the frequency of the incident wave, the 
material combination and the location of the inhomogeneity. The results show that 
the toughening associated with special geometric configurations under quasi-static 
loading may provide undesirable weakening effect upon the crack under dynamic 
loading in a certain frequency region. 

1 Introduction 
Composite materials are generally characterized by heteroge- 

neity, anisotropy, load sharing, and interfaces. Indeed, increas- 
ing evidence suggests that the presence of inhomogeneities such 
as precipitates, transformed particles, fibers, inclusions, and mi- 
crocracks often control the overall failure mechanism of these 
solids; see, e.g., the reviews by Mura (1987) and Evans (1990) 
on the subject. Accordingly, an accurate assessment of the 
toughness of advanced composite materials would necessitate 
the determination of the influence of these inhomogeneities. 

The quasi-static behavior of interacting cracks in a homoge- 
neous medium under plane and antiplane deformations has been 
extensively investigated (see, Rose, 1986; Hutchinson, 1987; 
Kachanov, 1987; Gong and Meguid, 1991, and others). An 
important result of crack interaction is the existence of shielding 
and amplification phenomenon which forms one of the basic 
toughening mechanisms of ceramic composites (Evans, 1990). 
The static interaction between cracks and inhomogeneities has 
also been the subject of various publications. Except for the 
simplified case in which only thermal mismatch is considered 
(Muller, 1994), the general interaction between a crack(s) and 
an inhomogeneity is treated numerically using the integral equa- 
tion method (Erdogan et al., 1974, 1975; Muller and 
Schmauder, 1993). 

In spite of the fact that most advanced composite material 
are considered for use in situations involving dynamic loading, 
dynamic problems of interacting cracks and inhomogeneities 
have received much less attention. Existing solutions which 
account for the dynamic interaction between defects deal mainly 
with crack configurations using the integral transform method 
(Jain and Kanwal, 1972; Itou, 1980), the superposition tech- 
nique (Meguid and Wang, 1994, 1995), and the boundary inte- 
gral equation method (Gross, et al., 1988; Zhang and Achen- 
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bach, 1989; Zhang, 1992). In addition, results concerning the 
dynamic interaction between inhomogeneities are mainly based 
upon boundary integral method (Schafbuch et al., 1990) or 
volume integral method (Lee and Mal, 1994). 

The objective of the present paper is to develop a generalized 
theoretical method to describe the dynamic interaction between 
a crack and an arbitrarily located circular inhomogeneity sub- 
jected to an incident antiplane shear wave. The governing for- 
mulations are based upon the use of a pseudo-incident wave 
technique, which reduces the multiple interaction problem into 
a coupled solution of a single crack and a single inhomogeneity 
problems. As the result of such a reduction, the present method 
avoids the complex numerical integration commonly used in 
the boundary element and volume integral methods and thus 
provides more reliable and accurate analytical solutions. The 
analysis of the crack problem is based upon the use of Fourier 
transform and the solution of the resulting singular integral 
equations, while the stress field due to the inhomogeneity is 
given by making use of the Fourier expansion of the displace- 
ment field. The singular stress field of the crack in the presence 
of the inhomogeneity is then obtained by solving these coupled 
problems. 

2 Description and Decomposition of the Problem 

2.1 Description of the Problem. Consider an elastic in- 
finitely extended isotropic solid containing a matrix crack of 
length 2a and an arbitrarily located circular inhomogeneity of 
radius R; as shown in Fig. 1. The shear moduli of the matrix 
and the inhomogeneity are assumed to be #M and #F, and the 
corresponding shear wave speeds CM and CF, respectively. A 
cartesian (x, y) and a polar (r ,  qS) coordinate systems are used 
to characterize the crack and the inhomogeneity. The distance 
between the right tip of the crack and the center of the inhomo- 
geneity is denoted d and the inclination angle of the inhomoge- 
neity center with respect to the x-axis is denoted 0. The solid 
is subjected to a steady-state antiplane wave and the boundary 
conditions at the surfaces of the crack are assumed traction- 
free. 

The elastodynamic behaviour of the current medium under 
steady-state antiplane deformation is governed by the following 
Helmholtz equations (Achenbach, 1973), 
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~ r  

Fig. 1 

2 0  

A r b i t r a r i l y  located i n h o m e g e n e i ~  near the tip of a m a t r i x  c r a c k  

(V 2 + k~)w = 0 in the matrix (1) 

(V 2 + k~)w = 0 in the inhomogeneity (2) 

in which w is the antiplane displacement, V 2 is the Laplacian 
operator, kM = W/CM, and kF = w/c~. are the shear wave numbers 
with w being the circular frequency of the incident wave. It 
should be noted that, for the sake of convenience, the time 
factor exp( - iwt )  which applies to all the field parameters has 
been suppressed. The nonvanishing stress components can be 
expressed as 

Ow f,aM in the matrix 

Txz = ~ x  ] ,aF in the inhomogeneity 
( 3 )  

Ow f ,aM in the matrix 

"7-YZ = ~Y ~ ,aF in the inhomogeneity. (4) 

2.2 P s e u d o - I n c i d e n t  W a v e  M e t h o d .  The current dy- 
namic interaction problem involves complex boundary and in- 
terracial conditions which result in multiple scattering of elastic 
waves between the crack and the inhomogeneity. As a result, 
it is difficult to solve the original problem directly using the 
traditional Fourier transform method. To overcome these diffi- 
culties, let us focus our attention to two simpler problems which 
involve either the crack or the inhomogeneity, as shown in Figs. 
2 ( a )  and 2(b) .  

In the crack problem (Fig. 2 ( a ) ) ,  the cracked medium is 
subjected to a pseudo-incident wave w[ which is the superposi- 
tion of the real incident wave w ° and the unknown scattering 
wave of the inhomogeneity problem w f, such that 

wi' = w ° + w: .  ( 5 )  

The corresponding pseudo-incident stress field can then be ex- 
pressed as 

7-j~(w}) = %z(w °) + Tjz(w:), j = x, y. (6) 

As a result of this incident wave, a scattering wave w" is formed 
due to the reflection of the crack surface. To ensure that the 
traction-free condition along the crack surface is satisfied, the 
superposition of the Pseudo incident wave and the scattering 
wave should give zero shear stress at the crack surface, i.e., 

~'yz(w~)l=~aok + %,z(wC)lc,.,,~k = 0 (7) 

which provides the boundary condition for the solution of the 
scattering field. 

In the inhomogeneity problem (Fig/ 2 (b ) ) ,  the medium is 
subjected to a pseudo-incident wave wi which is the superposi- 
tion of the real incident wave w ° and the scattering wave of the 
crack problem w", i.e., 

w [ =  w ° + w ~. ( 8 )  

The corresponding pseudo-incident stress can be expressed as 

~-/z(w[) = Tj~(w °) + 7~/~(w"), j = x, y. (9) 

In this case, in addition to the resulting scattering wave w ,f 
in the matrix, a displacement field w ~: is also induced in the 
inhomogeneity. The continuity of the displacement and stress 
fields along the interface between the inhomogeneity and the 
matrix indicate the existence of the following relations: 

W [ ' [ i  ...... ÷ Wgl i  ...... = WFIi  . . . . . .  

T , , ( W [ ) ] i  ...... + '7",,(Wt)linte,. = '7- , , (W")l int~, .  ( 1 0 )  

where r,, is the shear stress along the interface, 
Upon the solution of these two problems, we can build up 

the following superimposed displacement field: 

{ w ° + n," + w r in the matrix 

w = w ~' in the inhomogeneity 
( 1 l ) 

and the corresponding stress field 

~ ~-:~(w °) + ~-j~(w') + Tie(w:) 

'7"]z ~. ~ [ "7"jz ( I'i2F ) 

in the matrix 

in the inhomogeneity 

j -  x , y .  (12) 

The solution given by Eq. ( l l )  satisfies the governing wave 
Eqs. (1) and (2).  

Let us now consider the boundary condition at the crack 
surface and the continuity conditions along the interface. Ac- 
cording to Eq. (12),  the shear stress at the crack surface can 
be expressed as 

%,~[~,.,,~k = %~(w°)l~,-~,ck + %,z(wC)lcr~ck + T y z ( W f ) l c , . a c k  . (13) 

By making use of Eq. (6) ,  the stress given by Eq. (13) can be 
rewritten as 

~-y~l~,,,~k = 7-yz(W~')[~a~k + %,z(W")l,~k = 0, (14) 

which means that the traction-tree condition at the crack surface 
is satisfied. 

Now consider the continuity condition along the interface 
between the matrix and the inhomogeneity. In the matrix, the 
displacement and the shear stress near the interface can be 
expressed as 

wMl i  ...... = W 0 ÷ W c ÷ W f ( 1 5 )  

%(wV) li ...... = %(w °) + %(w") + %(wf) .  (16) 

Equations (15) and (16) can be further rewritten, by making 
use of Eqs. (8) ,  (9) and (12),  as 

wM[in te ,  = W f l i  . . . .  ÷ w f l i  . . . .  = wFI i  ..... (17) 

"r,(wM)li ..... = % ( w [ ) l i  ..... + %,(wY)lin,~, = %,(wF)lint~,. ( l g )  

which indicate the imposition of the continuity conditions along 
the interface. 

f f 

% , s  "w: V ,s 
© 

(a) (b) 
Fig. 2 Pseudo-incident wave method 
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1.0 

To sum up, both the boundary condition at the crack surface 
and the continuity condition along the interlace are satisfied by 
the general solution given by Eqs. (11) and (12). In addition, 
the radiation condition at infinity is also satisfied, since the 
scattering fields (w ~ and w s) vanish at points far from the crack 
and the inhomogeneity and the displacement and stresses given 
by Eqs. (11 ) and (12) tend to the results of the incident wave. 

3 Solution of Dynamic Interaction Problem 
According to the pseudoqncident wave method described 

in the previous section, the solution of the present dynamic 
interaction problem consists of two solutions involving either 
a crack or an inhomogeneity. The pseudo-incident waves that 
they are subjected to are unknown and need to be determined 
in the solution procedure. 

Let us consider the solution of the crack problem first. The 
scattering field of the crack problem is governed by the deforma- 
tion of the crack surface, which can be described in terms of 
the following dislocation density function 

Owe(x, 0 +) 
O ( x ) -  - -  , Ix I -<a.  (19) 

Ox 

This function includes the well-known square-root singularity 
and can be generally expressed in terms of Chebyshev polyno- 
mials as 

,,=o /1 x-5 T,, a a a . (20) 

To maintain the traction-free condition of the crack surface 
(Fig. 2(a))  in the scattering problem, the crack surface bound- 
ary is assumed to be subjected to a shear stress due to the 
pseudo incident wave wi: but in an opposite direction, i.e., 
"Tyz l crack "-~ --q-yz(~42~') t crack. The imposition of this boundary con- 
dition results in a singular integral equation for O(x) from which 
the solution of A, can be obtained. By truncating the Chebyshev 
polynomials to the Nth term, the solution can be expressed as 

2.0 

---te i~- 

- -  CM/C F = 2.0 
............ CM/C r = 1.0 

1 ,5  . . . .  CM/CF = 0 .5  

- -  - -  OM/C F = 0 .2  

- - - CM/C F = 0,1 

1,0 . ~ ~ - - ~ .  

0.5 

o%.o 1:o 2; -3.o 
kMa 

Fig. 4 Effect of the frequency upon the normalized dynamic stress intensity factor 
K* for an oblique incident wave [' = 45 deg 
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Fig. 5 Effect of an inhomogeneity above the crack upon the normalized dynamic 
stress intensity factor K* 

{A} = [S,]{r~'} (21) 

where {A} = {Ai, A2 . . .  AN} "]', {Si } is a known matrix and 

{r; '} = { r , ,  rz . . . .  r . }  T, (22) 

being the boundary stress due to the pseudo-incident wave at 
the collocation points of the crack surface (refer to Appendix 
A for details). According to Eq. (6) ,  this boundary stress can 
be expressed as 

{ri '} = { r  °} + { r  y} (23) 

with { r ° } and {r  s } being the shear stress at the collocation 
points along the crack surface due to the initial incident wave 
and the scattering wave of the inhomogeneity problem, respec- 
tively. According to this solution, the scattering displacement 
of the crack problem along the interface site can be described 
in term of { A } ; as being 

w~(4~) = we(Z, y) = [F~(4))]{A} (24) 

where 

and 

[F~(~)]  = {P,(2-,Y),p2(2-,Y) . . . . .  PN(Z,Y)} (25) 

2-= a + d c o s 0  + Rcos4~ and 

y = d s i n 0  + R s i n q ~  (26) 

with pl ,  P2 . . . . .  PN being known functions given in Appendix 
A. The corresponding shear stress distribution along the inter- 
face site can be expressed as 

r~z(qS) = T~(Z, y) COS q5 + r~z(2-, y) sin 

= [F2(~b)] {A } (27) 

where 

[F2(~) ]  = {ff~(2-, y),  ff2(2-, y)  . . . . .  /7N(2-, y)} (28) 

with pl, P2 . . . . .  fiN being known functions, given in Appen- 
dix A. 

Let us now consider the displacement and stress fields due 
to a single inhomogeneity subjected to a pseudo incident wave 
w f. The governing equations ( ( 1 ) and (2) ) of the present prob- 
lem can be expressed in a polar coordinate system (r ,  ~ )  and 
the displacement field can be generally expressed as 

L • 
H~,')(kMr)[a.e "4~ + b,,e -i''t'] 

/ l = 0  

in the matrix 
wI( r, 4 )  = = (29) 

J,,(kFr)[c,e I''¢ + d,,e -i'~'] 
n=0 

in the inhomogeneity 

where H~, ~ and J,, are Hankel function and Bessel function of 
the first kind, respectively. The solution of a,, b,, c,,, and d,, 
corresponding to an incident wave w{ can be obtained by mak- 
ing use of the continuity condition along the interface, such that 

a,, = [H,,] ~ r ~e "a@ (30) 
c,, t r . X w i  )l,..o~J 

{} L ' 
b,, w, I,°,er ] ,,,¢.. 
d,, = [H,,] ~ I ~e "dO 

L r,.=(we ) lin~e,-J 
(31) 

where 

1 [ H~,I)(kMR) -S,(kt,.R) ] L  

[H,] = - ~ L#MkMH},I)'(kM R) -tZlkFJ'(kF R) (32) 

with the prime ( ' )  representing the derivative. Since the pseudo- 
incident wave of the inhomogeneity problem consists of the 
original incident wave and the scattering wave of the crack 
problem (Eqs. (8) and (9)) ,  then by making use of Eqs. (24) 
and (27),  this solution can be rewritten in term of {A} as 
follows: 

~a" t  = [ H . ] f f ' ( [ F t ( q b )  
I c,, J 

(33) 

-w°(4,) ] 
F2( 4, ) k rL(  qb ) J ) e"6dO 

( 3 4 )  
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Fig. 6 Effect of the position of the inhomogeneity ( e / 2 a )  upon  the normalized 
dynamic stress intensity factor K *  f o r  I-¢M/t~F = 0.1 

where w°(~)  and r~°z(~h) are the displacement and stress fields 
corresponding to the initial incident wave along the inhomoge- 
neity boundary. According to this solution, the resulting shear 
stress at the crack site can be obtained as 

fEz(x) = Try(g, ~)  sin ~ + T~z(7, ~)  COS q5 

= [F3(x)]{A} + {F4(x)} (35) 

where [F3(x)] and [F4(x)] are two known matrices given in 
Appendix B and 

P= ~/d 2 + ( x - a )  z -  2d(x  - a) cos O, 

_ 7r tan_ I d cos 0 - (x - '  a) (36) 
2 d sin 0 

Therefore, the stress at the collocation points of the crack 
surface can be expressed as 

{~-f} = [Sz]{a} + {$3} (37) 

where 

F3(x,)l [F,(x,)l 
[$2] = F3(x2) / " [$3] = (38) . . . .  / 

F3(XN)J LF4(XN) J 
Substituting Eqs. (23) and (37) into Eq. (21) gives 

{A} = [S,]({'r ° } + [S2]{A} + {$3}) (39) 

from which { A } can be obtained as being 

{a} = ( I -  [S,][S2])-~([S,]{'r °} + [$11{$3}). (40) 

According to Eq. (40), the dynamic stress intensity factor at 
the right tip of the crack in the presence of the inhomogeneity 
can be expressed in terms of A, (n = 1, 2 . . . . .  N) as 

N 

K,,, = /ZM~a • a,,. (41 ) 
n = l  

4 Results and Discussions 
The theoretical analysis described in the previous sections is 

used to investigate the dynamic effect of a circular inhomogene- 
ity upon the dynamic stress intensity factor of a matrix crack 
under an incident antiplane harmonic wave. The wave is di- 

rected at an angle F with the x-axis (Fig. l ) and can be ex- 
pressed as 

rxz° = r cos Fe-ikM(xc°sF+ysinF) 

7_y zO ..~ "7" sin Fe ikM(XC°sF+ysinF) 

and 

iT wO(x, y) = _ _  e-ikM( . . . .  r + s s i n r )  

kM#M 

in which ~- is the maximum value of the shear stress correspond- 
ing to the wave front. 

To verify the validity of the current method, consider first 
the quasi-static antiplane interaction between a circular inhomo- 
geneity and a collinear crack with an initial stress intensity 
factor (/go) for which thesolution has been found by Turska- 
Klebek and Sokolowski (1984) using the complex variable 
method. This solution can be predicted by the current method 
for a relatively large crack length (a/R > 3). The normalized 
stress intensity factor (K* = KmlKo) predicted by Turska- 
Klebek and Sokolowski (lines) is compared with that calculated 
by the current method (diamonds) in Fig. 3 for different mate- 
rial combinations using 20 terms in Chebyshev polynomial 
expansion and 40 terms in the Bessel function expansion. In 
view of the excellent agreement observed between the two, even 
for the case where the inhomogeneity is very close to the crack 
tip (e = d - R = 0.1R), the number of terms used in this 
example was retained for the remainder of this study. 

Consider now the general dynamic interaction between an 
arbitrarily located inhomogeneity and a crack. The present for- 
mulations predict the dependence of the normalized stress inten- 
sity factors (K* = Kin~aNna) upon the location and size (d/ 
a, 0 and R/a)  of the inhomogeneity, the material combination, 
the frequency (co) and the incident angle (F)  of the incident 
wave. It should be recognized that the dynamic stress intensity 
factor produced by a time-harmonic wave is in general a com- 
plex quantity. For convenience, only the amplitude of the nor- 
malized complex dynamic stress intensity factor is considered 
in the following figures. Furthermore, only the stress intensity 
factor at the right tip of the crack is considered. 

Figure 4 shows the variation of the normalized stress intensity 
factor K* versus the normalized wave number kMa for different 
material combinations resulting from an oblique (F = 45 deg) 
incident wave, for cases where e/a = 0.2, R = a and PM = 
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DF with p being the mass density. The well-known overshoot 
phenomenon for crack problems is observed for all the cases 
examined. In most of the frequency range considered, the effect 
of the inhomogeneity is governed by the relative modulus c J  
CF. The inhomogeneity exhibits an amplification effect when 
CM/CF > 1 and a shielding effect when CM/CF < 1, although a 
weak amplification effect is observed for kMa > 1.8. 

Figure 5 shows the variation of K* with kMa for the case 
where the inhomogeneity is directly above the crack, with d 2 

= a 2 + (~ + R) 2, 6 = 0.5a, R = a, and pM = p~, subjected 
to a normal incident wave (F = 90 deg). A totally different 
result is observed for low frequencies (kMa < 0.5); softer inho- 
mogeneity (CM/CF > 1 ) exhibits a shielding effect, while stiffer 
inhomogeneity (CM/CF < 1 ) exhibits an amplification effect. It 
is interesting to note that for high frequencies (kMa > 1.2), the 
inhomogeneity provides a shielding effect for all the material 
combinations considered. 

Figure 6 shows the variation of the stress intensity factors 
K* with the distance between the crack and the inhomogeneity 
(e) for different frequencies under normal incident wave (F = 
90 deg) for the collinear configuration with R = a, tZM/#F = 
0.1 and PM = P~:. These results indicate obvious shielding effect 
of the inhomogeneity upon the crack, when e /2a  is small. For 
all the frequencies considered, K* increases monotonically with 
increasing e and then tends to the corresponding single crack 
solution. 

The comparison between Figs. 4 - 6  indicates that the 
shielding effect of the inhomogeneity under static loading con- 
dition is inverted into amplification in a special frequency range. 
However, it is interesting to note that for most of the geometric 
configurations and the frequencies considered, a stiffer inhomo- 
geneity (C~4/CF < 1) will provide a beneficial shielding effect 
upon the matrix crack. 

Let us now consider real material coefficients to demonstrate 
the effect of reinforcing fibers upon matrix cracks. Figure 7 
shows the effect of a SiC fiber (whisker) upon a matrix crack 
in A1203 and Si3N 4 matrices, respectively, for the case where 
the fiber is ahead of the crack. The material constants considered 
for SiC(w) were: E = 490 (Gpa), p = 3.18 (g/cm3); for 
A1203: E = 390 (Gpa), p = 3.99 (g/era3), and for Si3N4: E = 
300 (Gpa), p = 3.2 (g/cm3). The results reveal that significant 
shielding effect of the fiber can be observed for kMa < 2. 

According to the present solution, the dynamic response of 
the crack in some useful limiting cases can be obtained directly. 
When CM/C F --~ 0 and PM/PF : constant, the inhomogeneity 

reduces to a rigid inclusion with a finite mass density; while 
when CM/CF ~ ¢c and PM/Pe -- constant, the inhomogeneity can 
be regarded as a damage zone with zero elastic modulus and 
finite mass density. In addition, when /-ZM/fF ~ ~ and PM/PF---' 
~, the inhomogeneity reduces to a hole which corresponds to 
a fnlly debonded inhomogeneity. 

5 Concluding Remarks 
A general solution is provided to the dynamic interaction 

problem of a matrix crack with an arbitrarily located inhomoge- 
neity under antiplane loading. The analysis is based upon the 
use of a newly developed pseudo-incident wave method. This 
method can be generalized to treat more complex interaction 
problems involving multiple cracks and inhomogeneities. 

The validity and versatility of the present solution have been 
demonstrated by application to specific examples. Furthermore, 
the effect of the location of the inholnogeneity, the material 
combination and the frequency of the incident wave upon the 
dynamic stress intensity factor of the matrix crack and the re- 
sulting shielding and amplification effects are examined and 
discussed. 
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A P P E N D I X  A 

The matrix [St] used in Eq. (21) is given by 

sin \ N + 1 / 

[SI] I = [Slj]' & J -  ( Jvr ) + g j ( x l ) ' s i I 1  

j , / =  1 ,2  . . . . .  N 

where 

gj(x) 

1)O'll)alf~(~--l)Jj(sc)sin(sY)ds j 2n 

1"~/7 ~ - kb Isl -> kM 

ce = ~ . _ i ~ / ~ - _ ~ s  2 tsl < kM 

in which Jj is the first kind Bessel function of order j ,  and 

) xz= a c o s  7r , 1 = 1 ,2  . . . .  N 
+ 1  

being the collocation points along the crack surface. 
In addition, the fdnctions pj and/~ in Eqs. (25) and (28) are 

given by 

ps( x, y) 

I - 1 ) "  sc) cos (sx)e-°dYtds j = 2n + 1 
- a  

l ( - , ) ( " + ' )  f ~  ~a~(sc) sin (sx)e-~*Ylds j =  2n 

~ ( x ,  y) = Xj(x, y) cos 4' + IS(x, y) sin 4 

where 

Xj( x, y) 

(-1)" ff 7 Jj(SC) COS (sx)e alylds j = 2n + 1 

= t.ZMa 

( - l )  `"+'' f[ -j,(SC)s s in  ( s x ) e  ~lyLds j 2n 

a n d  

I S ( x ;  y )  = #Ma s g n  ( y )  

• f7  ( - 1 ) "  Jj(sc) sin (sx)e-"rYl ds j = 2n + 1 

X 

( - 1 ) "  f f  Jj(sc) cos (sx)e--<Ylds j = 2n. 

The following results are used in calculating the above integrals 
involving Bessel functions: 

f Jk(as)  COS (slxl)e-Slylds 

ak c°s  ( Ak  - [B[ 

R R c o s  IBI + [Yl + R s i n  + Ix[ 
2 2 

f •  &(as) sin (slx])e- ' lylds 

_ak sin (Ak - IBI)2 
R Rcos  [BI ÷ lyl ÷ R s i n  

2 2 

\2-]kl2 

where 

R = 4('(y: - x 2 + a2) 2 + 4x2y ~ 

- arccos 22 - xz + as 
B =  R2- 

A = - a r c  tg 

Rsin  IBI + Ix 
2 
R~ 

R c o s  --J + lYl 
2 

A P P E N D I X  B 

The matrices in Eq. (35) are given by 

[F3(x)] = [W,(F, 0)]  sin 4, + [W3(~-, 0)] cos ~b, 

[F4(x)] = [Wz(P-, 0)] sinq5 + [W4(r, 0)] cos 45 

where 
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[W,(r, 0)] = I.tMkM ~ H~,')'(kMr){1, O } [ H , , ]  
n=O 

X f~Tr ~f l( ' )}(e- in( '  '1 '} 
[ F~(~) 

[W2(r, 0)] = IZMkM ~ H~)'(kMt ") { 1, 0 } [H,,] 
n = o  

x [ r  °,,z(~) (e-"'(~-~) 

+ e""¢-'lO)d~ 

+ e'(¢-'~))d~ 

[W3(r, 0)] = i#M ~ nHl,1)(kMr){1, 0} [H,,] 
n = o  

• 

X [ F2(() J - e'"(~-4'))d~ 

[W4(r, 0)] = i#M ~ nH},~)(kMr){1, O}[H,,] 
n~O 

X [ 'T°,-z(~) (e  i,,(~-4,1 _ ei,.e-*~)d(. 
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A Least-Squares Approach to 
the Practical Use of the Hole 
Method in Photoelasticity 
The use of  a small circular hole in elastostatic photoelasticity to determine the stress 
tensor for  any two-dimensional general loading situation is well known. The original 
application required fringe-order information at four points on the boundary, on 
opposite sides, along the axes of  symmetry or principal stress directions. Later, to 
obtain greater precision, it was adapted so that fringe information inside the field 
could be used. This led to the also limited use of  fringe-order information from four 
points at 1.4 and two times the radius of  the hole, along the principal axes of  
symmetry. More recent work has even allowed the use of  fringe-order information, 
at a fixed radius, anywhere along the two principal axes of  symmetry. The greatest 
limitation of  all of  these approaches is that the majority of  the fringe-order informa- 
tion that is available, away .from the axes of  symmetry, is not utilized at all. The 
current work presents a least-squares approach to the hole method that allows the 
simultaneous use of  information anywhere and at any radial distance from the center 
of  the hole inside the stress field. The objectives of  this paper are: to apply the use 
of  the least-squares approach to the hole method in photoelasticity; and, to show the 
consistent and practical application of  this least-squares approach to the hole method. 
The achievement of  this last objective permits the use of  the values of  specimen 
birefringence at a large number of  points, taken from anywhere in the field around 
the hole. 

In troduct ion  

The photoelastic method permits the full-field visualization 
of maximum shear stresses (isochromatics) in two-dimensional 
problems. The maximum shear stress ~-,~,~ at a point is equal to 
one-half the difference between the two principal stresses, C~l 
and or2 in the plane. Though the isochromatics might be well 
characterized, the "separation of stresses," i.e., the determina- 
tion of the individual principal stresses is usually needed, but 
difficult to obtain. The "hole" method, an approach suggested 
by Tesar (1932), is useful to determine the two-dimensional 
stress tensor in photoelasticity. Tesar suggested that an artifi- 
cially created free boundary, a hole in the field, could solve the 
problem of the separation of stresses. Since on free boundaries 
the stress perpendicular to the boundary is zero, and it is one 
of the principals, the value of ~-m,x obtained from the isochro- 
matic at that point gives directly the value of the other principal 
stress. The direction of the principal stresses is given by the 
direction of the two axes of symmetry of the fringe pattern 
around the hole. The values of the far-field principal stresses 
are given by 

or2 = ~(3CrA + aB) (1) 

where o- A and orb are the normal stresses tangential to the edge 
of the hole at the intersection of the edge with the axis of 
symmetry of the fringe pattern (see Fig. 1 ). 
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In almost all cases the precision of the measurements using 
the hole method has been unfavorably influenced by the fact 
that readings of birefringence at the edge of small holes are less 
precise than similar readings in the field because of thickness 
effects, shadows and machining effects on the edge. Also, the 
visibility of fringes is usually poorer at the edge of the hole as 
a consequence of the high gradient of stresses. For applications 
related to photoelastic coatings, the precision of measurement 
at the edge may be lower as a consequence of ( 1 ) the mismatch 
of the mechanical properties of the coating and of the material 
under it, and (2) the size of the hole that must be small with 
respect to the gradient of the stresses in the field, and big with 
respect to the thickness of the coating. These experimental fac- 
tors introduce errors related to the differences in stresses, for 
the cases of plane stress and plane strain. 

Durelli and Murray (1941) pursued the same objective by 
drilling a hole in plastic models and using a new set of equations 
obtained for points that instead of being located at the boundary 
of the hole are located at a distance from the center of the hole 
equal to twice the radius of the hole, i.e., r = 2a (see Fig. 1). 
The equations used to obtain the far-field principal stresses are 

cr, = ~l(7crc + 15cre) 

~r2 = ~(15~rc + 7~rE) (2) 

where ~rc and aE are the fringe order values at points C and E, 
respectively. ~rc and ere are actually the difference between the 
local principal stresses at points C and E, i.e., if p and q are 
labeled as the local principal stresses we can write 

ncfa 
(P - q)t,~=0 = 27- . . . .  [q~=0 = = ~rc (3) 

h 

(P - q)l,~=~/2~ = 2~- .... 14,=(,/a~ = nero = ~7~ 
h 

(4) 
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Fig. 1 Schematic  diagram of a bi-axially loaded infinite plate with a hole 

and these equations are valid only at r = 2a. In the context of 
this paper, for simplicity, the values for the various G's are 
defined to be equivalent to the fringe orders. The suggestion 
was also made for using points located at a distance 1.4 times 
the radius of the hole, i.e., r = 1.4a (Durelli and Rajaiah, 1980). 

Another recently proposed approach (Cfirdenas-Garc~a et al., 
1995) uses the geometry for a bi-axially loaded infinite plate 
with a central hole of radius a shown in Fig. 1. The proposed 
equations are 

in which 

where 

kt = a-z, and k2 = a-!-, (6) 
a3 a3 

aj = 3 c  4 - c 2 -F 1, a2 = 3 c  4 -- 3 c  2 + l ,  

a3 = a ~ - a  2, (7) 

and c = a / r ,  for any value of r. For most practical applications 
the range of r is a ~ r -< 2a. 

Note that the application of Eqs. ( 5 ) -  (7) permits the use of 
any distance r corresponding to the precisely located axis of a 
fringe within the region of practical interest a -< r -< 2a. The 
constants k~ and k2 may be plotted as functions of 1/c = r / a ,  

and may be used instead of Eqs. (6) and (7). It is also easily 
shown that at values of r = a and r = 2a Eqs. ( 5 ) - ( 7 )  reduce 
to Eqs. (1) and (2), respectively. These new equations have 
been presented and evaluated with reference to an experimental 
result and found to be in good agreement (Cfirdenas-Garcla et 
al., 1995). The validity of all of the above equations for plates 
of finite width is something that should also be considered. 
Durelli and Murray (1941), based on work by Nadai, Baud, 
and Wahl (1930), state that: " . . .  the results of photoelastic 
tests agree with the theory to within 5 per cent when the ratio 
B / 2 a ,  width of plate to diameter of hole, is greater than 6.25." 
So we can state with some degree of confidence that if the 
distance from the edge of the hole to the nearest boundary is 
of the order of five to six times the radius of the hole we are 

dealing, for all practical purposes, with a hole in an infinite 
plate. 

The greatest limitation of all of these approaches is that much 
of the available fringe-order information, i.e., that away fi'om 
the axes of symmetry, is not utilized at all. Thus, the objective 
of this paper is to present a least-squares approach to the hole 
method, that allows the simultaneous use of information any- 
where and at any radial distance from the center of the hole. 

The Nonlinear Least-Squares Approach Applied to 
the Hole Method 

The least-squares method is used in regression analysis to 
obtain regression coefficients. Sanford and Dally (1979) and 
Sanford (1980) have pioneered the application of a least- 
squares approach, in conjunction with photoelastic field data, 
to obtain material and other parameters. An excellent summary 
of the use of linear and nonlinear least-squares as it applies in 
experimental solid mechanics is presented in Dally and Riley 
(1991). The basic assumption that underlies this approach is 
that there are always differences between experimental results 
and theoretical values. This general relationship between experi- 
mental results and theoretical values may be expressed for the 
hole method as 

Fi = f ( G i ,  or2) + e l ,  (8) 

where Fi represents the experimental data at some point (ri, <hi ) 
in the specimen; f(G~, or2) represents the nonlinear theoretical 
equation evaluated at (r i, ~,) ,  with undetermined coefficients 
cr~ and ~72; and ei is the random error. The objective in applying 
least-squares is to fit the experimentally obtained data to the 
theoretical solution, and doing it so as to minimize the errors. 
The fact that the undetermined coefficients (G~, G2) in the gov- 
erning equations involve expressions made up of nonlinear 
terms requires that a nonlinear least-squares approach be 
adopted in the solution of this problem. The present work faith- 
fully follows previous pioneering nonlinear least-squares ap- 
proaches but applies the technique to the hole method in photo- 
elasticity. 

Let us then consider the more specific relationships of 
applying nonlinear least-squares to the hole method in photo- 
elasticity. Kitsch (1898) developed equations for the case of a 
circular hole in a uni-axially loaded infinite plate. These equa- 
tions defined the displacement and stress fields around the circu- 
lar hole as a function of location (r, qS) and uni-axial far-field 
stress, or1. The Kirsch results were later modified by Durelli 
and Murray ( 194l ) to obtain displacement and stress field equa- 
tions for a circular hole in a bi-axially loaded infinite plate. The 
difference between local principal stresses, p and q, is coupled 
to the stress-optic law (see, for example, Durelli and Riley, 
1965) by the expression 

nL 
( p  - q )  = 2~  ..... = ' ~  ( 9 )  

h 

where 7- ..... is the maximum shear stress, f~ is the fringe value, 
and h is the plate thickness. Substituting for p and q, taken 

Table 1 Idealized calculation of far-field principal stresses from exact 
fringe data around a hole in a bi-axially loaded plate 

Exact Data Largest Principal Stress Smallest Principal Stress 

Assumed Values -2,00 1.00 
-2.0000 1.0003 Calculated Values 
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from Durelli and Murray (1941),  the expression in Eq. (9) 
becomes 

n~  
( p - q ) = 2 r  ...... = ~ 

h )2 ( 
= 0-2[ (-~-1- -- 1 A sin22(b + 1 - ffl/2Bcos22~ 

L \or2 ~72/ 

+ C  1 +0-- -~/+  1 -  Dcos2~b (10) 
era ./ 

where CT1 and ¢2 are the far-field principal stresses and the 
dimensionless coefficients A, B, C, and D are defined in terms 
of the nondimensionalized radius c. 

A = 9c  8 -  12c 6 -  2c 4 + 4c  2 + 1 ( l l a )  

B = 9c  8 - 12c 6 + 10c 4 - 4c 2 -i- 1 ( l l b )  

C = c 4 (11c)  

D = c2(2 + 6c 4 - 4c 2) ( l l d )  

where c = a/r, where a is the radius of the circle and r is the 
distance to the point of interest. 

In this problem there are two unknowns, 0-1 and 0-2 which 
are related to the experimentally obtained fringe orders ni a t  
positions (r~, qS~ ). The governing equation for the hole method 
problem then becomes 

f i=(p-q)~=(2rm.~) 2= =f(¢l,~r2)+ei (12) 

or 

q-C(lff--~'~/2-k [1- -  ( ~ ~ / 2 ] O c o s 2 ~ ]  " O ' 2 ]  \ i f2/  _] (13) 

To solve this equation in an overdeterministic sense it is rewrit- 
ten in the form of a function 

fk(~, ,  o'2) 

[ ( 0 - ' - ) 2 A ~  + ( B~cos22qSk =o'22 ~ 1 sin2 2~bk 1 - ~7-2] z 
0-2 / 

-~'Ck(l-t-0-~l~2"~'[l--(O'll2]DkCOS2ffrlklo.2,,/ ,0"2/ J 

- = 0 (14) 

where k = 1,2,  3 . . . . .  m and (rk, ~ )  are coordinates defining 
a point on an isochromatic fringe of order nk, which influence 
the values of (A,, Bk, G ,  Dk). A Taylor series expansion of 
Equation (14) yields 

(f~),+~ = (,t•), + \ O a , j i  \Oa2J i  

where i refers to the ith iteration step and A 0.1 and Z ~ a  2 a r e  

corrections to the previous estimates of 0.t and or2, i.e., 

zX¢l = (oq)i+l - (~1)i &0-2 = (~2)i+1 - (~2)i. (16) 

Therefore, the corrected estimates of ~ and ~r2 are 

(cr~),+~ = (~r,)~ + A~,  (~2)i+, = (or2), + Act2. (17) 

If we are very close to the least-squares solution it is clear from 
Eq. (15) that (fk)~+~ = 0, and we can write 

--(fk)i = ( 0~,~ ~0-I -b ( Ofk) ~0_2 (18) 
\00-,/, \Oo-d, 

which may be represented in matrix form as 

{ f }  = [ a ] { & a }  (19) 
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(a) (b) 

Fig. 2 Theoretical light-field photoelastic fringes associated with the bi-axial loading of a plate with a hole; (a) full 
circle image, {b) quarter circle image 
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(a) (b) 

Fig. 3 Theoretical dark-field photoelastic fringes associated with the bi-axial loading of a plate with a hole; (a) full-circle 
image (b) quarter-circle image 

where 

{ f t  = 

of, aA 

f2 [a] = 

Of., 
0o- t 

( Ao-} l ~0.~ J 

0(3"1 00.2 

oA of~ 
00. ,  00" 2 

Of,, 
00.2 

(20) 

and, f o r / =  1 , 2 , 3  . . . . .  m 

f = - [Ai(o-, - or2) 2 sin 2 2~bi 

Jr- B i (o -2  - 0 1 )  2 c os  2 2thl + c4(0.1 + o-2) 2 

+ D~(a~ - 0.~) cos 24,i] (2 ! )  

O f  = [2A~(0.~ - o-z)sin 2 24~ + 2Bi(crl - o-2) cos z 24'i 
c00.j 

+ 2c4(crl + o-2) - 2Di0., cos 2~bl] (22) 

Of,. = [2A/(0.2 - ~71) sin z 2thi + 2Bi(a2 - oh) cos 2 2~bi 
0o2 

+ 2c4(o-1 + o-2) + 2D~0.2 cos 2 ~ ] .  (23) 

The correction factors { Act } may be obtained by the following 
matrix manipulations, starting with Eq. (19),  

[ a i r { f }  = [ a ] r [ a ]{A0 .}  = [c]{A0.}  (24) 

where we have let 

[c] = [a]r['a]. (25) 

Multiplying Eq. (17) through by the inverse of [el  we finally 
obtain 

{Ao-} = [ c ] < [ a ] r { f } .  (26) 

This solution gives the correction factor required to modify the 
previously used values of  0., and o-2 so as to get new estimates 
to iterate to a better fit of  the function { f } to m data points. This 
iteration process is repeated until "acceptable"  convergence is 
obtained, e.g., solution convergence can be made dependent on 
parameters I %  I and l e~21 such that, 

1 % [  = I(o. ' ) '+--J-~-(a')~[ < ( o - , ) ~ + ,  l; 

[%1 = I(a2)'+--J z-(o-2)'l ¢1(o-2),+, (27) 

fall below an acceptable stopping criterion. 

Verification of the Least-Squares Hole Method Ap- 
proach 

To verify the least-squares hole method a three step approach 
is followed. First, the least-squares approach is verified for the 
hole method using exact numerical data taken from the calcu- 
lated values of  the fringe orders for a set of assumed far-field 

Table 2 Results of the calculation of far-field principal stresses from 
light-field isochromatic data around a hole in a bi-axially loaded plate 

Obtained From Light-Field Isochromatics 
Exact Data Number of I Largest Smallest 

Data Points Principal Stress Principal Stress 
Assumed Values -2.60 1.30 

Calc. Values - Set A 60 -2.5713 (1.10%) 1.3139 (1.07%) 
Calc. Values - Set B 50 .2.5988 (0.05%) 1.3046 (0.35%) 
Calc. Values - Set C 20 .2.5971 (0.11%) 1.3164 (1.26%) 

Table 3 Results of the calculation of far-field principal stresses from 
dark-field isochromatic data around a hole in a bi-axially loaded plate 

Obtained From Dark-Field Isochromatics 
Exact Data Number f Largest Smallest 

Data Points Principal Stress Principal Stress 
Assumed Values -2.60 1.30 

(~alc. Values - Set A 60 -2.6127 (0.49%) 1.3002 (0.02%) 
Calc. Values - Set B 60 -2.6060 (0.23%) 1.2942 (0.45%) 
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(a) (b) 

Fig. 4 The photoelastic fringes associated w i t h  t h e  bi-axial loading o f  a plate with a h o l e  
adapted f r o m  ( D u r e l l i  and Murray, 1 9 4 1  ) ;  ( a )  l i g h t - f i e l d  i m a g e  ( b )  dark-field image 

principal stress values. These calculated results are shown in 
Table 1 for a set of 20 points: ten each along the horizontal 
and vertical axes of symmetry, with (r/a) values varying from 
1.0 to 1.45 in increments of 0.05. The data show that the pre- 
dicted values are essentially the same as the assumed values of 
far-field stresses. 

Next, full-field isochromatic data around a hole are generated 
from the theory and plotted as digital images for far-field stress 
values of ~ = -2.60 and or= = 1.30, with a principal stress 
ratio of k = -2 .  Ttie resulting digital images showing light and 
dark-field isochromatics are shown, respectively, in Figs. 2 and 
3. The quarter-cirele representations have been added to show 
the isochromatic fringe detail which is not identifiable in the 
full-circle representations. These digital images were then ana- 
lyzed using SigmaScan/Image TM software (1993) to facilitate 
the data gathering process. The data sets generated were then 
organized and put in an appropriate format for use by a com- 
puter program, written in FORTRAN, to finalize the nonlinear 
least-squares data analysis. The idea is to attempt to duplicate 
the exact procedures that would be followed were actual experi- 
mental images of isochromatic patterns around a circular hole 
in an experimental specimen available, and to gauge the exact- 
ness of the data gathering process. The results are shown in 
Tables 2 and 3, for light-field and dark-field isochromatics, 
respectively, with the resulting discrepancy from the actual re- 
sults shown in parenthesis. In the case of light-field isochromat- 
ics, 100 points are chosen for a basic data set, from which three 
data subsets (labeled A, B, and C) are used as input data. 
Subsets A and B contain fringe data from regions 0 to 4 deg, 
29 to 42 deg, and 84 to 90 deg from the vertical axis of symme- 
try, while subset C contains fringe data from a region 29 to 42 
deg from the vertical axis of symmetry. In the case of dark- 
field isochromatics 120 points are chosen for a second basic 
data set, from which three data subsets (labeled A, B, and C) 
are also used as input data. Subsets A and B contain fringe data 
from regions 0 to 6 deg, 37 to 46 deg, and 85 to 90 deg from 
the vertical axis of symmetry, while subset C contains fringe 
data from a region 37 to 46 deg from the vertical axis of symme- 
try. No attempt is made to correlate the exactness of results 
from the location of the values shown in Tables 2 and 3, nor 
from the number of data points used. The objective is to simply 
show that even for exact, calculated isochromatic data it is very 
possible to generate errors from the data gathering process, as 
would also be the case if the data gathering is from actual 
experimental results. Notice that the largest calculated errors 
are of the order of one percent. 

Lastly, light and dark-field photoelasticity results taken from 
Durelli and Murray ( 1941 ) are used to perform the same analy- 

sis. These are shown in Fig. 4. They were obtained by scanning 
photocopies of these images at a resolution level of 600 dots 
per inch. The experimentally known far-field stress values for 
these photographs are: ¢~ = - 2  and c~2 = 1, which also have 
a stress ratio k = -2 .  The results of applying Eqs. ( 5 ) - ( 7 )  to 
calculate the far-field stresses yield calculated average values 
for c~ and c~2 of -2.13 (6.5 percent error) and 1.19 ( 19 percent 
error), respectively (Cfirdenas-Garcla et al., 1995). For the 
present least-squares analysis, these photographs yield the light 

Table 4 Typical values for light and dark-field photoelastic fringe data 
around a h o l e  i n  a bi-axially loaded plate 
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Table 5 Results of calculation of ¢t and ~= from photoelastic fringe 
data around a h o l e  in  a bi-axially loaded plate for various data sets 

F .... ] ; L a r g e s t  0 _ iL  ; smal lest  . . . . . . .  ' 
i F eld i Radius '/o U nerence % Difference 

Principal from Ideal Principal from Ideal 
i i S ress : Stress , 
i L i g h t  j 1 3 8 1 0 : 2 , 1 8  1 g 1,15 ~ 15 
. . . . .  D § ~  ......... 1 -  -1"30:75 . . . . . . . .  -l~gs- i " 2.5 . . . . . . .  ~ - t 3 0 7 - -  . . . . . . .  T .......... 

i C6mSifialJ6n U 1 3 8 . 8 7 5 : 1 : g 9  0 : 5  1;15 t 5  ....... 

and dark-field photoelastic data shown in Table 4. These data 
sets are also obtained using SigmaScan/Image TM software. 
After organizing these data sets in an appropriate format they 
were processed using the same computer program, mentioned 
above, to finalize the nonlinear least-squares data analysis. All 
of these data points are taken away from the principal axes of 
symmetry. A summary of the results for four separate data sets 
is shown in Table 5: (1) light-field data using a radius of 138 
pixels or picture elements; (2) dark-field data using a radius of 
139.75 pixels; (3) combination of light and dark-field data using 
an average radius of 138.875 pixels; and (4) combination of 
light and dark-field data using normalized radius values ac- 
cording to whether its light or dark-field data. The results show 
that in general the calculated values for at and cr2 are closer to 
the experimental values than those calculated using Eqs. ( 5 ) -  
(7).  

Some sources of error for these calculations may be ascribed 
to the use of an experimental result from a Secondary source 
and also to the method of gathering data. The experimental 
result was obtained from a photocopy of the article cited above 
(Durelli and Murray, 1941 ). The photocopy was then digitized 
with a scanner at an image density level of 600 dots per inch, 
and then analyzed using SigmaScan/Image TM with all the diffi- 
culties inherent to identifying the precise center and edges of 
the hole, and the center of the isochromatic fringes. A further 
source of error which is difficult to characterize is that related 
to the original experiment, i.e., how close is the actual experi- 
ment to the stress values given to characterize it? The only 
assertion that can be made is that nominally the far-field stresses 
are crt = - 2  and a2 = t. The exactness of these values impacts 
the comparison that is made once a calculation utilizing the 
original data is done. 

Discussion, Summary of Results, and Conclusions 
A short review of the use of a small circular hole in plane 

elastostatic photoelasticity to determine the stress tensor for 
any general loading situation has been presented. Originally the 
determination of the stress at four points at the free boundary 
of the hole (r  = a) allowed the far-field stress tensor to be 
obtained. One can increase precision if the measurements are 
taken at points located at a distance from the center of the hole 
equal to 1.4 and even twice its radius (r  = 2a).  Additionally, 
measurements may also be made at any radial distance along 
the principal axes of symmetry, enhancing the possibility of 
accurately obtaining and comparing stress tensor values from 
several measurements of the same photoelastic image. The em- 
ployment of a least-squares approach to the hole method pre- 
sented here also shows that acceptable results may be obtained, 
using data away from the principal axes of symmetry. 

It should also be noted that the application of the hole method 
described above is for situations where a pre-existing hole is 

used for the determination of the far-field stresses. This means 
that the holes are drilled on the specimen of interest before any 
loads are applied to the specimen. Loading the specimen then 
reveals the direction and magnitude of the principal stresses, 
e.g., if we apply Tesar's approach, at the points on the specimen 
where the pre-existing holes are present. There are also situa- 
tions, such as those encountered in the measurement of residual 
stresses, where the hole is drilled after the external loads have 
been applied or after residual stresses have been impressed on 
the specimen of interest. This situation is one which can be 
found in many practical situations, and which could easily be 
addressed by an extension of the method presented in this paper 
using a photoelastic approach. This would require changing the 
governing equation to solve the residual stresses problem. An 
excellent summary of the practical application of this type of 
hole-drilling method using strain gages is presented in Technical 
Note 503-1 (1985) put out by Measurements Group, Inc. This 
technical note details the background to this residual measure- 
ment approach, which also relies on Kirsch's solution (Kirsch, 
1898). Thus, the present approach can be applied, with some 
slight modifications, to the measurement of residual stresses as 
well. This will be the emphasis of a future paper that is in 
preparation by the authors. 

Thus, several objectives have been realized in this paper: 
(1) a brief review of previous developments in the use of the 
hole method, showing that previous approaches are limited in 
their use of available photoelastic data; (2) the development of 
the use of the least-squares approach to the hole method in 
photoelasticity, showing another application where the least- 
squares approach may also be used; and, (3) showing the con- 
sistent and practical application of this least-squares approach, 
using the values of the birefringence at any number, large or 
small, of points taken from anywhere in the field, to the hole 
method. It is anticipated that similar "least-squares hole 
method" approaches may be used to assess the two-dimensional 
stress tensor using other optical techniques such as moir6 and 
holographic interferometry. 
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Determination of 
Noncontributing Forces an.d 
Noncontributin Impulses 
Three-Phase Motions 
Numerous dynamical systems undergo, while in motion, imposition and~or removal 
of constraints. Three phases of motion are involved: a phase during which the motion 
is defined as unconstrained, a phase during which the motion is defined as con- 
strained, and an intermediate, transition phase, when constraints are imposed or 
removed. Noncontributing forces (sometimes called nonworking, reaction forces), 
and noncontributing impulses, namely, impulses associated with noncontributing 
forces in the transition phase, play a central role in the mechanics of systems undergo- 
ing such motions, and are the subject matter o['the present paper. Specifically, a six- 
step procedure is introduced for the determination of noncontributing .forces and of 
noncontributing impulses throughout three phase motions. 

1 Introduction 

Robotic arms performing pick and place tasks, satellites un- 
dergoing docking, drones deploying lift surfaces, and helicop- 
ters releasing cargo provide examples of mechanical systems 
undergoing, while in motion, a change in their number of de- 
grees-of-freedom. This type of motion can be described with 
greater precision with the aid of the system shown in Fig. 1. 
Here, a cone A undergoes a motion in N, a Newtonian reference 
frame, defined as unconstrained. That is, no particles of A are 
in contact with particles of N. Suppose that at time t = T a 
particle R of A hits a particle/~ lying on line L fixed in N; and 
that when t > T, A undergoes a constrained motion in which 
R slides along L. Alternatively, suppose that A moves such that 
R slides along L, that at t = T R is released, and that when t 
> T the motion of A in N is unconstrained. 

One may conclude that the motions mentioned consist of a 
first phase, during which the motion is defined as unconstrained, 
a second, transition phase, when constraints are imposed on the 
motion, and a third phase, throughout which the motion is de- 
fined as constrained; or, alternatively, of a first phase, during 
which the motion is defined as constrained, a second, transition 
phase, when constraints are removed, and a third phase, 
throughout which the motion is defined as unconstrained. 

The present paper deals with the determination of noncontrib- 
uting forces (sometimes called nonworking, reaction forces) 
and of noncontributing impulses (namely, impulses associated 
with such forces) throughout three-phase motions. Such forces 
and impulses can be pointed out in connection with the motion 
of the cone in Fig. 1. For that purpose, let K be a particle of L, 
momentarily in contact with R in the constrained phase. More- 
over, let P be a plane fixed in A, passing through A*, the mass 
center of A, dividing A into two rigid bodies B and C, the 
former containing R, and both having mass centers which lie 
on the line connecting R with A *. Lastly, let/~ and C be particles 
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of B and of C, respectively, coinciding with A*. Examples of 
noncontributing forces are those exerted by R on R and by /3  
on C, and a couple (i.e., a set of forces whose resultant is zero) 
exerted by B on C during the first and third phases; and examples 
of noncontributing impulses are those associated with the indi- 
cated forces during the transition phase. 

Traditionally, the determination of these forces and impulses 
involves the application of three distinct procedures: one for 
the determination of noncontributing forces in the constrained 
phase, one for the determination of noncontributing forces in 
the unconstrained phase, and one for the determination of non- 
contributing impulses in the transition phase. For example, Hus- 
ton (1990, Chapter 10) discusses noncontributing forces in con- 
nection with constrained systems. Kane (1985, Section 4.9) 
introduces the idea of auxiliary generalized speed used to iden- 
tify noncontributing forces. Finally, Levinson and Kane ( 1983 ), 
Fitz-Coy and Cochran (1986), and Rhody et al. (1993) solve 
imposition of constraints problems, introducing sets of equa- 
tions involving both changes in the generalized speeds and 
impulses as unknowns. Noting that these works represent the 
state of the art in the subject matter, one may conclude that no 
work has been dedicated to date to the exploration of interrrela- 
tions between noncontributing forces and impulses in three- 
phase motions, a task undertaken in the present work. 

It will be shown that expressions for noncontributing forces 
in the constrained phase are also valid in the unconstrained 
phase. It will further be shown that the determination of non- 
working impulses can be decoupled from the determination of 
changes in the generalized speeds. Finally, it will be shown that 
it is sufficient to generate expressions for noncontributing forces 
in the constrained phase; that these expressions can be used to 
determine the associated noncontributing forces and noncontrib- 
uting impulses in the unconstrained phase and in the transition 
phase, respectively; and a six-step procedure leading to the 
requisite expressions will be established. This procedure incor- 
porates the indicated observations, and constitute one, unified 
approach for the determination of noncontributing forces and 
impulses in three-phase motions. 

This paper is organized as follows. First, the main results of 
the theory of imposition and removal of constraints (Djerassi, 
1994), which plays a central role in describing the type of 
motion in question, namely, a three-phase motion, are reported 
in Section 2. Next, a six-step procedure for the determination 
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a3 

A *  

B*  

Fig. 1 A cone undergoing three-phase motion 

of noncontributing forces for simple, nonholonomic systems is 
reported, proved and illustrated in Sections 3, 4, and 5, respec- 
tively. The procedure in then extended to a three-phase motion 
in Section 6, and its use is illustrated in Section 7. A few 
comments in Section 8 conclude the present work. 

2 The Theory of Imposition-Removal of Constraints: 
Main Results 

Let S be a simple, nonholonomic system of v particles P~ (i 
= 1 . . . . .  v) of mass m,. possessing ff generalized coordinates 
qt . . . . .  qn and n (where n -< if) generalized speeds u~ . . . . .  
u, in N, a Newtonian reference frame. Let S undergo three 
phases of motion as follows. Phase (a) occurs in the time inter- 
val 0 --< t ~< t~. The motion of S in N is def ined as unconstrained, 
and is governed by n dynamical equations, namely, 

F , . + F *  = 0  ( r =  1 . . . . .  n) (1) 

where F~ and F*  are the rth generalized active force and the 
rth generalized inertia force, respectively (Kane, 1985). Phase 
(b) ,  a transition phase, occurs in the time interval tL -< t -< t2 
where t2 - t~ is "infinitely small ," e.g., as compared with time 
constants associated with the motion of S. Then m constraints 
of the form 

uk = ~ Ck,.u,.+ Dk (k = p  + 1 . . . . .  n) (2) 
r = l  

are imposed on S, where 

p ~ n - m (3) 

and C,,. and D~ are functions of q~ . . . . .  q,~ and time t. In this 
phase, the configuration of  S in N remains unaltered, that is, 

q,.(t~) = q,.(fi) (r  = 1 . . . . .  if), (4) 

and the number of independent generalized speeds reduces from 
n to p.  The relations between u~(t~) ( r  = p + 1 . . . . .  n ) ,  the 
values of  the dependent generalized speeds at t = t2, and u,(t~) 
( r  = 1 . . . . .  p ) ,  the values of the independent generalized 
speeds at t = t2, is given by 

P 

u~(t~) = ~ C,,u,.(t~) + D~ ( k = p  + 1 . . . . .  n ) .  (5) 
r = l  

Additionally, if  the magnitudes of the active forces contributing 
to Eqs. ( 1 ) are all bounded, and if particles of S exert contact 
forces on one another, and, possibly, on members of R, ,  a set 
of particles whose motion is not affected by the forces exerted 
on them by particles of S, then relations between u~(t~) (s = 
1 . . . . .  n) and us(q)  (s = 1 . . . . .  n) are given by 

n n 

(m,.~ + ~ Ck,.mk.~)[udt2) -- u,( t l )]  = 0 
s~ l k=p+l 

( r  = 1 . . . . .  p ) .  (6) 

Here, m,., the element in row r, column s of the mass matrix 
associated with Eqs. ( 1 ), is defined 

Y OvPi  o v P i  
m,.,  ~- - Y ,  m i - -  ( r , s  = 1 . . . . .  n )  (7) 

i i Our Ou,. 

where vP~ is the velocity of P~ in N. Equations (5) and (6) 
fiarnish m + p relations between ur(t2) and u,(t~) ( r  = 1 . . . . .  
n) that enable one to evaluate the former, given the latter, with 
Ck,., Dk, and mrs (k = p + 1 . . . . .  n; r, s = 1 . . . . .  n) calculated 
at t = t~. Phase (c)  occurs when t -> t2. Then the motion of S 
in N is def ined  as constrained, and is governed by p dynamical 
equations, namely, 

t l  

F, + F *  + ~ C~.~(Fk + F ~ )  = 0 (r  = 1 . . . . .  p ) .  (8) 
k=p+ 1 

Removal of constraints is said to take place when Phases 
(a) ,  (b) ,  and (c)  occur in reverse order. The constrained phase 
(now called Phase (a ) ) ,  the transition, removal phase (Phase 
(b) ) ,  and the unconstrained phase (now called Phase (c))  occur 
when 0 -< t -< q,  t~ -< t -< t2 and t -> t2, and are governed by Eqs. 
(8) and (2) ,  ( 4 ) -  (6) and (1) ,  respectively, with tl replacing tz 
in Eqs. (5) .  If Eqs. (2) are satisfied both at t~ and at t2, then 

u~(t2) = u , ( t l )  ( r  = 1 . . . . .  n ) .  (9) 

3 Determination of Noncontributing Forces 
Consider a simple, nonholonomic system S of v particles Pi 

(i = 1 . . . . .  v) possessing n generalized speeds, whose motion 
in N is governed by Eqs. (1) .  Let M be a number such that 0 
< M ~- 3v - n, and let P,,+ ~ . . . . .  P,,+M be a set SM of M particles 
of  S coinciding (momentarily or continually), respectively, with 
P,,+i . . . . .  P.÷M, a set SM of M particles each of which belong 
either to S or to R.  (the indices of P,,+~ . . . . .  P,,+M and P.÷~, 
. . . .  P,,*M are chosen so as to match those of variables intro- 
duced shortly). Let Pj exert a contact force R~ on Pj ( j  = n + 
1 . . . . .  n + M),  and let Rj be defined 

Rj ~ R j 'S j  ( j  = n + 1 . . . . .  n + M),  (10) 

where hj is a unit vector parallel to the line of action of Rj. 
Note that, in accordance with the law of action and reaction, Pj 
exerts on Pj a contact force Rj which equals - R j ,  namely, 

R j=Rjg t j ,  R j = - R j ~ j  ( j = n +  1 . . . . .  n + M ) ;  ( l l )  

and that R,+ i . . . . .  R,,÷M and R,+ ~ . . . . .  R,,+M, called noncon-  
t r ibut ing forces ,  contribute nothing to Eqs. (1) ;  that is, R,,+i, 
. . . .  R,,+M do not appear in Eqs. (1).  With Eqs. (1) in hand, 
however, R,,+t . . . . .  R, FM can be determined with the aid the 
following six-step procedure. 

Step 1. Obtain expressions for vP~ and v'~, the velocities 
in N of Pj and ~ ( j  = n + l . . . . .  n + M),  particles belonging 
to SM and SM, respectively. 

Step 2. Introduce M new variables ~,,~ . . . . .  ~,+M called 
auxi l iary  genera l i z ed  ~peeds, and construct M equations called 
auxi l iary  cons t ra in t  equations,  defining/~,+ ~ . . . . .  /~,+M as linear 
combinations of ut . . . . .  u,,, that is, 

n 

~-k= ~ Ck~u, + ~  ( k = n +  1 . . . . .  n + M ) ,  (12) 
r 1 

where overbars are used as a renfinder to the special nature of 
if,,+ ~ . . . . .  ff,,+M. Regard these as constraints being removed from 
the motion of S and u~ . . . . .  u,,, ~,+~ . . . . .  ~-,+M as independent. 
Accordingly, redefine v~'J ( j  = n + 1 . . . . .  n + M) and v~'~ ( j  
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= n + 1 . . . . .  n + M) as functions of u~ . . . . .  u,,, L~,+i . . . . .  

ff',+M such that (a) when ff',+~ . . . . .  ff,+M are eliminated with the 
aid of Eqs. (12) (which means that the constraint in Eqs. (12) 
are imposed), the expressions for veJ ( j  = n + 1 . . . . .  n + M) 
and vV-J ( j  = n + 1 . . . . .  n + M) obtained in Step 1 are restored; 
and (b)  the M × M matrix having @ ( j ,  r = n + 1 . . . . .  n + 
M),  defined 

(0v" J  0v ~j)  
d~,.~ Off'. Off, "fi~ ( j , r = n + l  . . . . .  n + M ) ,  (13) 

as its element in row ( j  - n) ,  column (r  - n) is of rank M. 
If aj, = +- ~Sj,. ( r  = n + 1 . . . . .  n + M), where ~Sjr is the Kronecker 
delta, then Rj and Rj are said to be forces associated with the 
j th  constraint. 

Step 3. Redefine, in terms of u~ . . . . .  un, ff',+t . . . . .  ff,,+v, 
the velocities of those particles of S not included in SM and SM 
(so that when the constraint in Eqs. (12) are imposed, the 
original expressions for the indicated velocities are restored). 

Step 4. Assuming that the constraints in Eqs. (12) have 
been removed, formulate equations governing the motion of the 
system, including contributions form R~+~ . . . . .  R~+M, R,,+t, 
• . . ,  R,,+M, so that now 

n + M  

f i r + f i r = -  ~ dj,.Rj ( r =  1 . . . . .  n + M )  (14) 
j = n + l  

where Fr + F,.* (r  = 1 . . . . .  n + M) are sums of the generalized 
active forces and generalized inertia forces associated with u,,  
. . . .  u,,, g,+t . . . . .  ft,+u, respectively• (In fact, only the M last 
of Eqs. (14),  namely, those associated with ff,+~ . . . . .  ft ,+v, 
have to be formulated; hence, no extension of the definition of 
aj, is required.) 

Step 5. Solve Eqs. (1) for a,. ( r  = 1 . . . . .  n) .  

Step 6. Use Eqs. (12) to eliminate ff,+l . . . . .  ff,,+M and 
t/-,+~ . . . . .  t~,+M from the M last of Eqs. (14) and solve these 
for R,,+~ . . . . .  R,,+M. 

Next, let P,,+~ . . . . .  P,+M (comprising SM) be M rigid bodies 
of S, each possessing a surface which coincides (momentarily 
or continually),  respectively, with surfaces of P~+i . . . . .  P,+v  
(comprising ~gv), M rigid bodies each of which may belong 
either to S or to RB (a rigid body belonging m S is one whose 
particles constitute a subset of P~ . . . . .  P~). Let ~ exert a 
couple of torque R i on Pj ( j  = n + 1 . . . . .  n + M )  across the 
coinciding surfaces of ~ and Pj, let Rj be defined as in Eqs. 
(10),  and, noting that Pj exerts on Pj a couple of torque Rj 
which equals - R j ,  let Rj and Rj be given by Eqs. (11).  Then 
the six-step procedure for the determination of R,,+~ . . . . .  R,+M 
applies if veJ and vPJ are replaced with offJ and oJ~, the angular 
velocities of Pj and /~  ( j  = n + 1 . . . . .  n + M),  respectively, 
in N. Finally, the procedure applies if P,,+ j, . . . ,  P,,+M and P,,+ ~, 
. . . .  P,,+M are mixed sets of particles and rigid bodies, and if 
R,,+l, . . . ,  R,,+M, R,,+i, . . . ,  R,,+M and R,,+l . . . . .  R,+M are 
interpreted accordingly. 

One may find it helpful to read Section 5 before reading 
Section 4. 

4 Rat iona le  
Let a system of n + M linear equations in M unknowns he 

represented by the matrix equation 

B = AR (15) 

where B and A are (n + M) x 1 and (n + M) x M matrices 
with R,,+ 1 . . . . .  R,,+M, the M elements of R, as unknowns. This 
matrix equation has a unique solution if, and only if, A is of 
rank M and B is in the column space of A (Strang, 1980). 

Now, let A in Eq. (15) be an (n + M) × M matrix of rank M, 
and let the elements in the n first rows be equal to zero. Then 
Eq. (15) has a unique solution if, and only if, the n first elements 
of B equal zero. 

To show this, define an M × M matrix A consisting of the 
M last rows of A; and partition B into an n × 1 and M × 1 
matrices g and B, respectively. Then Eq. (15) can be replaced 
with 

o r  

g = OR (17)  

and 

= AR,  (18) 

where 0 is the n × M null matrix. Because A, like A, is of 
rank M, Eq. (18) has a unique solution, namely, 

R = A LB (19) 

and, if B = 0, R is also the solution for Eq. (16).  If, on the 
other hand, B -~ 0, then Eq. (17) is not satisfied and Eq. (16) 
has no solution. Now, Eqs. ( 1 ), on the one hand, and Eqs. (14) 
(obtained with the aid of Steps 1 -4  and the first part of Step 
6), on the other, are two valid sets of equations governing the 
motion of S in N. However, Eqs. (14) contain both al . . . . .  a,, 
and R,+1 . . . . .  R,,+M as unknowns, whereas the unknowns in 
Eqs. ( 1 ) are al . . . . .  tin. Therefore, Eqs. ( 1 ) are solved for &, 
. . . .  a,,, as in Step 5. Furthermore, with reference to Eqs. (14) 
and (15),  let B play the role of the (n + M) × 1 matrix IF~ 
+ F ~  . . . . .  F,,+M + F L M I  r. Then Eqs. (14) can be brought to 
the form represented by Eqs. (16) if the n first of Eqs. (14) 
are replaced with Eqs. ( 1 ). Such a replacement is valid, because 
Eqs. (1) comprise linear combinations of Eqs. (14) exposed 
when, in conjunction with the removal of Eqs. (12),  Eqs. (14),  
(1) ,  and (12) are regarded as playing the roles of Eqs. (1) ,  
(8) ,  and (2) in Section 2, respectively. Notably, the right-hand 
sides of Eqs. (1) are zero (due to the fact that R,,+~ . . . . .  R,+M 
and R,,+l . . . . .  R,,+M contribute nothing to Eqs. (1) (Kane, 
1985, Section 4.5)).  Thus, the n first of Eqs. (14) are repre- 
sented by Eqs. (17),  and the M last of Eqs. (14) are represented 
by Eqs. (18);  and, since A, here an M × M matrix having aj, 
in Eq. (13) as element in row ( j  - n) ,  column (r  - n) ,  is of 
rank M, a fact established in Step 2, Step 6 can be completed 
in accordance with Eqs. (19),  yielding a unique solution for 
R n + l ,  • • • , R , , + M .  

The following comments are in order. 

(a) Regarding & . . . . .  tL, in Eqs. (14) as unknown, substi- 
tuting Rn+~ . . . . .  R,+M just obtained in the n first of Eqs. (14),  
and solving for at . . . . .  g,, one arrives at precisely the same 
a~ . . . . .  a,, resulting from Eqs. (1).  Hence, R,+t . . . . .  R,,+M 
and those of R,,+L . . . . .  R,,+M exerted on particles of S can 
be regarded as forces compelling the unconstrained system to 
perform a motion characterized by the same generalized speeds 
as those characterizing the constrained system; and therefore 
are interpreted as constraint forces. 

(b) R,,+~ . . . . .  R,,+M do not depend on the choice of auxil- 
iary generalized speeds. This can be shown formally if a choice 
of M auxiliary generalized speeds other than that defined in 
Eqs. (12) is made, say, a, (s = n + 1 . . . . .  n + M);  and if 
note is taken of the fact that the latter can be expressed as linear 
combinations of & (s = n + 1 . . . . .  n + M),  with G,k (s, k = 
n + 1 . . . . . .  n + M),  functions of ql . . . . .  qn and t, as weighting 
factors. Consequently, the M last of Eqs. ( 14 )  give way to an 
alternative set of M equations, each of which is a linear combi- 
nation of the M last of Eqs. (14),  with G,k (s, k = n + 1 . . . . .  
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n + M) as weighting factors; and it is immaterial which of 
these two sets of M equations is solved for R,,+~ . . . . .  R,,+M. 

(C) No auxiliary generalized coordinates have been intro- 
duced along with the auxiliary generalized speeds in Step 2. 
For, if  each instant t is regarded as a point in time t~ at which 
removal of auxiliary constraints represented by Eqs. (12) starts, 
and if qn+l . . . . .  qn+M are M auxiliary generalized coordinates, 
then q,+j(t~) = 0 ( j  - 1 . . . . .  M);  and, since during removal 
of constraints the configuration of S in N remains unaltered, 
q,+ ~( t2) = q,+ /( q ) ( j  = 1 . . . . .  M ) .  Thus, the auxiliary general- 
ized coordinates at t2 always equal zero, and hence need not be 
introduced. 

(d) Particles and bodies of S may appear in SM and SM more 
than once, and be denoted with different indices, as, for instance, 
R, denoted P~ and P6, and/7, denoted P~ and P~ in the following 
example. It is convenient to denote particles and bodies of S 
not included in Sv or in ~g~t with indices other than n + 1 . . . . .  
n + M .  

5 E x a m p l e  

Let the cone A shown in Fig. 1 move so that R slides wRhout 
friction along L, which is assumed to be parallel to n3, a unit 
vector fixed in N. Let n~ (1, 2, 3) be a set of three dextral, 
mutually perpendicular unit vectors fixed in N, and let a~ (1, 
2, 3) be a similar set fixed in A, so that a~, a2, and a3 are 
parallel to central principal axes of A ; and let A 0 be defined 

A# ~_ n~.a~ ( i , j =  1 , 2 , 3 ) .  (20) 

Let MA be the mass of  A, and lAl, IA2, and Iz3 the central 
principal moments of inertia of A for a~, a2, and a3, and define, 
with the aid of ~o A, the angular velocity of A in N, and v a*, 
the velocity of A * in N, the following generalized speeds: 

u~ ~ ¢o a ' a ~  ( r =  1 , 2 , 3 ) ,  u4 ~ v a* 'n~ (21) 

so that 

O,J ~A --  U l a l  + u2a2 + u3a3, V A* = u4n3 + v (21a) 

where 

v -~ r ( - A 1 2 u l  + Alluz)nl 4- r( A22Ul 4- A21u2)n2. (21b) 

Then, with pAlm as the position vector from A* to R, and with 

r .~ _pa* lg .  a3 (22) 

so that 

p a * / R  = - r a a ,  (22a) 

the equations playing the role of  Eqs. ( 1 ) and governing the 
motion of S in N read 

-l~,a, - u~u~(l,,~ - 1~2) 

MAr2Aiz(~jA12 - -  ~ 2 A I j  + Ul/~12 - -  U 2 A l l )  

- MAr2A22(&A22 a2A21 + u l A =  - u2P~2~) = 0 (23) 

IA2a2 -- UlU3(IA1 -- IA3) 

+ M A r 2 A . ( & A i 2  - a2A,~ + u~A12 - u2An) 

+ M a r 2 A 2~( & A= a2A2~ + Ul?~= - u~Pl~) = 0 (24) 

- - 1 A 3 / J 3  = U 2 U I ( I A 2  1,41) = 0 (25) 

- - M a t ~  = 0, (26) 

where e{~, ( i , j  = 1, 2, 3) are functions of Ur ( r  = 1, 2, 3) and 
ofA~j ( i , j  = 1, 2, 3) given by Poisson's kinematical equations. 

Now, in connection with particles/7, R , /~  and C', and bodies 
B and C, let R5 and R6 be forces exerted b y / 7  on R in the n~ 
and n2 directions; respectively, so that both P5 and P6 play the 
role of R, and b o t h / ~  and P6 play the role of /7 .  Moreover, let 

P be perpendicular to a3, let R7 be the torque of a couple exerted 
by B on C in the a3 direction. Lastly, let Rs be the force exerted 
by B on C in the a3 direction. Thus, P7, Ps ,  PT, and P8 play the 
roles of B, B, C, and C, respectively. With R, (i = 5, 6, 7, 8) 
expressed as 

R6 = R6n2, R7 = RTa.~, R8 = R,a3, (27) R5 = R5nl, 

so that 

R5 = - R s n l ,  R 6  = -R6n2, 

R7 = - gva3,  R8 = - Rsa3, (28) 

(where Rs and R6 are forces exerted by R on /7  in the n, and 
n2 directions, respectively, R7 is the torque of a couple exerted 
by C on B in the a 3 direction, and R8 is the force exerted by C 
on/~  in the a3 direction), it is required to determine Rs, R6, R7, 
and Rs. Using the six-step procedure, one has the following: 

Step 1. In view of Eqs. (21a) and (22a) 

v e ~ = v R = [ u 4 + r ( A 3 2 u j - A 3 1 u 2 ) ] n 3 ,  V ~ = V R = 0  (29) 

V e 6 = v  R = [ u n + r ( A 3 2 u l - A 3 1 u 2 ) ] n >  VP6=V e = 0  (30) 

OJ P7 ~ OJ C ~ u l a l  • u2a2 4- u3a3 ,  

o )  p7 = o.J DB = u l a  I + u 2 a  2 -~- u 3 a  3 (31) 

v P8 = v B = u4n3 + v, v/~s = v ¢ = u4n3 + v. (32) 

Step 2. Here, n = 4 and M = 4. In accordance with Eqs. 
(12),  the auxiliary generalized speeds are defined 

~-5 = 0 ,  ~-6 = 0, a7 = 0, ff8 = 0, (33) 

with which yes, V P6, Ifitl 'P7 and vex, on the one hand, and yes, 
vP~, co& and v t'~, on the other, are redefined as follows: 

v e~ = [u4 + r(A32ul - A31u2)]n3 + ffsnl + ff6n2, 

v ~  = 0 (34) 

v e6 = [u4 + r(A32ut - -  A31u2)]n3 -}- ~r~n, + ff6n2 

ve,, - 0 (35) 

OJ P7 = U l a l  -Jr u2a2 --]- u3a3 -t- ~7a3 ,  

03 P7 = u l a l  4- u2a2 + u3a3 (36) 

V P$ = u 4 n  3 + V -~- ~-5nl + ff6n2, 

v p~ - u4n3 + v + ffsnj + ff~n2 - ffsa3. (37) 

Hence, substitutions from Eqs. (33) in Eqs. ( 3 4 ) - ( 3 7 )  restore 
Eqs. (29) - (32).  Moreover, noting that v P~ and vP~ are replaced 
with to e~ and oJ P~ (see Eqs. (31)) ,  and that, in view of Eqs. 
(27),  ~5 = nl ,  ~6 = n2, ~7 - a3 and ~8 = a3, one has 

Or ~, Ov~.  
Offr ~ / ~j = bri ( j , r = 5 , 6 , 7 , 8 )  (38) 

and 

!°° i 1 0 = 4 = M. (39)  rank 0 1 

0 0 

Step 3. V A*, used in the generation of Eqs. ( 2 3 ) -  (26),  is 
redefined as 

V A* = u4n3 4- v 4- ~-5nl + &n>  (40) 

and reduces to the second of Eqs. (21a) when Eqs. (33) are 
used to eliminate if5 and if6. 
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Step 4. Substitutions in the four last of Eqs. (14) leads, 
with simplifications, to 

- - M A r ( - t ~ i A i 2  + a2AH - u l / ~ 1 2  + / , / 2 A l l  q- ~5/r)  = - R 5  (41) 

--mar(--/AiA22 + t~2A21 - uiA22 + u2,421 + f f6/r) = -R6 (42) 

- I c 3 ( f f v  + t(~) - uzu l ( Icz  - l c , )  = - R v  (43) 

M B s  
M c  k MA (u2 + u~) - ~ -- a , 3 r ( - a , a l 2  

+ a2All - ulP~12 + u2Ajt) - A23r ( -a lA22  

+ btzA21 - -  UlJ~22 -}- U2/~21 ) - -  A 3 3 / ~ 4 ]  = ~ g 8  (44) 

where Ic~, lc2, and Ic3 are central principal moments of inertia 
of C, the associated axes having been assumed to be parallel 
to a~, a2, and a3, respectively; Me and M c  are the masses of B 
and C, respectively, and s is the distance between B* and C*, 
the mass centers of B and C. 

Step 5. Equations ( 2 3 ) - ( 2 6 )  are solved for d~ . . . .  t/4. 

Step 6. Equations ( 4 1 ) - ( 4 4 ) ,  together with 

~ 5 = 0 ,  d ~ = 0 ,  # 7 = 0 ,  ~ 8 = 0  (45) 

resulting from Eqs. (33), yield 

R5 = M A r ( - a ~ A i 2  + /J2Aii - ulA12 + U 2 / ~ l l )  (46) 

R6 = mAr( - ( t lA22  + azAzl - uzA2a + u2,42t) (47) 

Rv = Ic3(t3 + UzUi(Ic2 - I c i )  (48) 

M r s  
R~ = M c  - ~ (u~ + u~) 

+ A~3r ( -u~Al2  + uzAu  - ulX~2 + U 2 A l l )  

+ A23r(--~lA:2 + ti2Az~ -- ulA~2: + UZ~L~21) + A33/.~4J (49) 

A different choice of auxiliary generalized speeds, denoted 
here with tilde, is 

~5 = r( -A=2u~ + Al lu~) ,  ~6 = r ( - A z z u 1  + A~lu~), 

/~7 -~ 0, /~8=0 (50) 

with which the six-step procedure leads to the following results. 
Equations ( 2 9 ) -  (32) remain unaltered. Moreover, if ff~ . . . . .  
if8 are replaced with t75 . . . . .  as, respectively, and u4n~ is re- 
placed with u,n3 - v in Eqs. ( 3 4 ) -  (37), then these equations 
remain valid, as are Eqs. (38) and (39). Finally, Eqs. ( 4 1 ) -  
(44) give way to 

--MAd5 = - R s  (51) 

- - M a d 6  : - R 6  (52) 

- - 1 C 3 ( / ~ 7  + a 3 )  - -  U 2 U l ( I c ~  - -  Ic~) = - R 7  (53) 

l l / 1 [  M , s  
c [MA-  (u~ + ub - ~ - A,~  

- -  A23/~6 - -  A~3 /~4 ]  = -R8 (54) 
J 

and, using the time derivatives of as, ~6, a7, and a~ in Eqs. (50) 
to eliminate d5 . . . . .  d8 from Eqs. ( 5 1 ) - ( 5 4 ) ,  one arrives at 
Eqs. ( 4 6 ) - ( 4 9 ) .  

6 Three-Phase Motions, Noncontributing Forces, 
and Noncontributing Impulses 

Let S be a simple, nonholonomic system of n degrees-of- 
freedom, undergoing a three-phase motion involving imposition 
of constraints, as described in Section 1. Let R,,+i . . . . .  R,,+M 
he M noncontributing forces (and/or torques) of interest, and 
suppose it is required to determine Rn+~ . . . . .  R,,+M throughou t  
the motion. 

The six-step procedure can be used to determine R,,+~ . . . . .  
R,,+M during Phase (a). Moreover, one can define, in connection 

with Phase (b), Sj and gj, the impulses associated with Rj and 
Rj, respectively, and Sj, as 

f Y? S t ~ R f l t ,  gj ~ R f l t ,  Sj ~ S j ' ~ i  
I I 

( j = n +  1 . . . . .  n + M ) .  

Then, in view of Eqs. (10), Sj ( j  = n + 1 . . . . .  n + M) become 

f) Sj = R jd t  ( j  = n + 1 . . . . .  n + M), (55) 
I 

and can be obtained if the M last of Eqs. (14) are integrated 
from tl to t2, yielding (Djerassi, 1994, Eqs. (20) and (23)) 

n n+M 

mr~.[u.,(t2) - us(tl)] + ~ m,s[ff,(t2) - V~(tl)] 
s= 1 s=n+ 1 

n+M 

= - ~ d2~S ) ( r = n +  1 . . . . .  n + M ) ,  (56) 
j =n+ l 

where an extension of the indices range of m~.~ in Eq. (7) is 
implied. If, in addition, Eqs. (12) are similarly integrated, the 
result is 

n 

~ ( t 2 )  - ~ k ( t , )  = ~ C ~ , [ u ~ ( t ~ )  - u,(t~)] 
r = l  

( k = n  + 1 . . . . .  n + M ) .  (57) 

Eliminating ffk(t2) - /Tk(tt) (k = n + 1 . . . . .  n + M) from Eqs. 
(56) with the aid of Eqs. (57), one has 

n n+M n+M 

(m,., + ~ C~m,.k)[u~(t2) - u~(tl)] = - ~ ajraj 
s 1 k=n+l  j = n + l  

(r = n + 1 . . . . .  n + M ) ,  (58) 

M equations possessing a unique solution for S,,+~ . . . . .  S,,+~4 
(the coefficients of S~+~ . . . . .  S,,+M are identical with those of 
R,+~ . . . . .  R,+M in Eqs. (14)). Note that ff,(tl) and ffk(t2) (k 
= n + 1 . . . . .  n + M) do not appear in Eqs. (58), and that 
u~(t2) ( s  = 1 . . . . .  n )  are, by virtue of Eqs. (5) and (6), known 
quantities. Furthermore, note that, with expressions for R,,+t, 
. . . .  R,+M in hand, S,,+j . . . . .  S,,+M can be found (more expedi- 
tiously) by direct substitutions in Eqs. (55). Finally, the same 
role played by Eqs. (14) in Phase (a), is played in Phase (c) 
by the following equations: 

n 

F , + F ~ * +  Z 
k=p+ I 

n+M 

= - -  ~ 

j =n+ I 

C~,.(F~ + F~) 

n n+M 

d j , .Ry -  Y,  Ck,. Y~ djkRj ( r  = 1 . . . . .  p )  
k=n+ 1 j - n +  I 

n+M 

/ 7 , . + F # = - ~  dj,nj ( r = n +  1 . . . . .  n + M )  (59) 
j = n + l  

obtained when the constraints in Eqs. (2) are imposed on the 
system, whose motion is regarded as being governed by Eqs. 
(14). Clearly, the M last of Eqs. (59) are identical with the 
M last of Eqs. (14), an observation indicating that the same 
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expressions for R,,+t . . . . .  R,,+M in Phase (a) are valid in Phase 
(c). 

Now, it is implied by Eqs. (14) and (59) that none of R,+~, 
. . . .  R,,+M is associated with the constraints in Eqs. (2) .  How- 
ever, if, in connection with Phase (c) ,  one wishes to determine, 
in addition to R,+j . . . . .  R,,+M, m forces Rp+~ . . . . .  R,, associ- 
ated with Eqs. (2) ,  one can proceed as follows. Regard up+R, 
. . . .  u,, as addit ional  auxiliary generalized speeds (i.e., addi- 
tional to ff,,,+~ . . . . .  ff,,+v) and Eqs. (2) as addit ional  auxiliary 
constraint equation (i.e., additional to Eqs. (12) ). Remove these 
constraints in additions to those defined in Eqs. (12),  introduc- 
ing contributions from the associated forces (and/or  torques) 
Rp+~ . . . . .  R,, and R~,+~ . . . . .  R,, ( in addition to contributions 
froln R,+l . . . . .  R,,+M and R,,+~ . . . . .  R,,+M), and obtain a set 
of equations governing the motion in Phase (c).  Similarly to 
Eqs. (14),  these equations read 

n+M 

F~+/7~  * = -  Z di,.Rj ( r =  1 . . . . .  n + M )  (60) 
j =p+ 1 

where the range o f j  has been extended from j = n + 1 . . . . .  
n + M to j = p + 1 . . . . .  n + M, and where the associated 
extension of the definitions of @ in Eqs. (13) will be reported 
presently and of Rj in Eqs. (10) is implied. Moreover, Eqs. (55) 
and (58) are replaced with the following equations: 

Sj = Rjdt  ( j  = p  + 1 . . . . .  n + M )  ( 6 l )  

n n+M n+M 

(m, ,  + ~ Ck,m,~)[uAt2) - u,( t , ) ]  = - ~ dj,Sj 
s= I k=n+ I j p+ 1 

( r  = p  + 1 . . . . .  n + M ) ,  (62) 

where the extended range o f j  comes into evidence. Now, Rp+j, 
. . . .  R,,+M and Rz,+l . . . . .  RR,,+M, called noncontribut ing forces,  
contribute nothing to Eqs. (1) and (8) ;  that is, Rp+l . . . . .  R,,+M 
do not appear in Eqs. (1) and (8).  Similarly, S,+~ . . . . .  S,,+M 
and g~,+t, • • •, S,+M, called noncontribut ing impulses, contribute 
nothing to Eqs. (6) ,  that is, Sp+~ . . . . .  S,,+M do not appear in 
Eqs. (6) .  With Eqs. (1) ,  (8) ,  and (6) in hand, however, Rt,+~, 
. . . .  R,,+M and Sp+~ . . . . .  S,,+M in three-phase motions can be 
determined with the aid of the following (extended) six-step 
procedure. 

Step 1. Obtain expressions for ve~ and v ~  ( j  = p + 1 . . . . .  
n + M) in the unconstrained phase. 

Step 2. Introduce M new variables ff,,+~ . . . . .  ff,,+M and 
construct M equations defining ~,+~ . . . . .  N,+M as linear combi- 
nations of u~ . . . . .  u,,, that is, 

n 

r=l  

( k =  n + 1 . . . . .  n + M )  (repeated). (12) 

Regard these as constraints being removed and u~, . . . ,  u,,, 
ff,+~ . . . . .  ff,+M as independent. Redefine vP~ ( j  = p + I . . . . .  
n + M) and vet ( j  = p + 1 . . . . .  n + M) as functions of u~, 
. . . .  u,,, if,+1 . . . . .  ff,,-M such that (a) when ff,+t . . . . .  ff,,+M are 
eliminated with the aid of Eqs. (12),  the expressions for vP~ ( j  
= p + 1 . . . . .  n + M )  and v ~  ( j  = p + l . . . . .  n + M) 
obtained in Step 1 are restored; and (b)  the (m + M) × (m + 
M) matrix having @ ( j ,  r = p + 1 . . . . .  n + M ) ,  defined as 

( Ove+ OvA ) 
d j ~  Offr OtL " ~  ( j , r = p + l  . . . . .  n + M ) ,  (63) 

where ar = u~(r = p + 1 . . . . . .  n) ,  as its element in row ( j  - 
p ) , c o l u m n ( r - p ) , i s o f r a n k m  + M .  

Step 3. Redefine, in terms of u~ . . . . .  un, U-n+l . . . . .  ~i+M, 
the velocities of those particles of S not included in SM and SM. 

Step 4. Assuming that the constraints in Eqs. (2) and (12) 
have been removed, formulate equations governing the motion 
of the system, including contributions form R~,+1 . . . . .  R,+M 
and Rp+~ . . . . .  R,,+M, SO that now 

n+M 

F r ' J V  l ~  = -  Z a j r R j  
j=p+l  

(r  = 1 . . . . .  n + M) (repeated) (60) 

(in fact, only the m + M last of Eqs. (60),  namely, those 
associated with u~,+~ . . . . .  u,, ff,,+~ . . . . .  ff,,+M, have to be formu- 
lated). 

S tep5 .  Solve Eqs. (1) for dr ( r  = 1 . . . . .  n)  in Phase (a) ,  
Eqs. (5) and (6) for u~(h)  . . . . .  u,,(tz) in Phase (b) ,  and Eqs. 
(8) for t/,. ( r  = 1 . . . . .  p )  in Phase (c) .  

Step 6. Use Eqs. (12) to eliminate ff,+~, . . . ,  ~,+M and 
ff;,+l . . . . .  ff,,+M from the m + M last of Eqs. (60) and solve 
these for R~,+~ . . . . .  R,,+M. In connection with Phase (a) ,  disre- 
gard expressions for Rp+l . . . . .  R ,  (which equal zero in this 
phase). In connection with Phase (c) ,  eliminate u~,+t . . . . .  u,, 
and dp+~, . . . ,  t/,, form R~,+i . . . . .  R,+M with the aid of Eqs. 
(2) .  In connection with Phase (b) ,  substitute Rp+~ . . . . .  R,,+M 
in Eqs. (61) and integrate to obtain Sp+j . . . . .  S,,+M. 

If removal of constrains is under consideration, then Eqs. 
(62),  in conjunction with Eqs. (9) ,  decree 

S j = 0  ( j = p +  1 . . . . .  n + M ) ,  (64) 

which means that removal of constraints (when governed by 
Eqs. (9))  is an event free of impulses. Then the six-step proce- 
dure apply if Phases (a) and (c) exchange roles, and if those 
parts of Steps 5 and 6 concerning Phase (b) are disregarded. 

7 Example (continued) 
With reference to the example discussed earlier, suppose S 

undergoes a three-phase motion, as described in Section 4, such 
that the unconstrained phase (Phase (a))  is one in which no 
point of A is in contact with points of N. Then, with u5 and u6 
defined as 

u5 ~ v a* 'n~,  u6 ~- v a* 'n2  (65) 

and with the same definitions for u~ . . . . .  u4 as in Eqs. (21),  
oJ a and v A* can be written 

OJ a = u l a l  + u2a2 --1- u3a3 ,  v A* = u 4 n  3 + /b/5111 -q- u6n2;  (65a) 

and the equations governing the motion of A in the uncon- 
strained phase become 

-lalt~l - (Ia3 - l a 2 ) u 3 u 2  = 0 (66) 

- - Ia21; t2  - -  ( I A 1  - -  I a 3 ) U l U 3  = 0 (67) 

- - I A 3 l ~ 3  - -  ( I A 2  - -  IAI )U2Ul  = 0 (68) 

-Mu4  = 0 (69) 

-Mgt~ = 0 (70) 

- M t A  6 --  0 ,  (71) 

playing the role of Eqs. (1) .  With 

V R = V A* "Jv {.l.) A X p A * / R  _~ u4n3 + usnl + u6n2 

+ ( U l a l  + b/2a 2 -[- b/3a3) X ( - - r a 3 )  (72) 

the constraints are 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 587 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V ~' nl = 0, V R" n~ = 0 (73) 

or  

u5 = -rA~zu~ + rAHu~, u6 = -rAazu~ + rA~lUz, (74) 

equations playing the role of Eqs. (2).  Hence, the constrained 
phase (Phase (c))  is the one described in Section 4, and the 
equations of motion are Eqs. ( 2 3 ) - ( 2 6 ) ,  playing the role of 
Eqs. (8).  The transition phase (Phase (b))  is one in which 
contact between R and/~ is established. That is, the constraints 
in Eqs. (74) are imposed, a process resulting in a change in the 
generalized speeds, which, in accordance with Eqs. (5) and 
(6),  can be evaluated if the following matrix equation is solved 
for u~ (t2) . . . . .  u6(t~): 

- r A l z  
- rAz~  

0 0 0 r A ~ M  rA2zM 
--IAz 0 0 - r A i i M  - r A z t M  

0 - la3  0 0 0 
0 0 - M  0 0 

rAil  0 0 - 1  0 
rAz~ 0 0 0 - 1 

u~(h)l 
u~(t~) I 
u,(t:) I 
u~(t~)[ 
u~(tz) I 
u6(tz)[ 

Step 5. Equations ( 6 6 ) - ( 7 1 )  are solved for th . . . . .  /~6 in 
Phase (a) ;  Eqs. (75) are solved for u~(t~) . . . . .  u6(t~) in Phase 
(b);  and Eqs. ( 2 3 ) - ( 2 6 )  are solved for t/~ . . . . .  /~4 in Phase 
(c). 

Step 6. Equations ( 8 5 ) - ( 8 8 )  together with #7 = 0 and 
~8 = 0 (Eqs. (80)) yield 

R~ = Ma~ (89) 

R6 = Ml~6 (90) 

R7 = 1c3a3 + u2b~l(/C2 - Ic1) (91) 

[ _ mas (u~ + u~) + a~3a5 + A23a6 + a33a4]  • R8 = Mc  [_ MA 
(92) 

I--/AI 0 0 0 r A ~ M  rA~zM 
- ~  0 0 - r A H M  - r A 2 i M  

0 - ~ 3  0 0 0 
0 0 - M  0 0 
0 0 0 0 0 
0 0 0 0 0 

u,(t~) 
u=(h) I 
u3(h) I 
u4(t,) [ ' 
us(t,) I 
udt,)l 

(75) 

Under these circumstances, it is required to determine Rs, R6, 
RT, and R8 (see Eqs. ( 2 7 ) - ( 2 8 ) )  throughout the motion. 

Step 1. In view of Eqs. (65a) and (22a) 

v PS= u4n3 + r ( u l a z -  u2a,) + usnt + u6n2, vJ'. ~ = 0  (76) 

v p6 = u4n3 + r(u~a2 - uzal) + usnl + u6nz, vt~ = 0 (77) 

¢~o P7 = u~at + u2a2 + u3a3, ~P7 = ula~ + usa2 + u~a3 ( 7 8 )  

v P8 = u4n3 + btsnl + u6n~, v/~ = u4n3 + usn! + u6n2. (79) 

Step 2. Here n = 6, p = 4, m = 2, and M = 2. The auxiliary 
generalized speeds are defined 

~ 7 = 0 ,  ~ 8 = 0 ,  (80) 

and the constraint equations are Eqs. (74). v e,, V e6, O~ P7 and 
yes, on the one hand, and v ~,  v p~, o~ a~ and v ~ ,  on the other, 
are redefined as 

V vs = u4n3 + r(u~a2 - u2al) + u~n~ + g6n~, V/r~ = 0 (81) 

V e6 = u4n3 + r(ula~ - u2a~) + usn~ + u6n~, v p~ = 0 (82) 

O) P7 = u la l  --~ uza2 + u3a3 + u'7a3, 

¢ot~ = u~a~ + u2a~ + u~a~ ( 8 3 )  

V P8 = u4n3 + bran1 + u6n2, 

v/r8 = uan 3 .+- u s n  I + u6n~ - ffsa3. (84) 

Equation (38) and (39) remain valid. 

Step 3. Here, redefinitions are not required. 

Step 4. Substitutions in the four last of Eqs. (60) lead to 

- Mas  = - R5 ( 85 ) 

-Mr26  = - R 6  (86) 

--Ic3(ff7 + t~3) -- U2UI(Ic2 -- lCl) = -R7 (87) 
[- q MBS 
/ (btl 2 + t't22) -- if8 -- A13/~5 - A23ti6 - A33/~4] 

Mc [ MA 

- g 8  , 
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(88) 

As concerns Phase (a) ,  R5 = R6 = 0, and Eqs. (89) and (90) 
should be disregarded. As concerns Phase (c) ,  Rs, R6, R7, and 
R8 are given by Eqs. ( 8 9 ) - ( 9 2 )  after u5 and u6 have been 
eliminated with the aid of Eqs. (74), a procedure leading to 
equations identical with Eqs. ( 4 6 ) - ( 4 9 ) .  Lastly, $5, $6, $7, 
and $8 can be obtained by substitutions in Eqs. (62). However, 
with Eqs. ( 4 6 ) - ( 4 9 )  in hand, one can obtain $5, $6, $7, and 
$8 more expeditiously by direct substitutions in Eqs. (61 ). Thus, 
if both sides of Eqs. ( 4 6 ) - ( 4 9 )  are multiplied with dt and 
integrated from ti to t2, one has, noting that Rs, R6, R7 and R8 
are linear functions of t/~, d2, 1i3, and r/a, and that the functions 
ofu~ . . . . .  u4,A o, and P~,j ( i , j  = 1, 2, 3) appearing in Eqs. (46) - 
(49) are all bounded (hence become zero when integrated from 
h to tz), 

$5 = M a r { - a x 2 [ U l ( h )  - ul (h) ]  

+ A.[u2( t2 )  - u2(h)]}  (93) 

$6 = M t r { - A 2 2 [ u j ( h )  - ul(fi)]  

+ A21[u2(tz) - u2(f i)]}  (94) 

57 = Ic3[u3( t2)  -- u 3 ( t l ) ]  ( 9 5 )  

S, = M e  {A33[u4(/2) - u4(tl)] 

+ r(-A12A13 -- A22A23)[ul(t2) - t,q(tl)] 

+ r(At iAl~  + A21Az3)[u2(t2) - u2(tl)]}. (96) 

8 S u m m a r y  

Noncontributing forces and noncontributing impulses were 
discussed in connection with dynamical systems undergoing 
three-phase motions, and an efficient procedure for their determi- 
nation has been proposed. Accordingly, it has been shown that 
the noncontributing forces Rr+~ . . . . .  Rn+M need to be determined 
only in connection with the constrained phase, and that, With 
these in hand, noncontributing forces and noncontributing im- 
pulses throughout the motion can be obtained straightforwardly. 
Thus, the m first of these equal zero in the unconstrained phase 
and the associated expressions should be disregarded. Moreover, 
being functions of ul . . . . .  u,, and al . . . . .  dn, Rp+l . . . . .  R,+M 
are valid in the constrained phase, provided up+~ . . . . .  u, and 
dp+l . . . . .  d, have been eliminated. Finally, (simple) integration 
of Rp+l . . . . .  R,+M leads to Sp+l . . . . .  S,+M in the transition 
phase, impulses which are zero if constraints are removed. 
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The preceding discussion of noncontributing impulses empha- 
sizes one central feature of the theory of imposition of constraints, 
reported briefly in the Introduction, namely, the evaluation of 
uk(t2) (k = 1 . . . . .  n) with Eqs. (5) and (6), without impulses 
having been brought into the analysis. This may lead to signifi- 
cant simplifications in the formulation of problems where systems 
undergo a change in their number of degrees-of-freedom, as in 
the works by and Levinson and Kane (1983), Fitz-Coy and 
Cochran (1986), and Rhody et al. (1993). 
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Modeling the Dynamic Response 
and Establishing Post-buckling/ 
Post Snap-thru Equilibrium of 
Discrete Structures via a 
Transient Analysis 
Results of a transient analysis developed to model the dynamic response and establish 
post-buckling~post snap-thru equilibrium of discrete structures are presented. Three 
systems that exhibit unstable buckling characteristics are analyzed. The analysis 
consisted of first statically loading the structures up to there respective static limit 
loads. The structure is then perturbed from their critical state and a transient analysis 
is used to model the ensuing dynamic response. The transient formulation is first 
applied to two simple one-degree-of-freedom systems consisting of rigid links, springs, 
dampers, and lumped masses. The first of these systems was an arch with a point 
load applied at its vertex. This structure admits dynamic snap-thru response when 
loaded beyond its limit load. The second system was a model of a eurved panel under 
an applied axial end-shortening. This system exhibited dynamic buckling behavior 
consisting of a large decrease in the resultant axial load when loaded beyond its 
limit load. The transient analysis was then applied to a finite element model of a 
cylindrical shell with a cutout under an applied axial compression load to model the 
dynamics of the global buckling response upon reaching its limit load. The results 
from this study illustrate the usefulness of the transient analysis in modeling the 
dynamics of an unstable structural response and establishing equilibrium beyond any 
points of instability. 

Introduction 
The analysis of structures that admit an unstable buckling or 

snap-thru response can be a difficult task. Many of these struc- 
tures have the added complication of clustered bifurcation 
points. A transient analysis, i.e., one that incorporates dynamic 
effects during the transition from one equilibrium state to an- 
other, offers a novel approach to solving problems associated 
with unstable equilibrium points. Throughout this text, the ter- 
minology used is similar to that described in standard texts on 
Elastic Stability Theory, such as Brush and Almroth (1974). 
Many structures are designed to operate in the post-buckled 
state such as the skin of aircraft wings or fuselage. Often during 
flight, these structures experience compressive loads, and thus 
their buckling response characteristics must be considered in 
the design process. Current methods of numerical nonlinear 
static analysis are sufficient in modeling the response of many 
structures, even some that exhibit unstable buckling, despite 
the fact that when the structure undergoes unstable buckling a 
significant amount of kinetic energy is associated with the tran- 
sition from one equilibrium state to another. By unstable buck- 
ling, we mean situations that correspond to an unstable equilib- 
rium path immediately beyond buckling, or a maximum load 
point. Thus, bifurcation buckling with a corresponding negative 
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slope in the initial post-buckling response as well as limit load 
instabilities fall into this category. In some cases of unstable 
buckling, difficulties can arise when a purely static approach is 
adopted. In these instances, a transient analysis can be used to 
supplement the inherent static approach. When such a combina- 
tion is adopted, it becomes a convenient and useful tool for the 
determination of the load carrying capacity of the structure, a 
task that may be prohibitive if only a static approach is adopted. 

The recent focus on the development of a transient analysis 
as described in Riks and Rankin (1994) and Rankin et al. 
(1996) was driven by the need for an analysis technique that 
could locate the post-buckled equilibrium solutions of complex 
structures that have clustered bifurcation points. Their work was 
motivated by the fact that the standard "arc length" method 
(Riks, 1972) used in many finite element routines failed to 
converge to any equilibrium solutions beyond the limit load of 
these structures. This failure is due to the degenerative nature 
of the solution beyond the limit load since, in the post-buckled 
regime, several closely spaced bifurcation equilibrium paths 
are encountered. In some cases, the finite element routine may 
provide solutions beyond the limit load, but this does not guar- 
antee convergence onto the correct equilibrium path. The re- 
sponse of a cylindrical shell subjected to an axial compression 
load is a good example of a structure that has these characteris- 
tics. Thus, the essence of the solution technique proposed and 
demonstrated herein, consists of first carrying out a static analy- 
sis of a particular structure up to an unstable equilibrium point. 
Then, a perturbation is applied to the structure at this point. 
The damped equations of motion associated with the dynamic 
response triggered by the perturbations are next solved and the 
large time response of the structure is sought. Over time the 
structural damping dissipates the kinetic energy in the system 
and a new stable equilibrium position is obtained. The analysis 
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Fig. 1 Model 1: simple arch 

associated with the motion of the structure from one equilibrium 
position to another is referred to as a transient analysis. 

The present paper focuses on the details of such a transient 
analysis that has been developed to aid in establishing post- 
buckled/post snap-thru equilibrium of structures that exhibit 
unstable response characteristics when loaded beyond there 
limit loads. The transient analysis alleviates solution problems 
associated with structures that have clustered bifurcation points. 
This paper utilizes two simple one-degree-of-freedom systems 
made up of rigid links, springs, dampers, and lumped masses 
to illustrate the transient analysis and is then extended to a finite 
element format to model the dynamic collapse of a cylindrical 
shell. 

Model and Analysis Description 

One-Degree-of-Freedom Systems. 

Snap-thru of an Arch. The first system modeled the dy- 
namic snap-thru response of an arch with a vertically aligned 
point load applied at its vertex. The arch was modeled with a 
simple one-degree-of-freedom system made up of two rigid 
links, a lumped mass, a spring and a damper (see Fig. l ). The 
lumped mass represents the mass of the structure while the 
spring provides stiffness to the system and the damper provides 
structural damping during the dynamic response. The equations 
of motion were developed using the modified form of La- 
grange's equations to include damping. Let £ denote the La- 
grangian for a discrete system defined by 

L ~ C -  V,  ( l )  

where C and V denote the kinetic and potential energy of the 
system, respectively. Let y denote the solution vector, ~ and 
ki denote the ith constraint equation and the ith Lagmnge 
Multiplier, respectively. Let f denote Rayleigh's Dissipation 
Function defined as follows: 

n n 
J 

i - I  j = l  

where cij denotes the damping matrix and y~ and yj denote the 
velocity components associated with the respective degrees of 

Ll  

p 

L l k 2.. 

Note: 1) . . . . .  denotes deformed configuration 
2) some elements left out for clarity 

Fig. 2 Model 2: curved panel 
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Note: . . . .  denotes deformed configuration 

Fig, 3 Modified version of model 2 

freedom. Then the modified form of Lagrange's equations of 
motion are given by Greenwood (1988) 

0 0£ 0£ + - - +  k ~ - - = O .  (3) 
Ot Oy Oy Oy i=1 

The first step of the analysis consists of solving for the static, 
pre snap-thru response of the structure by neglecting the acceler- 
ation and velocity components in Eq. (3). The static equilibrium 
equations for a discrete system under load control where the 
load P is prescribed can be represented by 

R,~(P, y) = 0. (4) 

The subscript s signifies the static state. For a simple one- 
degree-of~fi'eedom system it is sufficient to use an incremental 
solution technique in which P is increased and the static equilib- 
rium equations, (4), are solved iteratively at each step. To do 
this in the present study, a nontrivial, kinematically admissible 
initial guess of the solution was made and then a Newton- 
Raphson method was used to correct the solution until a suitable 
convergence was met. When possible, the algorithm used the 
previous step's solution as the initial guess to the current solu- 
tion. The Hessian (stability) matrix and the load versus end- 
shortening (A)  response was monitored at each step to identify 
the critical load (Per) of the structure. That is, Per is obtained 
when the condition H(y,  Pcr) = 0 where H denotes the determi- 
nant of the Hessian, associated with the system of static equa- 
tions. Let the solution of (4) at P = Per be denoted by y*, 
then by definition 

R,(Pcr-, y*) = 0 (5) 

where Pc,.- is the value of P just below Pc,. To initiate the 
transient analysis, the system is perturbed from a state as defined 
in (5). In the case of a load control problem, the perturbation 
is in the form of an incremental increase in the load P. Let P 
= Pc,-- + dP, where dP is a perturbation to the load parameter 
as seen in Fig. 5. Note that, P,,_ + dP > Per. Due to the 
perturbation, the solution vector y becomes y (t) = y* + w (t), 

Z,W 

v 
x,u-~ " 'v AF pLb 

fT 

Fig. 4 Geometry and mesh for the finite element model of a cylinder 
with a cutout 

where w(t) is the perturbation to y(t)  as a result of dP. Then 
(3) can be represented by 

Rd(P~.,. + d P ,  y(t))  = 0 (6) 

where the subscript d signifies a dynamic state and the solution 
vector y is now a function of time. To model the dynamic 
response, (6) is cast as an equivalent first-order system (Brenan 
et al., 1975) and solved using a standard time integration 
scheme. Note that, with the addition of the incremental load, 
the system is no longer in equilibrium for y(t)  = y*. Thus, for 
the system to regain equilibrium at the prescribed load (Pc,- + 
dP), it moves via a dynamic jump path (signified by w(t))  to 
a new stable equilibrium configuration (see Fig. 5). 

Buckling of a Curved Panel. The second system is represen- 
tative of the buckling of a curved panel under an applied axial 
end shortening. A simple one-degree-of-freedom representation 
of the curved panel consisted of a lumped mass, rigid links, 
springs, and dampers as seen in Fig. 2. The curvature of the 
panel is changed by varying the height h. At an h of zero, the 
representation reduces to that of a flat plate. Let k, and k denote 
the axial and circumferential stiffness of the system, respec- 
tively, and let A denote the applied end-shortening of the sys- 
tem, as indicated in Fig. 2. 

Although this system appears more complicated than the arch 
model, it is still a one-degree-of-freedom system. The circum- 
ferential springs in Fig. 2 can be collapsed down into one spring 
of stiffness kc as shown in Fig. 3 where 

L2 - x/L 2 + hLl sin at + (Li sin O1) 2 
kc = k (7) 

(Li sin 0 l )  2 

The analysis of the curved panel model followed a similar rou- 
tine used for the arch model. The first step was to solve for the 

6.0 

4.0 

P ~ r  

2.0 

0.0 

Dynamic Jump Path 

1.0 1.5 2.0 
®/®cr 

Fig, 5 Load versus theta curve for model I illustrating the dynamic jump 
path 
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Fig. 6 Theta versus time step for model 1 during snap-thru 

static pre-buckling response of the system by neglecting all 
acceleration and velocity terms in Eq. (3).  The static equilib- 
rium equations for a system under displacement control can be 
represented by 

R , ( A ,  y)  = 0 (8) 

where A is the applied end-shortening and the subscript s de- 
notes the static state. A similar iterative solution technique as 
for the arch problem is used where A is increased and the 
static equilibrium Eq. (8) is solved at each step. The Hessian 
(stability) matrix was monitored to determine at what critical 
displacement Ac,. the structure loses stability. That is, A,.~ is 
obtained when the condition H(y, A,r) = 0, where H denotes 
the determinant of the Hessian, associated with the system of 
static equations and P denotes the resultant axial load on the 
panel. Let the solution of (8) at A = A,.~_ be denoted by y*,  
then by definition, 

R~.(Acr , y* )  = 0 (9) 

where Ac,-  is the value of the end shortening A just below the 
critical end-shortening ~cr. The transient analysis is initiated 
by applying a perturbation to the system at a state defined by 
(9) .  For the displacement control problem, the perturbation is 
in the form of an incremental increase in the end shortening A. 
Let A = Z2~cr_ -I- dA, where d A  is a perturbation to the end- 
shortening as seen in Fig. 7. Note that Act-  + d A  > Act. The 
perturbation is applied to the system at y = y*.  Due to the 
perturbation, y becomes y ( t )  = y* + w( t ) ,  where w( t )  is the 

1.0 
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0.8 
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0.6 

P,% 0.5 
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0.2 
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0.0_ ~ 
0.0 

: dA 

~ i\i 4 Dynamic Jump P a t h  

f n P r e - b u c k l i n g  Path ~x-~.a~" a S t a t i c  E n d  S h o r t e n i n g  a l o n g  P o s t - b u c k l e d  Path 
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0.5 1.0 1 5 2.0 
~tAcr 

Fig. 7 Load end-shortening response curve for model 2 illustrating the 
dynamic jump 

perturbation to y( t )  as a result of dA.  Then Eq. (3) can be 
written 

Rd(A,,. + d A ,  y ( t ) )  = 0 (10) 

where the subscript d signifies the dynamic state of the system 
and y is a function of time. To model the dynamic response, 
(10) is cast as an equivalent first-order system (Brenan et al., 
1995) and is solved using a standard time integration scheme. 
With the addition of the perturbation d ~ ,  the system is no 
longer in equilibrium for y ( t )  = y*. Thus, for the system to 
regain equilibrium at the prescribed end-shortening (A, ,_  + 
d ~ ) ,  it moves via a dynamic jump path (signified by w( t ) )  to 
a new stable equilibrium configuration (see Fig. 7).  

Finite Element Model. A circular cylinder with a rectangu- 
lar cutout under an applied axial compressive load was modeled 
using the STAGS finite element code. More details about 
STAGS can be found in Brogan et al. (1994).  The finite element 
mesh was created via a user.written subroutine that worked in 
conjunction with the STAGS code (see Fig. 4).  The cylindrical 
shell analyzed in this paper has a circular cross section with a 
radius R = 20.32 cm (8.0 in.) and length L = 35.56 cm (14.0 
in.) as seen in Fig. 4. The centrally located cutout is 2.54 cm 
by 2.54 cm (1.0 in. by 1.0 in.) with re-entrant corners of radius 
R,.,. = 0.127 cm (0.05 in.) as seen in Fig. 4. Clamped boundary 
conditions were used for the cylinder model. In the model, the 
v and w degrees-of-freedom were set to zero in a region ex- 
tending a length Lp = 2.54 cm (1.0 in.) on each end. These 
conditions were imposed in an attempt to model similar clamped 
boundary conditions proposed for experimental testing. The bot- 
tom of the cylinders were then held fixed while the axial com- 
pressive load was applied via a prescribed end shortening A as 
shown in Fig. 4. The cylinder wall is an eight-ply laminate with 
a stacking sequence of [_+45/0/90],.  The thickness of each ply 
is nominally 0.0127 cm (0.005 in.) giving the laminate a total 
thickness of t = 0.1016 cm (0.04 in.). The lamina properties 
were as follows: longitudinal modulus E~ = 127.8 GPa (18.5 
Mpsi) ,  transverse modulus E2 = 11.0 GPa (1.6 Mpsi) ,  in- 
plane shear modulus G~2 = 5.7 GPa (0.832 Mpsi),  and a major 
Poisson's ratio u~2 = 0.35. Here we have adopted commonly 
used notation for continuous fiber laminates as discussed in 
Jones (1975).  

The general form of the equations for a discretized structure 
in a finite element code is 

[M]{•'(t)} + [ C ] { a ( t ) }  + { f (~ . , u ( t ) ) }  = 0  (11) 

where M is the mass matrix, C is the damping matrix, u(t) is 
the matrix of nodal displacements, and f (X,  u(t)) is a set of 
nonlinear functions of the nodal degrees-of-freedom and load 
parameter, X, that describe the internal stiffness and external 
loads. Thus, it follows that the tangent stiffness matrix, K = 

P/l~r o.a0 
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Fig. 9 Load versus end-shortening response of cylinder model 

(Of/Ou). A dot above a variable denotes a derivative with 
respect to time. In the context of this displacement control prob- 
lem, X is the applied end-shortening as seen in Fig. 4. A similar 
analysis format used in the one-degree-of-freedom systems is 
extended to the finite element model. The static, prebuckling 
response of the cylinder was sought by neglecting the accelera- 
tion and velocity terms found in ( 11 ) producing the equilibrium 
equations 

f ( A ,  u) = o. (12) 

Equation (12) is solved using a standard arc length method 
under displacement control. This is carried out until an unstable 
equilibrium point is identified. STAGS identifies an unstable 
equilibrium point when a negative root appem-s in the tangent 
stiffness matrix. Let A~,._ denote a value of end-shortening at 
the last solution step before the step that admits the first negative 
root in the tangent stiffness matrix. At this point the static 
solution is stopped and the transient analysis begins where the 
static solution left off. The transient analysis is initiated by 
applying a perturbation in the form of an incremental increase 
in the applied end shortening dA to the cylinder while holding 
the resultant load state in the cylinder constant. Equation ( 11 ) 
then becomes 

[M]{a(t)}  + [C]{a( t )}  

+ {f(Ac,-  + d ~ , u ( t ) ) }  = 0. (13) 

Once perturbed, the cylinder will dynamically move towards 
its new equilibrium configuration. To model the dynamic col- 
lapse of the cylinder, Eq. (13) is solved using a time-step inte- 
grater provided in STAGS. Rayleigh's proportional damping of 
the form 

[C] = a[M] + fl[K] (14) 

is used in STAGS where a and fi are mass and stiffness damping 
factors, respectively. Assuming the response will be dominated 
by one frequency, a and fi can be calculated from the following: 

c~ = 27rut 

/3 = --~- (15) 
2Try, 

where v is the lowest frequency obtained from a linear vibration 
analysis and ~ is the fraction of critical damping with values 
ranging from 0.05 to 0.2. It was found that for the initial stages 
of the transient analysis setting ~ = 0.05 and setting fi = 0 in 
Eq. (15) allowed for rapid growth in the kinetic energy of 

the system. Once it was determined that the motion was well 
developed, ~ = 0.15 was used in Eq. 15 for a and ft. The kinetic 
energy of the system was monitored throughout the analysis. 
Once the kinetic energy dissipated, the transient analysis was 
terminated and the new equilibrium configuration obtained. 

Results 
The first model studied successfully produced the dynamic 

snap-thru response of an arch under load control, and demon- 
strated the ability to establish post snap-thru equilibrium via a 
transient analysis. As seen in Fig. 5, with the onset of a perturba- 
tion of the form dP with the system at its critical configuration, 
the structure moved dynamically towards a new equilibrium 
position. With the aid of structural damping, the kinetic energy 
was removed from the system over time and the new post snap- 
thru equilibrium configuration was established as seen in 
Fig. 6. 

The second model studied successfully produced the dynamic 
buckling response similar to that of a curved panel under dis- 
placement control, and demonstrated the ability to establish a 
stable post-buckling equilibrium configuration via a transient 
analysis. A seen in Fig. 7, when a perturbation of the form dA 
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was added to the system at an unstable equilibrium point, the 
structure moved dynamically towards a new stable equilibrium 
position. As before, structural damping was used to remove the 
kinetic energy in the system and establish the new post-buckled 
equilibrium configuration as seen in Fig. 8. Once post-buckling 
equilibrium was established, the structure was then loaded stati- 
cally in order to obtain additional results corresponding to the 
post-buckled equilibrium response as seen in Fig. 7. 

The cylinder model (STAGS analysis) was loaded statically 
producing a load-shortening response curve as seen in Fig. 9. 
The first unstable equilibrium point identified in the solution 
(point 9 in Fig. 9) corresponded to a local buckling phenomena 
as evident by the distinct cusp in the load end-shortening curve. 
The local buckling response is due to the existence of the cutout. 
In this case the arc-length method was able to map out the 
unstable local response of the cylinder. It must be noted that if 
the end-shortening is increased beyond the value corresponding 
to step 9, then the cylinder will dynamically jump to the post- 
buckled equilibrium path below. While this possibility exists, 
and was investigated, it is not included in the discussion since 
the numerical static solver was able to proceed without any 
numerical difficulty beyond this point. Our focus was confined 
to those situations where the static approach failed to yield a 
converged solution, as was the case when the cylinder ap- 
proached the collapse load (point 27 in Fig. 9). Thus, the static 
loading continued until the global collapse load was reached 
and the transient analysis was implemented. The axial load 
history during the collapse of the cylinder is shown in Fig. 10. 
For the first 0.002 seconds the load oscillates rapidly with large 
amplitude. The high-frequency oscillations are expected for 
such a structure, but the large amplitude of the oscillations is 
mainly due to the fact that there was no damping applied in the 
initial stages of the transient analysis. Once damping was ap- 
plied at around 0.001 seconds, the amplitude of the oscillations 
decreased. At point A on the load history curve, the deformation 
of the cylinder is local to the cutout. During the collapse of the 
cylinder the deformations become more wide spread as seen at 
point B. Once the kinetic energy of the cylinder has completely 
dissipated, the global collapse mode is obtained as seen at point 
C on the load history. 

Concluding Remarks 
The details of a transient analysis has been presented and 

then used to establish post-buckling/post snap-thru equilibrium 

of three selected discrete structural systems. The results ob- 
tained have shown that the transient analysis is effective in 
establishing the correct post-buckling or post-snap through equi- 
librium path for the systems studied under either load control 
or displacement control loading. In the cmTent paper, via some 
simple one-degree-of-freedom systems, the effectiveness and 
the methodology of the transient analysis has been demon- 
strated. The extension of the transient analysis was then made 
to the STAGS finite element code to demonstrate the effective- 
ness of this method on the analysis of a composite laminated 
cylinder, containing a rectangular cut.out and subjected to an 
axial compression load. In addition to being a useful technique 
in solving problems of the type discussed here, the transient 
analysis models the true dynamic nature of the response of a 
structure at an unstable equilibriurn point and follows the evolu- 
tion of the response as a function of time as seen in the collapse 
of the cylinder. 
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Critical Velocities of a Harmonic 
Load Moving Uniformly Along an 
Elastic Layer 
The critical (resonance) velocities of  a harmonically varying point load moving 
uniformly along an elastic layer are determined as a function of  the load frequency. 
It is shown that resonance occurs when the velocity of  the load is equal to the group 
velocity of  the waves generated by the load. The critical depths of  the layer are 
determined as function of  the load velocity in the case the load frequency is propor- 
tional to the load velocity. This is of  importance for high-speed trains where the 
loading frequency of the train wheel excitations is mainly determined by the ratio 
between the train velocity and the distance between the sleepers (ties). It is shown 
that the critical depths are decreasing with increasing train velocity. It is concluded 
that the higher the train velocity, the more important are the properties of  the ballast 
and the border between the ballast and the substrate. 

1 Introduction 

With the development of high-speed trains it is necessary to 
take into account the wave processes in the railroad track and 
the supporting soil due to the train. Important for practice are 
so-called critical regimes of the train motion when the amplitude 
of the track vibrations increases significantly. If the vibrations 
of the train wheels are negligible, the critical regime is deter- 
mined by the velocities of the train near the Rayleigh wave 
velocity in the subsoil (Cole and Huth, t958; Lansing, 1965; 
Payton, 1967; Miklowitz, 1978; Dieterman and Metrikine, 
1996). But as measurements show (Kjorling, 1993), the excita- 
tions at the sleepers become significant for high-speed trains 
and to predict the critical velocities it is necessary to investigate 
the motion of a harmonic load along the track. There are many 
investigations devoted to this problem (Fryba, 1972; Bogacz et 
al., 1989; Dean, 1990; Vesnitsky and Metrikine, 1993; Knothe 
and Grassie, 1993; Metrikine, 1994); however, most of them 
are dealing with one-dimensional models for the track. 

In the present paper we model the track-supporting ballast 
as an elastic layer and the train-sleeper excitation as a uniformly 
moving harmonically varying point load. The choice of an elas- 
tic layer model for the ballast is given by the following reason- 
ing. Despite the wave guide nature of the ballast, the resonance 
will be mainly in the'vertical direction due to the reflections at 
the transition of the ballast and the supporting soil. 

We define the critical velocities as the load velocities at which 
a steady-state amplitude of the layer vibrations is infinite. The 
resonance is not only derived at the point of loading, so it is 
not related to the point character of the load. It is shown that 
resonance occurs when the velocity of the load is equal to the 
group velocity of the waves generated by the load. The critical 
velocities are determined as a function of the load frequency 
for a Poisson's ratio of the layer u = 0.3. Since the main 
frequency of a train wheel excitation is determined as the ratio 
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of the train velocity and the distance between the centers of the 
sleepers (Kjorling, 1993), the critical depths of the layer can 
be determined as a function of the train velocity. From the 
analysis it is concluded that the higher the train velocity, the 
more important are the properties of the ballast and the character 
of the border between ballast and the substrate. 

2 Model and Governing Equations 
Let a harmonically varying concentrated toad of amplitude 

P and frequency f2 be applied normally to the surface of an 
elastic layer and be moved along a straight line at a constant 
velocity V as shown in Fig. 1. The equations of the layer motion 
read as 

02u 
/,t•2U + (~, + /Z)~7(~TU) = p O t  2 , (1) 

where u(x,  y, z, t) = (Ul(x ,  y, z, t),  U2(x, y, z, t), U3(x, y, 
z, t) ) is the vectorial displacement, k and # are LamEs constants 
for the elastic layer, and p its mass density. 

Assuming that the layer is fixed at the bottom and free at the 
top, regardless the loading point, we have the following bound- 
ary conditions at z = 0 (the bottom) and at z = - H  (the top) 

u(x,  y, 0, t) = 0, (2) 

~-xz(x, y, - H ,  t) = ~-yz(X, y, - H ,  t) = 0, (3a) 

Crzz(X, y, - H ,  t) = -Pe-~n'6(y)~5(x - Vt), (3b) 

where ~rzz(x, y, z, t) is the normal stress, ~-xz(x, y, z, t) and 
~-yz(X, y, z, t) are the shear stresses, H is the depth of the layer, 
and /~(...) is the delta function. As shown by Lamb (1904), 
the equations of motion for the layer ( 1 ) are satisfied by letting 

U~ = 0-Z + 02~0 
Ox OxOz 

u2 = 0_~_~ + 02___0_~ 
Oy Oy Oz 

U3 = 0 2  + 02gj 1 02~ 
Oz Oz 2 c~ Ot 2 ' 

(4) 

provided that two so-called stress functions ~o(x, y, z, t) and 
~0(x, y, z, t) are solutions of the three-dimensional wave equa- 
tions 
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V2(t 9 = 1 02~p 
c~ Ot 2 (5) 

V2 ~ _ 1 02qO 
c' 2 0 t  2 (6) 

in which cl = ~/(k + 2#)@ is the velocity of the compressional 
waves (P-waves) and c, = ~ is the velocity of the shear 
waves (S-waves). In terms of these stress functions the normal 
stress a~ becomes 

~7<~ = c--~ Ot 2 z # t ' ~ E -  + Oz 3 ] - 2p --OzOt 2 (7) 

and the shear stresses T~ and ~-y~ become 

(02~o O~q, '~ 0~0 
7-~z= 2# ~ + OxOz2j - P OxOt 2 

(8) 

02qo 030 ) 030 

ryz = 2# OyOz + OyOz2 J -- p 0~-~ 2 " 
(9) 

3 Steady-State Displacements 
The general expression for the steady-state displacements 

of the layer can be derived by applying exponential Fourier 
transforms over time and spatial coordinates x and y. We define 
these transforms as follows: 

× exp{ i(cot - klx - kzy) }dtdxdy 

= ~(x ,  y,  z, t) 

× exp{i(cot - k~x - kzy)}dtdxdy.  (10) 

Application of the integral transforms (10) on the governing 
Eqs. (1) - (3), using the expressions ( 4 ) -  (9), the following 
system of equations results: 

• For the equations of the layer motion, 

_ ) 02f .  + - k~ - k~ f =  0 
Oz 2 

0:----~g + - k~ - k~ g = 0. ( l l )  
Oz 2 

• For the boundary conditions at z = 0, 

Og 
f + ~ z  = 0  

~ 2  
O f  + OZ___g + 0 (12) 
O-T Oz 2 ~ g = 

• For the boundary conditions at z = - H ,  

---?-S+ .I-L-rz  +5-2z3 ) 

0g 
+ 2Qm2-~Z = -27rP6(co - fl - k iV) .  (13) 

The general solutions of the Eqs. ( 11 ) are 

f = Bl (k l ,  kz, w)  sinh (zRt) + Bz(kl ,  k2, co) cosh (zRi), 

g = B3(kl, kz, co) sinh (zRt) + B4(kl, k2, co) cosh (zR,), 

Rl., = ~/k~ + k~ - coZlc2.~. (14) 

Substituting (14) into the boundary conditions ( 1 2 ) - ( 1 3 )  
yields 

B2 + RtB3 = 0 

coZ 
RjBi + R2tB4 + c2 B4 = 0 

21-z(RiB1 cosh (RtH) - RiB2 sinh (Ri l l )  - RZB3 sinh (R,H) 

+ RZB4 cosh (RtH))  + pco2(-B3 sinh (R,H) 

+ B4 cosh (RtH))  = 0 

cozh 
c~ (-B1 sinh (RtH) + B2 cosh (Ri l l ) )  

+ 2 # ( - R ~ B i  sinh (RtH) + RZB2 cosh (RtH) 

+ R3B3 eosh (R,H) - R]B4 sinh (R,H))  

+ 2pco2(R,B3 cosh (R,H) - R, B4 sinh (R,H))  

= -2rrP6(w - f't - k tV) .  (15) 

When solved for B~(i = 1 .. 4) system (15) gives 

Bi = A i / A ,  (16a) 

where 

A = 4x2RtR, y + x2(4R~Rt  2 + y2) sinh (RtH) sinh (R,H) 

- RtRt(4x 4 + y 2) cosh (R~H) cosh (R,H) ,  

A~ = Tx2( y sinh (R,H) - 2RtR, sinh (RiH) )6(co - f~ - kW)  

= Aii6(co - -  ~ - -  klV) ,  

A 2 = TRtR,( y cosh (R,H) - 2x 2 cosh (RtH))6(co - ~2 - k lV)  

= A 2 2 6 ( c o  - ~ - -  k iV) ,  

A3 = TRt( 2x  2 cosh ( RiH) - Y cosh ( RtH) ) 6 ( co - ~2 - kl V ) 

= A 3 3 ~ ( c o  - Q - klV) ,  

A 4  = TRt(2RtR, sinh (RtH) - y sinh (RtH))6(co - f2 - k lV)  

= A 4 4 6 ( c o  - ~ - k l V ) ,  

x 2 = k~ + k~, y = 2x 2 -  co2/c~, T =  27rP/#. (16b) 

• In accordance with the representation (4), expressions (14), 
and solution (16a), the Fourier-images U n ( k l ,  k 2 ,  z ,  c o )  of the 
layer displacements U,(x,  y,  z, t) are given as 
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U1 = iklQ(kl, kz, z, co), Ua = ik2Q(k,, k2, z, co), (17a) 

in which 

1 
Q = S (Z2Xl sinh (zRi) + A2 cosh (zR~) 

+ R,A3 cosh (zRt) + R,A4 sinh (zR,)) 

and 

1 
03 = ~ (Ri(Ai cosh (zRt) + Az sinh (zRi)) 

+ x2(A3 sinh (zR,) + Z2k4 c o s h  (zgt))) ,  (17b) 

4 Crit ical  Veloc i t ies  of  the Load  

The critical velocities of the load as a function of the load 
frequency will now be determined. These velocities are defined 
as the load velocities at which a steady-state amplitude of the 
layer vibrations is infinite in all points of the layer (excluding 
the fixed plane z = 0). Thus the resonance is not related to the 
point character of the load. 

We will prove that resonance occurs when the velocity of 
the load is equal to the group velocity of the waves generated 
by the load, i.e., the necessary condition for resonance can be 
mathematically formulated as 

dco = V, (18) 
k=k* 

where co = co(k) is the dispersion relation for the layer (this 
relation is the solution of dispersion equation A(co, k) = 0 and 
A is determined by (16b)), k = (k~, k2), V = (V, 0), k* i s a  
wave vector of the radiated wave. Indeed, in accordance with 
(17), the expression for the amplitude of the layer vibrations 
in a-direction (for x and y-directions all arguments are the same) 
can be rewritten as 

U3(x, y, z, t) = A(w, k,~--~zi exp{ -i(cot 

- klx - k2y)}6(co - ~ - kiV)dcodkldk2 

L L F ( ~ 2 + k , V ,  kl, k2, z) 
= ~([~ -~ klV, k i l l  ; exp{- i ( ( f~  

+ k ~ V ) t -  k l x -  k2y)}dkldk2, (19) 

where 

F(co, kl, k2, z) = R/(AH cosh (zRl) + A22 sinh (zRl)) 

+ X2(~33 sinh (zR,) + A44 cosh (zR,)). 

Now we will formulate a theorem for the determination of the 
critical velocities of the load. 

Theorem. Consider the double-integral 1 = f]= f ~  ( dxdy / 
D(x,  y)) ,  where D(x, y) is an analytical function and (1/ 
(D(x,  y)))  is integrable at infinity. The integral I diverges if 
there exists a real isolated root (x*, y*) of the equation D(x,  
y) = 0 for which (OD/Ox) = (OD/Oy) = 0 at (x, y) = (x*, 
y*). 

The proof of this theorem is given in the Appendix. The 
integrand in Eq. (19) satisfies all the conditions of the theorem. 
Its zeros are related to the zeros of R~ and R,. The order of the 
zeros of the numerator and denominator of the integrand are of 
the same order as is easily shown by a Taylor series expansion. 
So, the integral (19) will.be infinite when equation A(f~ + k~V, 
kt, k2) = 0 has an isolated real pair of roots (k~, k~) for which 
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Fig. 2 Dispersion relations for four lowest modes 

0A 0A = 0. 
F ( f ~ + k * V i k * , k * , z ) ~ O  and ~ k~=k;=~22 k,=~; 

k2=k 2 k2=k 2 

The equation A = 0 can be formulated as w = co(k) and, 
consequently (expression Eq. (a) ,~ Eq. (b) means that Eq. 
(a) is equivalent to Eq. (b)): 

A(f~ + kiV, kl, k2) = 0 ,~ ~ + klV = co(k) 

0A 0co 
- 0 ~ V = - -  

Okl Ok~ 

O A Oco 
- 0 ~ 0 = - - .  

Ok2 Ok2 

Thus, the criterion of resonance is 

Oco kl=k ~ = Oco h=*; = V, 0, 
k2=k ~ Ok2 kz=k~ 

which is the same as Eq. (18). 
Therefore we can use the criterion (18) to determine the 

critical velocities of the load. Due to the isotropy of the layer 
in the horizontal plane, (Oco/Ok2) = 0 when k2 = 0 and only 
for this value of k2. Thus, to determine the critical velocities it 
is sufficient to solve the following set of equations: 

A(co, kl, 0) = 0 

co = f~ + k~ V 

Oco 
- - =  V (20) 
Ok~ 

where the first equation is the dispersion relation for the plane 
waves in the layer, travelling along the x-axis, the second equa- 
tion reflects the equality of the phase of the vibrations of the 
moving load and the phase of the radiated waves at the point 
of loading and the third equation is the condition of the equality 
of the group velocity of the radiated waves and the load velocity. 

The graphical solution of the system (20) is depicted in Fig. 
2. The family of curves co = co(k1) shown, represent the disper- 
sion relations for the four lowest modes of the layer vibrations 
and the straight line co = f~ + k~ V is the so-called "kinematic 
invariant," see Vesnitsky (1991) (in this paper this concept 
has been elaborated). Actually the kinematic invariant repre- 
sents the Doppler effect of the moving harmonic load, i.e., the 
phase shift klV between the load frequency f~ and the radiated 
wave frequency co. When this straight line is tangential to one 
of the dispersion curves, the group velocity dco/dk~ of ol~e of 
the radiated waves is equal to the velocity of the load V (the 
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tangent of the angle between the kinematic invariant and k~H- 
axis). 

The frequencies and wave numbers of the radiated waves are 
determined by the coordinates of the cross points between the 
kinematic invariant and the dispersion curves. Thus, to obtain 
the critical velocities of the load as a function of tile load fre- 
quency, we have to analyze the relation between the slope of the 
kinematic invariant at its tangential behavior with the-̀  dispersion 
curves and the coordinate of the cross point of the.' kinematic 
invariant and wH/c,-axis. 

The result of this analysis is shown in Fig. 3 for the Poisson's 
ratio of the layer u = 0.3. Each curve is related to a mode of 
the layer vibrations (we considered the four lowest modes). 
For example, the lowest curve is related to the first shear mode 
and at zero load velocity it gives the lowest layer eigenfrequency 
(~-/(2r,.), with r,, = H/c,) for shear excitations, as is easily 
verified. Further we have the curves related to the first compres- 
sional, second shear, and third shear mode, respectively. The 
coupling of the modes in the layer (see Fig. 2 and Ewing et al. 
(1957)) leads to a nonmonotonous dependence of the group 
velocity on the wave number. For instance, for the first and 
third mode, the group velocity is increasing, than decreasing 
and increasing again with increasing wave number. It results in 
the self-crossings of the curves in Fig. 3 because." a critical 
regime occurs as the load velocity is equal to the group velocity 
of radiated waves. For the second and the fourth modes addi- 
tionally dw/dkj is smaller then zero for small wave numbers. 
This interval of wave numbers is bounded by the points with 
zero group velocity. It results in two critical frequencies for 
zero load velocity for each mode. The first one is equal to the 
layer eigenfi-equency (the lowest eigenfrequency for compres- 
sional excitations for the second mode and the third eigen- 
frequency for shear excitations for the fourth mode) and de- 
picted as dots on the vertical axes in Fig. 3. The last ones are 
slightly smaller and related to the minimum of the dispersion 
curves for the second and fourth modes shown in Fig. 2. Note 
that for a given layer depth and a given load velocity an infinite 
number of critical frequencies of the toad exist due to the infinite 
number of modes. For the constant load case (~2 = 0) the critical 
velocity is equal to CR, confirming the result found in Dieterman 
and Metrikine (1996), assuming the layer thickness is large. 
The figure further shows that the critical velocities are bounded 
to some value which is about 1.5CR, above which no critical 
velocities exist for any loading frequency. For the higher modes 
the asymptotic behavior for ~2 ~ 0 or H --, 0 results in a critical 
velocity ca. 

5 Critical Depths of the Layer 
The critical depths of the layer are determined now under the 

assumption that the frequency of the load is the ratio between 

the train (load) velocity and the distance between the centres 
of the sleepers. 

Experimental investigations show (Kjorling, 1993) that the 
main frequency of a train wheel excitation can be determined 
as 

V 
f~ = 2~r d ' (21) 

where V is the velocity of the train and d is the period of the 
sleepers. This expression and the dependency of the critical 
load velocities on the load frequency (see Fig. 3) give the 
critical depths of the layer as a function of the train velocity. 
Indeed, the dependency, depicted in Fig. 3, can be written down 
as 

a = f i . f  . 

Substitution of (21) in this relation results in 

c . ) 
2 7 r f f = ~ f  or ~ - = 2 - 7 V  . (22) 

The dependency (22) is depicted in Fig. 4. For the interpreta- 
tion of the figure we have to keep in mind that only the critical 
depths due to the harmonically varying load have been given. 
An additional constant part in the loading will give the critical 
velocity Cu for an arbitrary depth. For a given load velocity, 
resulting in a specific loading frequency, Fig. 4 shows that an 
infinite number of critical depths exist which are increasing 
with higher modes. Looking at the lowest mode the figure shows 
that one critical depth exist for low velocities, three critical 
depths for velocities between 0.25CR and CR and two for veloci- 
ties between CR and 1.SCR. A similar kind of reasoning applies 
for the higher modes. It can be seen further that for load veloci- 
ties higher than 1.5ck no critical depths exist anymore. Note, 
that Fig. 4 shows increasing critical depths for each mode as 
the load velocity tends to zero. In the limit this will not result 
in a transition to a half-space model. The reflections of the 
waves from the fixed substrate will in all cases determine the 
system behavior. 

The figure shows further, that the critical depths of the layer 
decrease with increasing load velocity. The curves of all modes 
tend to the critical velocity CR for H ~ 0 for a harmonically 
varying load. Normally the period of the sleepers d is in the 
order 0.6 m. When the velocity of the train is near the velocity 
of Rayleigh waves CR, the critical depths are located in the 
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interval 0 < H ~ 1.5 m. This depth is in the order of normal 
ballast depths. So to avoid resonance phenomena in the ballast 
due to high speed trains it is important to increase internal 
friction losses in the ballast and/or to avoid differences in the 
impedances of the ballast and the substrate. 

6 Conc lus ions  

The critical velocities of a harmonically varying load moving 
uniformly along an elastic layer have been derived as a function 
of the load velocity. The critical velocities exist both for veloci- 
ties higher and lower than the Rayleigh wave velocity in the 
layer. However, there is a certain velocity of the load, located 
between the velocities of the compressional and shear waves 
in the layer, beyond which resonance does not occur for any 
frequencies of the load. The critical depths of the layer have 
been determined as a function of the load velocity. These depths 
decrease with increasing load velocity. It is concluded that the 
higher the train velocity, the more important are the properties 
of the ballast and the character of the border between the ballast 
and the substrate. 
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A P P E N D I X  

Theorem. Consider the double integral I = f ~  f_~ ( dxdy/ 
D(x, y)), where D(x, y) is an analytical function and (1/  
(D(x, y))) is integrable at infinity. The integral 1 diverges if 

there exists a real isolated root (x*, y*)  of the equation D(x, 
y) = 0 for which (OD/Ox) = (OD/Oy) = 0 at (x, y) = (x*, 
y*) .  

Proof. We represent the integral as 

f f2 dz+ = f f  f f  d d, I = D(x, y) d d s  D(x, y) + , D(x, y) 

where 

S =  {(x, y):  (x - x*)  2 + ( y - y * ) 2  > p2o}; 

Sc = {(x, y):  (x - x * )  2 + (y - y*)~ -< P~} 

S0 is a positive constant. 

The integral f fs (dxdy/(D(x, y)) converges since the inte- 
grand has no singular points in the S-area and (1/(D(x, y))) 
is integrable at infinity. Therefore, convergence of I depends 

on the integral f fs~ (dxdy/(D(x, y)). In the classical sense 

this integral is equal to 

f f  dxdy f f  dxdy 72- "~, lim ( l a )  
JsoD~.~,y) ~,, 2 ( ..... )2+~y_y.~2<p~D(x,y ) 

As P0 is an arbitrary constant, we consider it small and expand 
D(x, y) into a Taylor series around the point (x*, y*):  

1 
D(x, y) = D(x*, y*) + ~ ~-~ d"D(x*, y*) (2a)  

n=l 

where d~D(x *, y*) is the differential of D(x, y) of the order 
n at the point (x*, y*) .  

In accordance with the theorem conditions, D(x*, y*) = 
dD(x*, y*) - O. Moreover, since (x*, y*)  is the real isolated 
zero of D(x, y),  there exists a natural number m, m = 2k(k -> 
1), that d"D(x*, y*) ~ 0 and d~D(x *, y*)  = 0 if 1 ~- i < 
m. Therefore, introducing the polar system of coordinates x - 
x* = P cos (~o), y - y* = p sin (qo), we rewrite Eq. (2a)  as 

1 D(p, qo) = ~ s2kf(~o) + o(p  2k) (3a)  

wheref(~p) :¢ 0 (since (x*, y*)  is the isolated zero and, conse- 
quently, D (p, ~P) :¢ 0 if p m 0). 

Substituting Eq. (3a)  into Eq. ( l a )  and taking into account 
the Jacobian P, we obtain 

ffs dxa -----2=limf (2k),s dpd  
D(x, y) ~o Jo f ( T ) p  2~ 

The member o(p 2k) in Eq. (3a)  is dropped as P0 is an arbi- 
trary small value. The integral with respect to qo in Eq. (4a)  
will result in a finite constant A since f(cp) * 0 and k is a finite 
number. Then 

f f  dxdy leo dp .,,c ? Z S2k , 

= A l i m  1 
~0 ~ 2k e222k if k > 1 ' 

Thus, the integral I diverges. 

600 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



k. Starek 
Faculty of Mechanical Engineering, 

Slovak Technical University of Bratislava, 
812 31 Bratislava, Slovakia 

D. J. Inman 
Department of Engineering Science 

and Mechanics, 
Virginia Polytechnic Institute and 

State University, 
Blacksburg, VA 24061-0219 

Fellow ASME 

A Symmetric Inverse Vibration 
Problem for Nonproportional 
Underdamped Systems 
This paper considers a symmetric inverse vibration problem Jor linear vibrating 
systems described by a vector differential equation with constant coefficient matrices 
and nonproportional damping. The inverse problem of interest here is that of de- 
termining real symmetric, coefficient matrices assumed to represent the mass normal- 
ized velocity and position coefficient matrices, given a set of specified complex eigen- 
values and eigenvectors. The approach presented here gives an alternative solution 
to a symmetric inverse vibration problem presented by Starek and Inman (1992) and 
extends these results to include noncommuting (or commuting) coefficient matrices 
which preserve eigenvalues, eigenvectors, and definiteness. Furthermore, if the eigen- 
values are all complex conjugate pairs ( underdamped case) with negative real parts, 
the inverse procedure described here results in symmetric positive definite coefficient 
matrices. The new results give conditions which allow the construction of mass 
normalized damping and stiffness matrices based on given eigenvalues and eigenvec- 
tors Jor the case that each mode of the system is underdamped. The result provides 
an algorithm for determining a nonproportional (Mr proportional) damped system 
which will have symmetric coefficient matrices and the specified spectral and modal 
data. 

1 Introduction 
Here we consider linear lumped parameter systems which 

can be modeled by a vector differential equation in the second 
order form given by 

mo'(t) + Dq(t)  + Kq(t) = 0 (1.1) 

where q (t) is an n vector of time-varying elements representing 
the displacement of the masses ill a lumped mass model of 
some structure or device. The vectors 4(t)  and /j(t) represent 
the velocities and accelerations, respectively. The coefficients 
M, D, and K are n × n matrices of constant real elements 
representing the varigus physical parameters of mass, damping, 
and stiffness. The matrices M, D, and K could in general be 
asymmetric; however, here we are concerned with the symmet- 
ric case and the case in which M is positive definite. 

Since M is positive definite and symmetric it has a matrix 
square root, with a symmetric, positive definite inverse denoted 
by M -t/2. Let us then consider the transformation q(t)  = 
M-l/Zu(t). Substitution of this change of coordinates into Eq. 
( 1.1 ) yields 

a(t) + Du(t)  + I~u(t) = 0 (1.2) 

where I¢ = M -  I/2KM-1/2 and l) = M-  I/2DM- t/2 are necessarily 
symmetric. The matrices 1) and K are referred to here as the 
mass normalized damping and stiffness matrices. 

The eigenvalue problem of the system described by (1.2) is 
defined by 

( ) t 2 /  + h i 0  + /~)X = 0 (1.3) 

where x is a nonzero vector of constants, called the eigenvector, 
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and X is a scalar, called the eigenvalue. From the spectral theory 
of matrix polynomials it is well known that the solutions of 
the system (1.2) are intimately connected with the algebraic 
properties of the matrix polynomials (Gohberg et al., 1982) of 
the form 

L()t) = ~.21 + MD + /(. (1.4) 

Here a scalar X and a nonzero vector x are again called an 
eigenvalue and associated (right) eigenvector of L(k) if det 
L(k) = 0 and L(k )x  = 0, respectively. This forms an obvious 
connection between (1.3) and (1.4). 

Previously, inverse spectral problems in vibration of lumped 
nonconservative systems have been solved by Danek (1982), 
Gladwell (1986), Lancaster and Maroulas (1987), and Starek 
and Inman (1991, 1992). Gladwell (1986) has solved the in- 
verse spectral problem in vibration of lumped conservative sys- 
tems (D = 0) modeled by tridiagonal matrices. Danek (1982) 
has solved this problem for the case of real nonsingular coeffi- 
cient matrices and he has defined the inverse formulas which 
determine the coefficient matrices M, D, and K of the above- 
mentioned systems with given spectral and modal data. Starek 
and Inman ( 1991 ) have solved the inverse problem in the state 
space form and they have determined the inverse formulas 
which directly determine real coefficient matrices M ~K and 
M-1D for the case that D and K are singulm" coefficient matrices 
(i.e., there exist rigid-body modes). The symmetric inverse 
problem with overdamped modes has been discussed by Starek 
and Inman (1995). 

The results presented here build on those of Lancaster and 
Maroulas (1987) and those of Starek and Inman (1992). Lan- 
caster and Maroulas have solved the inverse problem in vibra- 
tion by means of the spectral theory of matrix polynomials. 
They defined Jordan pairs that determine a self-adjoint matrix 
polynomial. Starek and Inman (1992) have solved the inverse 
spectral problems in the state-space form. They have defined 
the conditions for given spectral and modal data under which 
the inverse formulas determine real symmetric coefficient matri- 
ces/(  and 1), but their solution requires that the given eigenval- 
ues must all be complex valued and does not preserve given 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 601 

Copyright © 1997 by ASME
Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



eigenvectors. Lancaster (1961) provides a direct formula, but 
unfortunately requires prior knowledge of M and D for normal- 
ization of the eigenvectors. 

The goal of this paper is to give an alternative solution to 
the inverse problem solved in Starek and Inman (1992) and to 
extend these results to include the preservation of eigenvectors. 
In the earlier result an algorithm is given for a symmetric inverse 
vibration problem for underdamped systems which determine 
real symmetric coefficient matrices given desired natural fre- 
quencies and damping ratios. The goal of this paper is to derive 
conditions under which spectral and modal data determine real, 
symmetric coefficient matrices/3 and R which do not necessar- 
ily commute. The method will be outlined which allows the 
synthesis of a symmetric, underdamped linear system having 
desired eigenvalues and eigenvectors. Symmetric systems are 
of particular interest in the eigenstructure assignment method 
from control theory (Inman and Kress 1995), in the model 
updating problem of structural dynamics (Inman, 1993) and in 
fault detection problems for machine and structure diagnostics 
(Kaouk and Zimmerman, 1994). Such inverse methods have 
been adapted for use in determining the condition of the bonding 
of the protective tiles to the space shuttle (Mueller and Moslehy, 
1996). 

2 Non-negative Matrix Polynomial Conditions 

From the theory of matrix polynomials it is well known that 
since /3 and K are Hermitian, L(k) is a self-adjoint matrix 
polynomial and thus can be decomposed into a product of two 
linear factors, i.e., there are n × n complex valued matrices Z 
and T, such that L(k) = (/h - T)(IX - Z). The eigenvalues 
of Z and of T make up the eigenvalues of L(k). The eigenvec- 
tors of Z are also eigenvectors of L(k) :  The first of the above- 
mentioned results gives the relation between the eigenvectors 
of T and L(k) as follows. Let [A, B] denote the matrix A 
augmented by a dimensionally compatible matrix B. Let diag 
[AA, AB] denote the diagonal matrix AA extended by the diago- 
nal matrix AB. 

Theorem 1 (Lancaster and Maroulas). Let L(k) = (FA 
- T) (IX - Z ), and assume that the set of eigenvalues of matri- 
ces T and Z make up disjoint parts of the spectrum of L ( k ) ,  
and let Z = XzJzX ~1 where Jz is the Jordan normal form of 
the matrix Z. Let V = [Xz, Y] and A = diag [Jz, Jr] be a 
Jordan pair for L(k).  Then there is a nonsingular matrix Xr 
such that T = XrJrX ~J where 

XT = YJr - ZY. (2.1) 

Conversely, if we are given T = XTJTX ~1 and Y is the unique 
solution of (2.1), then [XT, Y], A = diag [Jz, Jr] is a Jordan 
pair for L(k).  The concepts of Jordan pairs is reviewed in the 
Appendix. 

Gohberg et al., give the following result concerning a monic 
nonnegative matrix polynomial of degre e two (see Theorem 
12.8 of Gohberg et al., 1982). 

Theorem 2 (Gohberg et al.). Let L (k) be an n x n monic, 
self-adjoint, matrix polynomial of degree two. Then the follow- 
ing statements are equivalent: 

(i) L(X) is a non-negative monic matrix polynomial. 
(ii) There is a matrix Z ~ C "x~ such that L(k) = (lk - 

z*)(IX - Z). 
(iii) The partial multiplicities of all real eigenvalues of 

L ( k )  are all even and the sign characteristic of L(k) 
consists entirely of plus ones. 

In Theorem 1 we may set T = Z* = ( X ~ ) * Y z X ~  and it is 
easily seen that Xr = (Xz t )*P .  Substitution of Z = 
XzJzX ~t we get the following result given by Lancaster and 
Maroulas (1987). 

Corollary 1. Let L(X) = (IX - Z*)(/X - Z). The set of 
eigenvalues of matrices Z * and Z make up disjoint parts of the 
spectrum of L(X), and Z = XzJzX z ~ , where Jz is a Jordan 
normal form. Let f" be the unique solution of 

(2.2) 

and Y = Xzf 'P (where P is the permutation matrix for which 
Jz r = PJzP).  Then [Xz, Y], diag [Jz, Jz] is a Jordan pair for 
L ( k )  where the entries of Zz are the complex conjugate of those 
in Jz. 

3 Solution of the Real Symmetric Inverse Problem 

The goal here is to derive the conditions under which spectral 
and modal data determine real symmetric coefficient matrices 
/9 and ~ of Eq. (1.2) for the case where all eigenvalues are 
complex. At first we note an important property of spectral and 
modal data of lumped linear systems described by real coeffi- 
cient matrices. The eigenvalues (and their multiplicities) of 
such a system are symmetric with respect to the real axis of 
the complex plane. This implies that there is a Jordan matrix 
A such that (the case when all eigenvalues are complex) 

A = diag [Jz, Jr] = diag [Jz, fz] (3.1) 

where Jz is the matrix with all its eigenvalues in the upper half 
of the complex plane. The modal matrix V is partitioned in a 
compatible way as (3.1), i.e., 

V = [Xz, Y] = [Xz, Xz] (3.2) 

where Xz is complex valued. 
From the Theorem 2 and Corollary 1 it follows that spectral 

and modal data will determine non-negative, self-adjoint matrix 
polynomials if they fulfill condition (2.2). In addition the coef- 
ficients of this matrix polynomial will be real if in the Jordan 
pair for this matrix polynomial, given by V = [Xz, Y] and A 
= diag [Jz, JT], we substitute Y = grzU for some U E ..Yt,r(Jz). 
Note that for any square matrix Jz, A l ( J z )  denotes sub algebra 
of invertible matrices that commute with Jz (see Theorem 1 of 
Lancaster and Maroulas (1987)). 

Now we shall define our goal more precisely. Our concern 
here is: how to choose the matrices Xz and Jz (and hence the 
matrix Z) such that the rewritten condition (2.2) for the case 
of Y = gSz U will be satisfied. To this end substitute Y = J~z U 
into f" = X ~ Y P  and then substitute Y into (2.2). This yields 

X ~ X z U P J ~  - J z X z I Z z U P  = (X~Xz) -l.  (3.3) 

Because PJP = jT  or P.I* = JP and we assume the system to 
be of simple structure (A is a diagonal matrix and so J~ = Jz 
and P = I) we have 

X~lJgzfzU - JzX~IXzU = X z l ( S z l )  ~'. (3.4) 

After some manipulation this results in 

x ~ ( Z  - z ) Y ~ u  = / .  (3.5) 

From Eq. (3.5) the following conclusion results. 

Theorem 3. Specific spectral and modal data, consisting of 
only complex eigenvalues and possibly complex eigenvectors, 
will generate real symmetric matrices/3 and R if the eigenvalues 
and eigenvectors of the matrix Z satisfy the condition (3.5). 

The question remains of how to choose eigenvalues and ei- 
genvectors of a matrix Z such that (3.5) will be valid. To this 
end rewrite Eq. (3.5) as follows: Since Z = Zr + iZi then Z 

- Z = -2 iZ i ,  where Z~ is the real and Zi the imaginary part of 
the matrix Z. Let 

X z =  Xzr + iXz~ and JZ= Jzr + iJzl, 
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where Xz,., Jzr are the real parts and Xzl, Jzi are the imaginary 
parts of Xz and Jz,  respectively. Substituting Z, Xz, and Jz into 
Z X z  = X z J z  yields 

Z = (Xz,.Jzi + gziJzr  - Xz rJ z rSz r tXz i  + XziJz iXz , . IXzi )  

× (Xz,. + Xz iX~rtXz i )  7t. (3.6) 

This assumes the X ~r is nonsingular, a reasonable assumption 
because its columns are required eigenvectors of a simple matrix 

polynomial. Substituting Z - Z = - 2 i Z i ,  X ~  = X~,. - iX~: and 
Xz = X z , . -  iXzi into Eq. (3.5) and manipulating results in 

- 2 [ X  ;,ZiXz, + X ; r Z i X z i  

+ i ( X ~ , . Z i X z r  - X ~ i Z i X z i ) ] U  = 1. (3.7) 

From the theory of self-adjoint matrix polynomials (Gohberg 
et al., 1982) it is known that if the matrix of left eigenvector, 
Y, and the matrix of right eigenvectors are related by a standard 
involuntary permutation matrix (see the Appendix) by Yi: = 
%P~jX~, @ = _+ 1, then the associated matrix polynomial is self- 
adjoint. This motivates us to look for a matrix C such that 

Xz~ = Xz,.C (3.8) 

where C is yet to be determined. Substitution of Eq. (3.8) into 
(3.6) yields 

Z~ = X z , A X  ~t (3.9) 

where 

A = (Jzi + C J z , . -  Jz ,C + C J z i C ) ( l  + C 2) t. (3.10) 

Substituting (3.8) and (3.9) into (3.7) yields 

-2 [c rx  T,.Xz,A + X TrXzrAC 

+ i (X f f ,  X z , A  - C T x T ,  x z , . A C ) ] U  = I. (3.11) 

If the required spectral and modal data are to generate real 
symmetric matrices/3 and/( ,  the eigenvalues and eigenvectors 
of a matrix Z must now satisfy Eq. (3.11). 

Rewrite Eq. (3.11) as follows: 

- 2 ( C T X ~ , X z , A  + X~ , .Xz , .AC)U = I (3.12) 

(Xzr,.X~,A - CrX~rXz , .AC)  U = 0. (3.13) 

Because the matrix U is nonsingular it follows from Eq. (3.13) 
that 

X ~Xz, .A = C r X  ~,Xz~AC. (3,14) 

From Eq. (3.12) and knowledge that U is nonsingular and 
diagonal it follows 

( CTX  ;,.Xz,.A + X ~,.Xz,.ac) r =  CT X  zT,.Xz, A + X ;,.Xz,.AC. 

After some manipulation the following condition results: 

A T X  = XA (3.15) 

r X w h e r e X = X T =  Xz,. Zr. 
NOW we rewrite Eq. (3.12) as follows: 

C r X A  + X A C  = - ½U ~. (3.16) 

If the matrix C is of full rank, then after substitution of Eq: 
(3.14) into Eq. (3.16) we obtain 

( C z ) T X A C  + c ' r X A C  2 = ½U -I 

Journal of Applied Mechanics 

or 

C r X A  + X A C  = - ½ ( C U C  r )  ' (3.17) 

Because the left sides of Eqs. (3.16) and (3.17) are the same, 
we have 

U = C U C  T o r  C - I U  = UC T. (3.18) 

In the case when U is the identity matrix, U = I, the condition 
for the matrix C becomes 

C r C  = C C  r =  I (3.19) 

so that the matrix C must be orthoganal .  
By using the conditions (3.15) and (3.19), Eq. (3.17) be- 

comes 

CTA'rX + X A C  = -½1. (3.20) 

If we put E = CTA T or E T = A C  and F = ½1 into Eq. (3.20) 
the Lyapunov equation 

E X  + X E  T =  - F  (3.21) 

results. For the solution of the Lyapunov Eq. (3.21) we use the 
MATLAB subroutine (code) X = lyap (E, F).  The result of lyap 
(E, F) is a symmetric matrix X = X ;,.Xz,.. The problem which 
arises, is to choose the matrix C in such a way that the matrix 
X will be a positive definite matrix. To this end we use the 
Cholesky factorization of X for computing Xz, .  

The procedure for determining real symmetric matrices /3 
and R is summarized as follows (using MATLAB, but other 
software could be used here as well): 

(a) Select the required eigenvalues of the system described 
by Eq. (1.2) (they are given by the matrix Jz). 

(b) Choose the orthonormal matrix C. 
(c) Use the MATLAB code X = lyap (E, F) for computing 

the matrix X which must be a positive definite matrix. 
(d) Use the MATLAB code Xzr = chol (X) which produces 

an upper triangular Xz, so that X = X ~ Y z , .  
(e) Determine the coefficient matrices D and R either by 

inverse fornmlas (see Starek and Inman (1992)) 

[ - K -  l)] = V A z X  - '  (3.22) 

where the modal matrix V and the spectral matrix A are given 
by the Eq. (3.2) and (3.1) and the matrix X is given by 

X = VA (3.23) 

or from the formulas that follows from the definition of a non- 
negative matrix polynomial L(X) = (/k - Z *) (IX - Z) which 
is given by the Theorem 2, i.e., 

/) -- - Z  - Z* (3.24) 

I(  = Z * Z .  (3.25) 

This represents only one possible solution of the condition 
given by Eq. (3.5). 

Example. Consider the inverse problem with three eigen- 
values given by 

I -0.5000 + 1.0000i 0 0 1 
Jz = 0 -1.0000 + 2.0000i 0 

0 0 2.0000 + 3.0000i 
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Choose the orthoganalmatfix C to be 

I 0.8507 0.5257 0 1 
C = -0.5257 0.8507 0 

0 0 1.0000 

and note that C C  T = I as itshould. Then compute 

A = [~ +CJ~ - J , C  + CJiC][1 + C21-1 

0.9188 0.1776 0 
= 0.1776 2.0812 0 

0 0 3.0000 

Then using E = CrA r and F = - .51  the Lyapunov equation 
can be solved (MATLAB command lyap (E, F ) ) t o  yield 

I 0.3252 -0.0278 0 
X = -0.0278 0.1436 0 

0 0 0.0833 

which has Choleskyfactorization 

I 0.5703 -0.0487 0 1 
Xzr = 0 0.3758 0 

0 0 0.2887 

so that Xz = Xzr(l + iC) becomes 

0.50703 + 0.5107i -0.0487 + 0.2584i 
Xz = - 0.1976i 0.3758 + 0.3197i 

0 0 

0 ] 
0 

0.2887 + 0.2887i 

The matrix Z = XzJzX ~1 becomes 

I -0.6268 + 0.9036i -0.6061 + 0.1170i 0 
z = -0.2750 + 0.1170i -0.8732 + 2.0964i 0 

0 0 -2.0000 + 3.0000i 

so that 

101-125370.8812 0 ] 1746  0 
0 4.0000 

and 

°9711 o° ] 
I~ = Z * Z  = 0.9711 5.5383 

0 0 13.0000 

Note that Y2 and/3  are both symmetric and positive definite 
(because Reki < 0 for all i). Also note that the matrix product 
/~/5 is not symmetric, so that the system is not proportionally 
damped. The system also has the desired eigenstructure. 

4 Positive Definite Solution 
Once the symmetry of the coefficient matrices resulting from 

an inverse procedure is guaranteed, the definiteness of the matri- 
ces follows from simple considerations. In the above example 
note that our solution produced symmetric, positive-definite co- 
efficient matrices. This follows from the assumption that the 
modes are all underdamped (i.e., ki appear in complex conju- 
gate pairs) and that/5 and R are symmetric. If the real part of 
each ki are further restricted to be negative, both 15 and K will 
necessarily be positive definite. 

To see this note that for each eigenvector xi and eigenvalue 
hi (1.3) must hold when multiplied from the left by x*. This 
yields that ~ must satisfy 

hi = - x ~* /5x.____~ -4- ~ ~/( x ~, /5xl ) 2 _ 4 x ~* xl x ~* I~xl (3.26) 
2x~*xi 2x*xi 

From Inman and Andry (1980) it is known that for under- 
damped systems (ki complex) the radical is purely imaginary 
so that Rek~ = - (x*/sx i /x~*xi ) .  Under the assumption that 
Reki < 0 for all i we have 

-x~*/5xi < 0 or xi*lSxi > 0 

for all eigenvectors x~. Next let x E R" (i.e., x is a real valued 
vector of appropriate dimensions), then since xi are complete 
in R" there exists scalars ai not all zero such thatx = EiLi aixi. 
Thus; for any x * O, xr13x = ELi  aiZ(xT/5xi ) which is the sum 
of all positive numbers, hence xr/5x > 0 for all x * 0 and/5 
must be positive definite, Next since the system is underdamped, 
the matrix 4K - /52 is positive definite (Inman and Andry, 
1980) and 4xrI~x > xV/52x > 0 for all x * 0, so ~ must also 
be positive definite (i.e., i f /5  is positive definite so is/52).  

Thus, if the set of desired eigenvalues are chosen to be com- 
plex with negative real parts, and the efgenvectors are complex 
valued the inverse algorithm presented here will produce sym- 
metric and positive definite mass normalized damping and stiff- 
ness matrices. 

5 Proportional Damping 
It is obvious that the condition for given spectral and modal 

data, Eq. (3.11) is always fulfilled if the matrix Xzr is made 
up of orthogonal vectors and the matrix C is diagonal. After 
substituting into (3.11 ) all the matrices in this equation become 
diagonal and if U is any invertible matrix that commutes with 
Jz then Eq. (3.11) is satisfied. 

If the matrix C is diagonal then the complex eigenvector can 
be normalized to produce real vectors in the following way. 
Multiply each real part of eigenvector given by the matrix Xz,. 
by the appropriate complex number given by the matrix (I  + 
iC). From this matrix of complex eigenvectors we can generate 
a matrix of real eigenvectors by multiplying the matrix Xz by 
a complex conjugate matrix to the matrix (I + iC). This is 
consistent with the idea presented by Caughey and O'Kelly 
(1965) that proportionally damped systems have eigenvectors 

which  can be represented by real mode shapes. 
The procedure for determining real symmetric matrices/5 and 
in the simplifying case of diagonal C results in proportional 

damping and this is summarized in the following: 

(a)  Select the required eigenvalues of the system described 
by the Eq. (1.2), given by the matrix Jz. 

(b) Select the required eigenvectors of the system described 
by Eq. (1.2), given by the matrix Xzr in such a way that they 
will be orthogonal. 

(c) Choose the nonsingular diagonal matrix C. 
(d) Determine the coefficient matrices 13 and ~ either by 

the inverse formulas (see Starek and Inman, 1992). 

[ - ~ -  1~1 = V A 2 X  -~. 

Where the modal matrix V and the spectral matrix are given 
by the Eqs. (3.2) and (3.1) and the matrix X is given by 

or from the formulas that follows from the definition of a non- 
negative matrix polynomial L(k)  = (/k - Z * )(I~ - Z ) which 
is given by the Theorem 2, i.e., 
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1) = - Z -  Z*  

I( = Z*Z .  

Note that in the case of a diagonal matrix C the system (1.2) 
determined by matrices/5 and K will have proportional damp- 
ing, and the eigenvectors have a real valued representation. If 
C is not diagonal, the matrices /~ and /~ constructed by Eq. 
(3.24) and (3.25) will not commute and the system eigenvec- 
tors, will necessarily be complex valued. 

6 Conclusion 

This manuscript presents a solution to the inverse vibration 
problem for the case that the desired coefficient matrices be 
symmetric and the resulting system contains the desired or spec- 
ified eigenvalues and eigenvectors. This is an improvement over 
symmetric inverse problem solutions which do not preserve the 
eigenvectors. This is useful for vibrating systems where it is 
known in advance that the system described by the equations 
of motion should be symmetric. Furthermore, if the real part of 
the eigenvalues are all negative, the resulting inverse solution 
produces positive definite matrices. In this paper the condition 
(3.5) for given spectral and modal properties is defined. When 
this condition is fulfilled then inverse formula (3.22) or alter- 
nately Eqs. (3.24) and (3.25) determine real symmetric matri- 
ces for linear lumped parameter nonconservative systems. The 
synthesized system must be of simple structure (i.e., diagonal 
spectral matrix) and each mode of the system is underdamped. 
The system identified by this inverse vibration problem will 
have proportional damping if the eigenvectors are chosen to all 
be real. In general, however, nonproportional damping results. 

The weak point of the proposed method is clearly the choice 
of the orthoganal matrix C in step b. This choice is somewhat 
arbitrary and little guidance is provided by the theory. The 
numerical methods work well  for any size problem, except that 
as the order becomes larger the choice of C becomes more 
illusive. Our approach is to choose a simple form of C, such 
as the identity matrix, keeping in mind that diagonal C will 
produce a proportionally damped system. Likewise, a nondiago- 
nal C will produce a nonproportionally damped system with 
complex mode shapes. A sparse matrix is used in the example 
simply because it is the first level of complexity past a diagonal 
matrix. The nature of the matrix C, and precise methods for 
constructing C form the topics of future research. 
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A P P E N D I X  
A few concepts from the theory of matrix polynomials are 

reviewed here. More precise details can be found in Gohberg 
et al. (1982). 

Let M, D, and K be of size n × n. A pair of matrices, X and 
J, are called a Jordan pair of the matrix polynomials given in 
Eq. (1.3) i f X  = [Xi . . .  X~], J = diag [Jl,  J2 . . .  Jr] where 
X~ and Ji,  i = 1, 2 . . .  r are a Jordan pair for the eigenvalue 
k~. Here X is n × 2n, J is 2n × 2n and r is the number of 
distinct eigenvalues. Note that if all the X~ are distinct then r = 
2n and X~ is a right eigenvector of (1.3) and J, = ~ ,  a simple 
eigenvalue. In this case, X becomes the usual matrix of right 
eigenvectors and J becomes the diagonal matrix of eigenvalues. 
The matrix Y, referred to in the text, then becomes the matrix 
of left eigenvectors. 

Roughly speaking, the sign characteristics of a matrix poly- 
nomial are an ordered set of numbers consisting of plus ones 
or minus ones (ordered according to the related eigenvalue 
index). These numbers are not explicitly used here, but are key 
to matrix polynomial analysis. These numbers denoted by e U 
are used with the standard involuntary permutation matrix, de- 
noted P0, to relate the left eigenvector and right eigenvector by 

Y~j = c,jPisX~ 
where the index reflects the multiplicity of a given eigenvalue 
and the nature of its corresponding Jordan block (i.e., is there 
an off diagonal I or not), P,~ is a matrix of ones and zeros. 
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On the Existence of Mayer's 
Potential 
A complete solution of  the well-known Mayer's problem, which is concerned with 
the possibility of  extending Hamilton's principle expressed in the form valid for 
conservative dynamical systems to one special case of  nonconservative systems ( Ap- 
pell, 1911), is obtained. Namely, the necessa~ and sufficient conditions which have 
to be satisfied by the coefficients of  the given nonconservative generalized forces so 
that the Mayer's potential (and, as a consequence, the descriptive function of  the 
system) can be constructed, are established. This result is illustrated by an example. 

1 Introduction 
We consider a holonomic nonconservative dynamical system 

with n degrees-of-freedom, whose position at any moment t is 
determined by n Lagrangian Coordinates qt, q2  . . . . .  q~ and 
whose Lagrangian function we denote by L. It is well known 
(see, e.g., Pars, 1965) that the integral variational principle of 
the Hamiltonian type, as a true variational problem, l can be 
established for such a system if the work done by the given 
nonconservative forces, which we denote by Q,, in an arbitrary 
virtual displacement can be expressed in the form 

Q~6q ~ = ~ - 6q ~ (1) 

where 4 '~ are the generalized velocities of the system, and where 

V(q ~, 4", t) = -A~(q  ~, t)q ~ - An+l(q ~, t). (2) 

The functions A~(q ~, t), A,,+~ (q~, t),  as well as their first 
and second partial derivatives, are assumed to be defined and 
continuous in some domain of ql, q2 . . . . .  q", t. 

In this case the descriptive function 

Li = L - g (3) 

may be constructed, and the differential equations of motion of 
the system can be obtained from the integral principle of the 
Hamiltonian type, given by 

6 L~(q ~, 4 ~, t)dt = 0. (4) 
o 

The indices c~ and r ,  as well as 3', which will be used through- 
out the paper, take the values 1, 2 . . . . .  n, with summation over 
this range of values in the case of repeated indices. For the sake 
of brevity, functions depending on ql,  q2 . . . . .  q ' ;  41 , 42 . . . . .  
4"; t e.g., the function V(q z . . . . .  qn; 41 . . . . .  4~; t), we 
write simply as V ( q ~, 4 ~, t), and similarly Ap( q I . . . . .  q'; t),  
A,+l(q 1 . . . . .  q';  t) as A/~(q", t), A,+j(q", t). 

We note that the problem of constructing the descriptive 
function in the case when the generalized forces of the system 

A variational problem results from the stationarity of an integral. So, one 
speaks of Hamilton's principle as a true variational problem when it expresses 

of the Hamiltonian action, given by the integral W = f~2 Ldt. stationarity 
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satisfy the condition (1) was first considered by Mayer, who, 
remaining in the context of a free dynamical system, viewed 
the function (2) as a "potential" function corresponding to the 
given nonconservative forces, as was pointed out by Appell 
(1911). For that reason, this proble m is known as a problem 
of determining Mayer's potential. 

Using ( 1 ) and (2), we easily obtain 

,_(0), (5) Q. = b ~ 4  ~ + u ... . . .  

where 

b(.°~(q ~, t) - OA~ oa.  (6) 
Oq" Oq ~ 

and 

An+ 1 ONce b(O) ~ ~' t ) -  (7) an+l ~q , 
Oq ~ Ot 

From (6) it is obvious that the coefficients b ~  are skew 
symmetric: 

b~' : - b ~ .  (8) 

We note that (6), by virtue of (8), reduces to the n(n - 
1 )/2 relations 

OAb OA. _ 1.(o) (6 ' )  
U a b  , Oq" Oq b 

wherea = 1,2 . . . . .  n -  1, andb  = a + 1, a + 2 . . . . .  n. 
So, the forces Q.(q~, 4 ~, t) are linear in the generalized 

velocities, i.e., they must have the form 

Q. b(O~(qV, t)(l ~ + ~(o) . . . . .  l(q ~, t) (9) 

in order to allow their virtual work to be written in the form 
( 1 ), and this follows from the considerations presented by Pars 
(1965). We shall now search for the conditions which have to 
be satisfied by the coefficients from the given forces (9), in 
order for them to be derivable from the Mayer's potential, To 
establish these conditions we start with the fact that the Mayer's 
potential, if it exists for the given forces, ought to have the form 
(2). So, supposing that the Mayer's potential exists and has the 
form (2), we easily obtain, having in mind (6), the conditions 
(8), as a part of the necessary conditions for the forces (9) to 
be derivable from the potential (2). The remaining necessary 
conditions which have to be satisfied by the coefficients in (9), 
as well as the sufficiency of all the established conditions, and 
the procedure which results in the potential (2), will be consid- 
ered in the following. 

2 The Case of Gyroscopic Forces 
Let us consider, to begin with, the case ~,+~I-(°) = 0. The forces 

(9), assuming that (8) holds, are gyroscopic then, as the work 
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done by them on the elementary actual displacement of the 
system vanishes. 

As ,.,,,+~(°) = 0, using (7)  one obtains 

f ' OA,,, 
A~ = Oq '~ dt + q).(q~), (10) 

'0 

where q)~(q~) are arbitrary functions of q~, of class C~ in some 
domain of q l . . . . .  q", and where Co is an arbitrary constant 
value for t, Combining now (6) and (10) ,  we obtain 

b(O) _ Oq,~ O~. 
~ Oq ~ Oq ~ ' 

which leads to 

0 ~ ( 0 )  
o . ~  _ O ,  

Ot 

and the forces (9)  take the form 

Qa (0) y ,/3 I~(0)  N ( 0 )  = b . ~ ( q  )q , = - ~ , , .  ,,~/, ( l l )  

In order to determine the function (2)  in this case, let us first 
examine a system with two degrees-of-freedom. Then ( 6 ' )  be- 
comes 

OA2 OA~ _ b~)" (12) 
Oq ~ Oq ~ 

It can be easily verified that the function 

V =  - A ~ ( q  I , q 2 , t ) q t - A 2 ( q ~ , q ~ "  t)42 

- A 3 ( q ~ , q 2 ,  t) (13) 

can always be determined without any further restriction on the 
forces Q~ and Q2, i.e., on the coefficient b~°~(q ~, q2). Namely, 
taking 

A3 = ~3(q 1, q2, t) ,  (14) 

where g)3 (q ' ,  q2, t) is an arbitrary function of class C~ in some 
domain Do(q ~, q2, t) ,  and taking, in accordance with (10) ,  

: f o®3 Ai d, o Oq' dt + ¢)~O)(ql, q2), (15) 

where ~b]°)(q ~, q2) is an arbitrary function of class Ci in a 
domain D l (q  1, q2), we obtain from (12) 

A2 = b{~)dq I + - -  dq t + ---= dt 
', ", Oq 2 -o i)q 2 

_ f '  [O~b~] d t +  F~"(q  2 , t ) ,  (16) 
,o L aq  ~ J~'=,,, 

where c, is any constant value of ql belonging to Dl(q  ~, q2), 
and where F~ ~) denotes an arbitrary flmction of q2, t, of class 
C~ in a certain domain of q2, t. Keeping in mind that, in the 
case considered, the relation (7)  gives 

OA2 O(-b3 
Ot Oq 2 

and finding from (16) 

OA2 O~b3 [ 0~3 ] OF~ ') 
Ot - Oq 2 I Oq 2 Jq~=c, + 0--7- ' 

we obtain 

[ 0~_.___3! ] _ OF~ t~ 

Oq 2 Jq,=~, at ' 
(17) 

so that (16)  reduces to 

f" ' f"' 0~°~ d , i" OiL 
A2 = , b~°~dq'+d,, ~ q +/j, .00q zdt+cl '~ '), ( 1 6 ' )  

where 

~b~l)(q 2) = F~2t)(q 2, t = co), 

i.e.,/~,~t) is an arbitrary function of q2, of class C~ in the relevant 
domain of q2. Now (4) takes the form 

6 f<',' [ L +  ( ¢ , , ° ) +  f 'o 0(]'---A0q' d t ) q '  

+ b~°)dq I + - -  dq l 
., .o Oq 2 

+f 'O¢ '~d t+~ '~ )q2+~,3]d t=O, .o  Oq 2 (18) 

which leads to the differential equations of motion for our sys- 
tem of two degrees-of-freedom. 

It is noteworthy that when we form the descriptive function 
L~, the expression 

&° Oq i 

+ q)[') + ~ d q  + ~ - d t  4 2 + ~b~, 
.~ ,o Oq 2 

being a total derivative with respect to time of the function 

F ( q t ,  q2, t) = q~°)dq~ + (I)~l)dq 2 + q)3dt, 
'1 "2 Co 

may simply be omitted, and (18) reduces to 

;,( ) 6 L + 02 b~°~dq ' dt = 0. ( 1 8 ' )  
o '1 

We now turn to the case n > 2, assuming still that b~.~],!~l = 
0, i.e., that the force Q~ have the form ( 11 ). In contrast to the 
case when n = 2, in this case the coefficients A.  can be found 
from (6')  if, and only if, the independent conditions 

Otdo) ~/~(o) rgh(o) 
.... b + u,,b,. _ ~..,,~. (19) 

Oq" Oq" Oq I, 

a = 1, 2 . . . . .  n - 2; 

b = a +  l , a + 2  . . . . .  n -  l; 

c = b +  l , b + 2  . . . . .  n; 

hold. To prove the necessity of the conditions (19) for finding 
A. ,  and consequently the function (2) ,  we first determine, using 
(6) ,  the partial derivatives 

Ob~"~= 02A~  02A" (20) 
Oq ~ Oq'~Oq ~ OqfiOq ~ 

wherefrom, by the appropriate substitution of indices, we have 

0,_(o) 02Av 02A~ 
~ v  _ ( 2 l )  

Oq" Oq POq" Oq ~Oq" ' 

Oh(O) 

Oq ~ Oq.Oqf ~ Oq~Oqp. (22) 
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Using (20),  (21),  and (22),  we easily obtain 

Ob}~' O b ~  (23) obS°  + - 

Oq ~ Oq" Oq ~ " 

Having now in mind that, since b ~  ~ = - b ~ ,  the relations 
(23) refer to the case a < fl < y, we write them in the form 
(19),  and the necessity of (19) follows. 

To demonstrate the sufficiency of the conditions (8) and (19) 
for determining the Mayer 's  potential (2) ,  we shall find this 
potential assuming that the coefficients of the given forces (9) 
satisfy these conditions. 

We start taking 

a, ,+t(q",  t) = ( ~ ) n ~ l ( q " ,  t), 

where '-I~,,+~(q ~, t) is an arbitrary function of qt ,  q2, . . . ,  q,,, 
t, of class Ci in some domain Do(q  t . . . . .  q" ,  t ) ,  so that, in 
accordance with (10),  we can write 

Ai = ~p~0)(q~) + f '  
01~+_____2 

dt,  (24) 
~o Oq 

where ~0) (q~)  is an arbitrary function of q~, q2 . . . . .  qn, of 
class Cl in some domain D~(q  ~ . . . . .  q ' ) ,  and where co is a 
constant value for t from Do. 

Now, integrating n - 1 relations 

OAr, OAt _ ~(o) b = 2, 3, n (25) 
U l b  , • . . ~  

Oq I Oq ~' 

which we obtain from ( 6 ' )  using a = 1, we find 

A~ = b{O)dq t + - -  + - -  dt  
~ Oq b aq o Oq ~ 

0 L - ~ q T j q , = q d t  + F~ ' ) (q  2, , t ) ,  (26) 

where ct is any constant value for q~ from D, ,  and F~ t) are 
functions of q2, q3 . . . . .  t, of class C~ in a domain D~(q  ~, q 3  
. . . .  q", t). 

Further, using the relation 

[ O~.+t ] = OF~ ') 

O q b  J q ' = ~ l  0 t  ' 

which is easy to prove combining (7) and (26),  with (26) we 
obtain 

A b =  b]O)dqt+ --~7-qb aq + ~c ° Oq b + ~ g | ) ,  (27) 
I I 

b = 2 , 3  . . . . .  n 

where 

~},t)(q2, q3 . . . . .  q , )  = F~t)(q2,  q3 . . . . .  q",  t = co) 

are functions which do not depend on t explicitly. We notice 
that eP(2~) is an arbitrary function of q2,  q3 . . . . .  q ' ,  while 
~ )  . . . . .  ~},~) can be expressed through e~<21). To prove this, 
we use again ( 6 ' ) ,  wherefrom, taking a = 2, we obtain 

OAc OA2 ~.(o) . , (28) u2c, c = 3, 4 , . .  n. 
Oq 2 Oq C 

From (27) and (28) we further find 

f q '  ( Ob{°c)Oq 2 0 b ] ! ) ~ / d o '  + O~I':')-- 0(I)~l)-- - ~=c~(°), (29) 
'1 OqZ OqC 

c = 3 , 4  . . . . .  n 

wherefrom, keeping in mind that, if  we take a = 1 and b = 2, 
(19) leads to 

0,.(o) Ob~) hA(o) O l c  __ (JU2c  c = 3 , 4 , . . . , n .  
Oq 2 Oq'  Oq I ' 

We obtain 

0( I )  (1) 01~ (21) .q(1) 3, 4 . . . . .  n (30) 
- - U 2 c  ~ C---- 

Oq 2 Oq c 

where 

b(t)/ . ,2 . . . ,  q . )  = t.(o)t.,t . . . ,  q,~ x tu , q3, u2c ~.~./ = Cl, q2, ). (31) 

Integrating (30),  we have 

f f ¢,~1) = ~,2,.~(t)~l~'2-u + O ~ t )  dq 2 + ~ ? ) ,  (32) 
~2 c2 Oq c 

c = 3 , 4  . . . . .  n 

where c2 denotes any constant value for q2 from D2, and ~(2) 
are functions of q3, q4 . . . . .  qn ,  of class Ct in a relevant domain 
of coordinates q3, q4 . . . . .  q", provided that ~ z )  is an arbitrary 
function, while ~]2) . . . . .  qb~ 2) can be expressed by m(2) -t- 3 . 

Namely, using the notations 

b(.) b}~)(q.+t ,  qa+2 ~(0)(.,1 bc = , . . . , qn) = Ubc V,t = Cl, . . . , 

q" = C,, q,+L, qq+2 . . . . .  qn) (33) 

a = l , 2  . . . . .  n - - 2  

b = a +  1, a + 2  . . . . .  n -  1 

c = b + l , b + 2  . . . . .  n 

where c~, c2,. • •, c, are constants, and introducing the functions 

~(b, ,  ) = ( ~ ( b a ) ( q a + t ,  q a + 2  . . . . .  q,,) 

a = l , 2  . . . . .  n - 1  

b = a + l , a + 2  . . . . .  n 

we obtain, by the same procedure used in arriving at the rela- 
tions (19) and (32),  the analogous relations 

m . . )  m.(o  Ob~,;) 
_ _  c . v  hc ~u.i, + _ (19 ' )  
Oq ~' Oq" Oq h 

i =  1 , 2 , . . . , n - 3  

a = i +  1, i + 2  . . . . .  n - 2  

b = a + l  . . . . .  n - 1  

c = b + l  . . . . .  n 

and 

f qa+ 1 ~ . )  z.(a) a~,,+J 
t l a + t b t 4  ~ 

f [  .... nat(.) ~ .+1)  ( 3 2 ' )  + ~"~+~ dq,+t  + , 
a+l Oq t' 

a = l ,  2 . . . . .  n - 2  

b = a + 2  . . . . .  n 

where the repeated index here does not imply summation. We 
notice that ( 32 ' )  includes (32),  for a = 1, and that *,+tat("), where 
a = 1, 2 . . . . .  n - 1, are arbitrary functions of q"+ ~, q"~ 2 . . . . .  
q",  of class Ct in a relevant domain of q 's .  

Finally, using ( 3 2 ' ) ,  (27) gives 

608 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1 f7 A b  l ~ ( O ) A , ,  I l ~ ( b - 2 ) . t n b - -  i 
= Ulb u~11 + b~,)dq 2 + . . .  + ut, lb "-11 

2 b-  I 

~_.o dq  ~ + dq a + " ' "  + 
. oq  .~ Oq b 

f q  .... O~,~-~2_______~dqh_ t f t  OCP,,+I 
+ Oq" + - - d t  + d2~, #-~) (34) 

• ,,-, ' 0 0 q  ~' 

b = 2 , 3  . . . . .  n. 

So, if the coefficients of the gyroscopic forces (11) satisfy 
the conditions (19),  the generalized Hamilton's principle (4) ,  
with the descriptive function 

0~,,+1 d t~( l l  L, = L + ~ o )  + + ~.  A~,q ~' + ~b,,<, (35) 
,o O q  I J : bb=2 

where Ao are given by (34),  holds for the system considered. 
We notice that the descriptive function (35) can be reduced to 
the form 

Li = L + Y. ~(o).~:,, ,. ~, -'4 + b~t,)dq 2 + . . . 
h = 2  1 '2 

fq b - I  L ' ( b - 2 ) : l : ' b - I  ~ . b  
+ u,, ~,, " t  ] q  (36) 

Cb • I 

since the expression 

( °~'°) + f 'o  Oq'"+-----2 d t )  ' t +  y~ _ _ d q Z  
~,=~ \ ~ . ,  Oq b 

+ . . . 

I ,°°r ) q,, , O,~:, le____) dqb-~ 
+ Oq ~' + __~qb d t + ~ , - I )  (t ~, + ~,,+1 

c5-. I o 

can be written as a total derivative 

"(2 d~ q){°)dql + q?~)dq2 + " ' "  
I • 2 

+ ~},"-~)dq" + ~,,+~dt + const. , 
co 

and consequently can be omitted in (35). This is, of course, in 
accordance with the fact that, since the functions '-b~ °), 45(2~>, 

m(,,-l) eg,,+~ are arbitrary, we may choose 

,b] °) = ,I~ ~ = . . .  = ¢} ," - ' )  = ¢,:+~ = 0.  

T h e  C a s e  o f  N o n g y r o s c o p i c  F o r c e s  

Let us now move to the nongyroscopic case, assuming that 
b(0) .... ~ e: 0, i.e., that Q,, (see (9) ,  (8))  have the form 

Q~ = b ~ 4 ~  + ~o)  b (~  = _t,~o) ",~,,+l, . .~..  (37) 

Introducing the new coordinate 

q"+~ = t, 

and having in mind that 4 "~ l = 1, we can write the function 
(2) in the form 

V ( q  ~ ,4  ~) = - & q  ~, i =  1 ,2  . . . . .  n + l (38) 

with Ai = A~ (q t, q2 . . . . .  q,,+t), while the forces (37) become 

Q,  = b ~ ) 4  ~, (37 ' )  

where i = 1, 2 . . . . .  n + l, b~°i>(q ', qa . . . . .  q,,+,) = 
- ( o ) z : ,  , . . ,  q,,+l), 

--Dip t~  1, 'q2,  and where repeated indices imply 
summation• 

In order to make the results obtained for gyroscopic forces 
applicable to this case, we further introduce the new "general-  
ized force"  (which does not appear in (1)) :  

Q n + l  ~ ( 0 )  . i  = ,.,,+liq (39) 

where t.(o} ,.(0) to) .... +1~ = - u ,  + and b,,+t,,+~ = O, so that combining (37 ' )  
and (39) we can write 

i , j =  1 ,2  . . . . .  n +  1 (40) Q~ = boo j, 

where 

bl~)(q l, q2 . . . . .  q,,+l) 

Now, keeping in mind ( 
conditions 

= / , (o ) (n l  . . . .  q,,+ t) .  - ~ j i  .~ , q : ,  (41) 

19) and (36),  it is obvious that the 

tc D l , ( o )  . q t . ( o )  
O b i f ) +  ~.~:.__k_ = ~' ,k (42) 
Oq k Oq i Oq j 

i = 1 , 2  . . . . .  n - I  

j = i + l , i + 2  . . . . .  n 

k = j +  l , j +  2 . . . . .  n + 1 

have to be satisfied by the coefficients (41),  to ensure that the 
descriptive function 

1.~(I) : / : ,2 L, = L + b~°)dq I -}- u2i ~.'4 -~ . . .  

i=  'I '2 

:; ) t . ( i - 2 ) : 1  ,-~ (43) + .~_~ . q  4 ~ 
i - I  

can be constructed. 
Finally, replacing the coordinate q"+ ~ with t,  (42) and (43) 

read 

+ - ( 4 2 ' a )  
Oqk Oq' Oq / ' 

i = 1 , 2  . . . . .  n - 2  

j = i +  1, i + 2 , . . . , n -  1 

k = j +  1 , j + 2  . . . . .  n 

~/.,(0) .q/. (o) 
Ob~ °) + u,:/,,+l _ ~"<,,+1 (42 'b )  

Ot Oq i Oq : 

i =  1 ,2  . . . . .  n -  1 

j = i +  l , i + 2  . . . . .  n 

and 

Li = L  + ~ b~,°')dq I + - 2 i - ' 4  + . . .  
i = 2  '1 2 

f"' )q 2J'q' h ( i  2 ) : 1 ~ i ~ 1  i /.~ ( i -  1 ) : / ~ i  
+ ,,i-Jl - ~  + ,,i,,+l - ~  ( 4 3 ' )  

ci-. I i=  I c.¢ 

where, analogous to (33),  

~(i) = b~?lj(q,+l,  qi+2 q",  t)  = ~(i) : 1 
U i + l j ~ q  = C 1 t : i + l j  , • • . ~ 

q2  = C2 . . . . .  qi = Ci, qi+l, qi+2 . . . . .  q",  t) (44) 

i = l ,  2 . . . . .  n - - 2  

j = i + 2 ,  i + 3  . . . . .  n.  
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Thus the necessary and sufficient conditions which ensure the 
given generalized forces (9) are derivable from a Mayer's po- 
tential are given by the relations (8) and (42 'a) ,  (42 'b) .  

4 Relation Between Mayer's Potential and the Poten- 
tial Considered by Santilli 

Santilli (1983) presented the necessary and sufficient condi- 
tions for a local class C ~ Newtonian force F(t ,  r, f) to be 
derivable fi'om a potential U(t, r, /'), which we further call 
Santilli's potential. These conditions are summarized presently. 

The projections Y~, Yz, Y3 of the Newtonian force F = F(t ,  
r , / ' )  on the axes of a rectangular Cartesian coordinate system 
Oy~y~y3 have to be of the form 

Y,, = pab( t ,  y l ,  y2 ,  y 3 ) y b  + p.t(t, y l ,  y2 ,  y 3 ) ,  (46) 

a , b =  1 ,2 ,3  

and the following conditions 

P.b + P~a = 0 

Op~ Opc~ OP"-----2b + + - -  = 0 
Oy ~ Oy" Oy" 

Op<,____ 2 + Opt, O p t ,  0 
Ot Oy <' Oy ~ 

(47) 

a , b , c =  1 ,2 ,3  

have to be identically satisfied in a star-shaped neighborhood 
of a point (t, y~, y2, y3). 

It is obvious that the Santilli's potential coincides with May- 
er's potential if the latter corresponds to the motion of a free 
particle under the action of a force which satisfies the conditions 
for the existence of Santilli's potential. Namely, in this case Y. 
is the generalized force corresponding to the Cartesian coordi- 
nate y", and the existence conditions of a Mayer's potential 
reduce to (46), (47). 

Let us now consider the system of particles M~ . . . .  , MN, 
acted on by the system of forces 

Fl, F~ . . . . .  Fm (48) 

where F~ denotes the force applied to Mi, i = 1, 2 . . . . .  N. 
The motion of the system is assumed to be constrained by the 
holonomic constraints 

~3 . . . ,  

Y~N~, Y~N~, Y~N~, 0 = 0, (49)  

u =  1,2 . . . . .  l; l < 3 N  

where YI~, Y~o, Y~o are Cartesian coordinates of M~. 
Let us further suppose that the conditions ensuring the exis- 

tence of Santilli's potential (i.e., conditions of the form (46), 
(47), satisfied by the functions P,~(o, P,,(o corresponding to the 
force F~ ) are fulfilled for each force in (48). The consequence 
of that fact is that the conditions for the existence of Mayer's 
potential are also fulfilled. However, the inverse statement does 
not hold. This will be proved below. 

Let each force from the system (48) satisfy conditions (46) 
and (47) for the existence of Santilli's potential. In this case 
the expression for the generalized force Q~ will have the form 
required for the existence of Mayer's potential: 

Q~ = b~z](q', t)(l n + b~+~(q ' ,  t), b ~  = -b~°2. 

Here the coefficients b ~ ,  ~(o) ,,+t are given by 

Oy~o Oy~i) 
b~°~ = Y~ P,~(o Oq" Oq ~ ' 

i=l 

ccn+l IOab(i) - -  + : - - \  P a , ( i ) ~ ) "  /=l Oq ~ Ot 
(50) 

The remaining conditions for the existence of Mayer' s poten- 
tial, given by (42 'a)  and (42 'b) ,  take the form 

Oq ~ Oq ~ Oqn ,:~ \ Oy'~o Oy~o -~y~  

X Oy~° Oy~° Oy'~° = 0 (51a) 
Oq" Oq ~ Oq ~ 

Ot Oq ~ Oq ~ ~=~ \ Oy'~o OyT~ ) Oyez) J 

× Oy"o) OY~o Oy~o + ~ ( Op,b(o OPbt(o OPa,(i) ) 
Oq ~ Oq p Ot i=l OI + Oy~i) Oy~ 

X Oyez) Oy~o : 0, (51b) 
Oq ~ Oq ~ 

where the fulfillment of the conditions (46), (47) for the exis- 
tence of Santilli's potential for each force from (48) has as a 
consequence that the conditions for the existence of Mayer's 
potential are also fulfilled. To prove that the inverse statement 
does not hold, we shall analyze the following case. Let the 
forces fi-om the system (48) have the form (46), and let 

0p,,;,(;) = 0, P,,m) = 0, (52) 
Ot 

p~b~i~ + Pb~i~ = 0, (53) 

ODbc(i) Opca(i) Op,,b~ + + - -  ~ O. (54) 

i = 1 , 2  . . . . .  N 

a , b , c =  1 ,2 ,3 .  

The relations (54) indicate that not one of the forces of the 
system (48) has Santilli's potential. If the constraints (49) sat- 
isfy the condition 

O f  ~ 
- -  ~ - 0 ,  

Ot 

the relations 

OyTi> = 0 
Ot 

will also be valid. These relations, together with (52) and (50), 
lead to the trivial fulfillment of the relations (51b). In the case 
n = 2 the conditions (51a) will als0 be satisfied, in spite of 
(54), what is easy to verify having in mind the skew symmetry 
of the tensor 

~ u ( 0 )  Dh(0)  Ob~ + ~'¢7 + _ _  - -  v v  yc¢ 

Oq ~ Oq ~ Oq n 

with respect to any pair of indices. This is in accordance with 
our conclusion referring to the case n = 2, obtained in Section 
2 of this paper. 

5 An Example 
Let us consider, as an example, the system of particles M~, 

M2 . . . . .  MN, with masses ml, m ~ , . . . ,  mN respectively, moving 
with respect to the frame of reference O~7~ whose angular 
velocity oJ = co(t) relative to a Newtonian base is prescribed. 
The system is subject to the constraints 
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. f" (~ , ,  m,  ¢, . . . . .  ~ ,  ~ . ,  ~N, t) = 0, (55 )  

u = l ,  2 . . . . .  l ;  l < 3 N  

where (~, r h ,  ~ are the coordinates o f  M~, i = 1, 2 . . . . .  N ,  
with respect to the system O~r/~. Find the conditions for which 
the generalized Coriolis forces are derivable from a Mayer's 
potential, 2 and then determine this potential. 

Solution. The Coriolis force applied to the particle M~ is 
given by 

d,.pi 
F(i)co.- = - 2 m i ~  X - -  

dt 

where p,. is the radius vector from O to M~, and where d,./dt 
denotes the relative derivative with respect to t. 

As a consequence of (55) we may write 

p. = pi(q~,  q2 . . . . .  q", t ) ,  n = 3N - l 

where q~, q= . . . . .  q" are the Lagrangian coordinates of the 
system. The generalized Coriolis force con'esponding to the 
coordinate q~ reads 

N drPi Opi 
O . . . .  -~ -2¢o" E m, ~ × - - ,  (56) 

i=~ Oq ~ 

i.e., 

Oo o. : _2 ,o .  m, (  × 
i=~ \ Oq ~ Oq" J 

( 0 , 0 ,  ( 5 6 ' )  
- 2 o a ' i m ~  Ot × O q " / '  

i=1 

a, 13 = 1,2 . . . . .  n 

wherefrom it is evident that it has the form (37), with the 
coefficients 

Oq<,) ' \ o q '  

N (O,.p~ Op,~ 
,_(0~ = - - 2 0 a ' ~  talk Ot × (57) L, .... e=~ Oq" ] 

a,/3 = 1,2 . . . . .  n. 

The forces (56) have Mayer's potential if, and only if, the 
coefficients (57) satisfy the conditions (42 'a) ,  (42 'b) .  

Having in mind that 

Ob(~(~ __20.~.~ N~ f 02lOi Opi OOi 02pi - .... + × . 
Oq v ,=1 \dq~Oq ' Oq" ~ Oq~Oq~] 

and 

Oh(o) u c~n% 1 
- -  - 2oJ  . m~ x - -  

Oq ~ ~=~ ~ Oq ~ 

O~pi 020i 
+ Ot × O q " O q ' J '  

we find that the conditions (42'b)  are fulfilled if and only if 
the relations 

/ oo, oo! ) 
E ' 2  m,.~Oq~ × OqCJ = 0, (~ = e(t) = ~ ( t ) )  (58) 

i~l 

hold. These relations lead to the following conditions: 

= const., (59) 

=0, (60) 
~=~ \ Oq ~ Oq/~ ] 

~ ± i m,( OP' x O0"~ 
i=, \ Oq ~ 0 ~  ] ' 

(61) 

each of which ensures (42 'b) .  
In the case (60) the forces (56 ' )  do not depend on the gener- 

alized velocities of the system and the conditions (42 'a)  are 
trivially satisfied, while (42 'b)  reduces to the well-known con- 
ditions providing the existence of a potential for the given forces 
which depend on the position of the system and on time. 

In cases (59) and (61) Mayer's potential is given by (see 
(38)) 

n + 1 

V = - ~  Aj4 j, ( q , , + l  = t ,  4 ' ' + '  = 1) (62) 
i I 

where Aj, after omitting terms which are irrelevant in the case 
considered, have the form (see (24) and (34)) 

j I fcq  k A, = O, Aj ~ b ~ - b d q  k = , (63) 
k~ I 'k 

j = 2 , 3  . . . . .  n + l  

or, by virtue of (57), the form 

A. = 0, Aj = - 2 ~ ' ~  m, ~ X p}k-I~ 
,'=t k=l \ Oq ~ 

fl ,)doll 
it is easy to verify that the conditions (42 'a)  are always satis- 
fied. Further, as 

Ot i=. J \ Oq ~ Oq ~ / 

i=i \Oq~ j ] x Oq" Oq 5 k ot \ Oq" / 

2 Lagrange ' s  equations describing the motion of  a system of  particles relative 
to a moving  the base involve, as it is known,  general ized Coriolis forces (see, 
e.g., IVlerkin, 1956).  The question of  the existence of  Mayer ' s  potential for these 
forces is of  fundamental  importance.  

j = 2 , 3  . . . . .  n + l  

where the notations 

p~O) = Pi,  p}k) = p i ( q l  = el, q2 = C 2  . . . . .  

qk = ck, qk+l, qk+2 . . . . .  q", t) ,  

k = l ,  2 . . . . .  n 

are introduced. 
Now using (63 ' ) ,  after rather lengthy calculations whose 

details we omit, and neglecting the terms which are total deriva- 
tives with respect to time of the functions depending on coordi- 
nates and time, (62) becomes 
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N "+' (Op?  ) 
V = t o '  E m~ E \ -OqS-  × p}O) 4~ 

i=l j= l  

+ ~ ' Z m i  Z ( O P } J - ' ~ × p }  j - l~ dq j ,  (64)  
i=l ~=, \ Oq ~ 

where, in the case (59) ,  e = 0. 
Finally, as a concrete example, let us consider a system con- 

sisting of two particles M~, M2, with masses m~ = m2 = 1, 
moving  on the surface given with respect to the Cartesian frame 
O~7~ by 

+ t(r/ + ~) - 2t = 0. (65)  

The frame O~rl~ rotates about a fixed point O, having the 
absolute angular velocity 

oJ(t)  = 2 k  - t2/x + (2 + t2 )v ,  (66)  

where h , / x ,  ~, are the unit  vectors of the system O(r/~. 
The radius vectors p~0), p2(O) of the points M~((1, rh,  ~1), 

M2(~2, r12, ~2) respectively, can be written, keeping in mind 
(65) ,  in the f o r m  

p}O) = (2t  - tq I - t q 2 ) k  + q l l x  + qZp,  

p~o) = (2t  -- tq 3 -- t q 4 ) k  + q31X + q41,', 

where 

ql = ~31, q2 : ~1, q3  = /'12, q4  = ~2. 

Now, using (56) ,  we find 

Q~oo~ = 4(1  + t ) q  2 - 2 ( 2  - qt  _ q2)(  2 + t2), 

Q2~or = - 4 ( 1  + t )q  I - 2 ( 2  - q i  _ q2) t2  ' 

Q3cor = 4 (1  + t )q  4 - 2 ( 2  - q3 __ q4)(  2 + t2), 

Q4cor = - 4 ( 1  + 0 4 3  - 2 ( 2  - q3  _ q4)t2 ' 

f rom where 

b(O) i.(o) = 4 (1  + t), b ~  ) ~.(o) 0, 12 = --~21 ~ --~31 -~- 

b ~  ) = -b~4] ~ = O, b~°5 ) = - 2 ( 2 -  ql _ q2)(  2 + t2), 

b(O) i.(o) = O, b~] ~ i.(o) O, 23 = - -u32  ~ : - - u42  

b(0) = - 2 ( 2  qJ 25 - -- q2) t2, 

= = ~(01 - 2 ( 2  q3 v34h(°) --u43~(01 4(1  + t), u35 = - - q41(2 + t2), 

b(0/ - 2 ( 2  q3 45 = - - qa) t2 .  (68)  

It is not difficult to verify that the conditions (58) ,  ensuring 
the existence of the Mayer ' s  potential  

4 

V = Z A l l  j + As,  
j=2 

are satisfied. Using (68)  and (44) ,  and taking ct = c2 = c3 = 
0, we further find 

b(2~ ) = b~p = 0, b ~  ) =  - 2 ( 2  - qZ)t2, 

~(2) - 2 ( 2  - q3 t-'~(2)34 "~- 4(1  + t), ,-35 = q4) (2  + t21, 

b(3) - 2 ( 2  q 4 ) t 2 ,  45 = 

so that (63)  leads to 

A2 = 4(1  + t ) q  J, A 3 = 0 ,  A 4 = 4(1  + t ) q  3, 

A5 = - ( 2  + t 2 ) [ q l ( 4  - ql _ 2q2) + q3(4  _ q3 _ 2q4)] 

_ t2[q2(4 _ q2) + q4(4  _ q4)] 

and the Mayer ' s  potential  f rom which the Coriolis forces (67)  
are derivable reads 

V = 4 (1  + t ) ( q l q  2 + q 3 q 4 1  _ ( 2  - t2 ) [q~(4  - q~ - 2q 2) 

+ q3(4  _ q3 _ 2 q 4 ) ]  _ t 2 [ q 2 ( 4  _ q 2 )  + q 4 ( 4  _ q 4 ) ] .  

6 Conclusion 
As a conclusion, we summarize  the following theorem: Ham- 

i l ton 's  principle, expressed in the form valid for conservative 
dynamical  systems, can be extended so as to include the case 
of  a nonconservat ive system if the generalized nonconservat ive 
forces have the form (9 ) ,  with coefficients which satisfy the 
conditions (8 ) ,  ( 4 2 ' a )  and ( 4 2 ' b ) .  In the special case of a 
system with two degrees-of-freedom acted on by gyroscopic 
forces, the extension of Hamil ton '  s principle is possible without 
additional conditions. 
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Asymptotic Distribution of 
Eigenvalues of a Constrained 
Translating String 
A new spectral analysis for  the asymptotic locations ofeigenvalues of  a constrained 
translating string is presented. The constraint modeled by a spring-mass-dashpot is 
located at any position along the string. Asymptotic solutions for  the eigenvalues are 
determined from the characteristic equation o f  the coupled system of  contraint and 
string for  all constraint parameters. Damping in the constraint dissipates vibration 
energy in all modes whenever its dimensionless location along the string is an irratio- 
nal number. It is shown that although all eigenvalues have strictly negative real parts, 
an infinite number of  them approach the imaginary axis. The analytical predictions for  
the distribution of  eigenvalues are validated by numerical analyses. 

1 Introduction 
A class of flexible translating elements including textile fi- 

bers, magnetic tapes, transmission belts, band saws, and tram- 
way cables is commonly modeled as an axially moving string 
(Wickert and Mote, 1988). The model of a constrained translat- 
ing string can also describe a bandsaw passing over a guide 
bearing and a magnetic tape traveling over a read-write head. 
Perkins (1990) analyzed the natural frequencies and modes 
of a string translating across a discrete, and uniform, elastic 
foundation. By transfer function formulation, Yang (1992) pre- 
sented an eigenvalue inclusion principle for the translating 
string under nondissipative, pointwise constraints. Character- 
ized by multiple wave scattering, the transient response of con- 
strained translating strings under arbitrary disturbances was de- 
termined by Zhu and Mote (1995). 

Control of vibration of the translating string by a point force 
applied in the domain requires the dimensionless location of it 
to be an irrational number (Yang and Mote, 1991b). A criterion 
for design of a stabilizing controller that ensures that all closed- 
loop eigenvalues lie in the left half-plane was given by Yang 
and Mote (1991a). The distances of the eigenvalues of the 
controlled continuous system from the imaginary axis, espe- 
cially the infinite number of high modes, have not been investi- 
gated. 

In the present study, a new spectral analysis for the con- 
strained translating string is developed. The constraint, repre- 
sented by mass m, stiffness k, and damping c, is located at an 
arbitrary position d along the span. The asymptotic locations of 
all eigenvalues are determined from the characteristic Eq. (23) 
through the use of the Rouch6's Theorem. When m ~ 0 all 
eigenvalues of large modulus approach the imaginary axis. 
When m = 0 and c =~ 0, all eigenvalues remain in the left 
half-plane if d is irrational. However, an infinite number of 
eigenvalues approach the imaginary axis. Hence the system is 
not exponentially stable in any case. The methodology is appli- 
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cable to predicting the closed-loop eigenvalues for the controller 
designs in Yang and Mote (1991a). 

2 Model and Eigenvalue Problem 
As shown schematically in Fig. 1, a string of tension P and 

mass per unit length p is traveling at a subcritical speed V (V 
< P ~ )  between two supports separated by L. A flexible 
constraint with mass M, stiffness K, and damping constant C 
is located at a distance D (0 < D < L) from the left end. The 
interaction force between the string and constraint is R (T) .  The 
string is subjected to gravitational force pg and a distributed 
external force F ( X ,  T) .  The transverse displacements of the 
string and the mass M, relative to the horizontal X-axis, are 
U(X,  T)  and Z ( T ) ,  respectively. 

The string transverse displacement U(X,  T )  is small and 
planar. The friction force between the string and the constraint 
is negligible compared to the tension. Introduce the following 
dimensionless variables: 

x = X / L  u = U/L  z = Z / L  d = D / L  

v = V ( p / P )  1/2 t = T (P /pLZ)  1/2 

m = M / p L  k =  K L / P  c = C/(Pp)I /2  

w = pgL /P  f =  F L / P  r = R / P .  l )  

The equation governing transverse motion of the translating 
string is 

u , (x ,  t) + 2vux,(x, t) + (v 2 - 1)uxx(x, t) 

= r ( t ) 6 ( x  - d) + f ( x ,  t) - w (2) 

with the boundary conditions 

u(0, t) = u(1, t) = 0. (3) 

The equation of motion for the flexible constraint is 

- r ( t )  + k[zo + z* - z(t)]  - c~(t)  - mw = m&'(t) (4) 

where z ( t )  = u(d,  t) ,  z* is the equilibrium displacement of 
the constraint mass to be determined, and z0 is the compression 
of the spring at equilibrium. 

The equilibrium displacement of the string u*(x)  and static 
preload r* are derived from the equilibrium balance following 
( 2 ) - ( 4 ) :  
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~ U(X,T) 

F(X,T) 

~i L 

V 

-I 
Fig. 1 Schemat ic  of  a constrained translating string 

(v 2 - 1)u*. (x)  = r * 5 ( x  - d )  + f * ( x )  - w (5) 

u * ( 0 )  = u * ( 1 )  = 0 ( 6 )  

r*  = kzo - m w  z*  = u * ( d )  (7) 

where f *(x) is the equilibrium component o f . / (x ,  t). Substitu- 
tion of  u ( x ,  t)  = u * ( x )  + a ( x ,  t ) ,  z ( t )  = z *  + g(t) ,  r ( t )  = 
r* + ~(t), a n d f ( x ,  t) = f * ( x )  + f ( x ,  t) into ( 2 ) - ( 4 ) ,  and 
use of (5) - (6) ,  yield the equations describing small amplitude 
motions of the string and constraint around the equilibrium: 

t~,(x,  t) + 2 v G , ( x ,  t)  + (v 2 - 1 ) a s ( x ,  t) 

= f f ( t ) 5 ( x  - d )  + f ( x ,  t) (8) 

a(0,  t) = a(1,  t) = 0 (9) 

7( t )  = - k f ( t )  - c ~ ( t )  - mz~'(t), Z ( t )  = a ( d ,  t ) .  (10) 

The natural frequencies and vibration modes of the con- 
strained translating string around its equilibrium are derived 
from ( 8 ) - ( 1 0 ) .  By setting f ( x ,  t) = 0 in (8) ,  assuming a 
separable solution 

t ~ ( x , t )  = U ( x ) e  ×'= ~ U t ( x ) e ~ ' '  0 < x < d  (11)  
[ U2(x )e  xt, d < x <  1 

where U ( x )  and k are, in general, complex, and substituting 
(11) into ( 8 ) - ( 1 0 ) ,  yields 

XZG(x) + 2vXU~(x )  + (v 2 - l ) U ' ; ( x )  = O, 

0 < x < d  (12a) 

X2Uz(x) + 2vXU~(x )  + (v 2 - l ) U ~ ( x )  = 0, 

d < x <  1 (12b) 

U, (0)  = 0 U f f l )  = 0. (13) 

Because u ( x ,  t) is continuous at x = d, we have 

U , ( d )  = U2(d)  (14) 

By (11) u , (x ,  t)  and u . ( x ,  t) are also continuous at x = d. 
Integration of (8) from x = d -  to x = d + and use of ( 1 0 ) -  
( 11 ) gives 

(v 2 -  1 ) [ U ~ ( d ) -  US(d)] 

+ [ink 2 + ck + k J U ~ ( d )  = 0. (15)  

The eigenvalue problem (12a) - ( 15 ) leads to the characteris- 
uc equation 

(rnk ~ + ck + k) sinh 1 h ~ d v 2  sinh k(1 - d)  
1 -_7 vT 

X 
+ k s i n h - - =  0 (16) 

1 - v  2 
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whose roots are the complex eigenvalues k = ~ + coi, where 
/.z and co are real and i = ~[Z-~. They appear in complex conjugate 
pairs, k±,, = #,, _+ co~i (n = 1, 2, 3 . . . .  ), where the positive co,,, 
arranged in ascending order of magnitude, gives the sequence of 
the dimensionless natural frequencies of the system. Temporal 
variation of the vibration amplitude for mode n is described by 
,u,,, whose positive and negative values indicate the rate of 
amplitude growth and decay, respectively. For c = 0, eigenval- 
ues are imaginary and (16) reduces to 

cod co( 1 - d) 
( k -  mco 2) sin 1 - ~ s i n  1 - v - - - - - - ~ -  

co 
+ cosin - 0 .  (17) 

1 - v 2 

The special case of m = 0 in (17) returns the characteristic 
equation for a translating string guided by a single spring (Per- 
kins, 1990). If in addition, k = 0 in (17),  the positive roots of 
(17) recover the natural frequencies of the classical moving 
threadline, wn = nTr(l - v 2) (n = 1, 2, 3 . . . .  ) (Sack, 1954). 

The complex eigenfunction Un(x)  corresponding to the com- 
plex eigenvalue X~ is obtained from ( 1 2 a ) -  (15) as follows: 

U,,(x) = e x'x/(t-v) - e -x'/(t+~), 0 < x < d (18a)  

k,,d 
sinh - -  

U,,(x) = - e  -~'"~-°2) 1 - v z 
k,,(1 - d )  

sinh - -  
1 - v  2 

× (e x°*/(l-°) - e2~"/(1-~2)e-X"x/(l+~)), d < x < 1. (18b) 

Hence, the general solution t~(x, t) describing free response can 
be obtained by superposition of the separable form (11 ) for 
each eigensolution {hn ,  Un(x)} SO determined: 

a ( x ,  t)  = Y~ (A~U,,(x)e x'' + A_, ,U_, ,(x)e x- ' ' )  (19) 
n=l 

where the eigenfunction associated with the eigenvalue k_. = 
k. is U _ . ( x )  = U,,(x) by (18a,  b) ,  with the overbar denoting 
complex conjugation. Because ~7(x, t) is real, A_,, = A. with 
A,, determined from initial conditions. 

3 S p e c t r a l  A n a l y s i s  

The solutions to (16) are symmetric with respect to the center 
of  the string d = ½. For c ~ 0 and subcritical transport speed v 
< 1, Re k = # -< 0. The system is asymptotically stable, i.e., 
~,, < 0 for all n E N, only when d is irrational. This can be 
shown by substituting k = coi into (16) to give 

wd w(1 - d) 
( k - m w  2) s i n ~ s i n  1 - v  - - - - - - T -  + co sin 1 - v 2 

cod co(1 - d) 
- - s i n - -  = 0 .  (20) + ic w sin 1 - v 2 1 - v 2 

Separating the real and imaginary parts, we obtain for c ~ O: 
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co cod 
sin - sin - 0 or 

1 - 1 )  2 1 - -  V 2 

co - sin co(1 - d )  
sin 1 - 1) 2 1 - v - - - - - - ~  - 0. (21 )  

H e n c e / z  = 0 if  and only  if  d = p / q ,  w h e r e  p ,  q E N and 0 -< 
p -< q.  For  p = 0 and p = q the const ra in t  locat ion coinc ides  
wi th  one  or  the o ther  support .  The  o ther  discrete  locat ions d = 
p / q  w i t h p  = 1, 2 . . . . .  q - 1 g ive  the q - 1 nodal  points  o f  
m o d e  q o f  the classical  mov ing  threadline.  To provide  damp i ng  
to all the vibrat ion modes ,  d ~ p / q  for  all q and 0 < p < q in 
ag reemen t  wi th  Yang and Mote  (1991b) .  For  a rational d = p!  
q with  p and q co-pr ime,  the imaginary  e igenvalues  are nqTr( 1 
- u2)i (n  = 1, 2, 3 . . . .  ) by ( 2 1 ) .  

In t roduct ion o f  the n e w  variables  

X 1 - v  2 c 
h* - m *  = m - -  c*  = -  

1 - v  2 2 2 

k 
k* - (22 )  

2 (1  - v 2) 

into (16)  and dele t ion o f  the asterisks in the notat ion yields  

(mX 2 + ck + k ) [ e  x - e O-2a)x - e - ( l  2a)x + e x] 

+ X[e x -  e -x] = 0 .  (23 )  

1 I 3.1 S p e c t r u m  f o r  d = ~. W h e n  d = ~ two branches  o f  
the solut ion to (23 )  result: 

mk 2 + ck  + k - X 
e x = 1; e x =  . ( 24a ,  b )  

m X  2 ÷ CX ÷ k + X 

The  e igenvalues  o f  the first branch,  k,, = 2n(1  - l j 2 ) i  (n  = 1, 
2, 3 . . . .  ) by  (22 )  and ( 2 4 a ) ,  are the e v e n - n u m b e r e d  m o d e s  o f  
a classical  m ov ing  threadline.  The  e igenvalues  o f  the second  
b ranch  are obta ined f rom (24b)  for the fo l lowing  cases:  

Case I: m ~- o. Equat ion  (24b)  is wri t ten in the fo rm 

2 1  
e x - 1 + - - -  + o(Ixl% = o. (25 )  

m k  

The  zeros  o f e  x = 1 are a,, = 2nTri (n  = 1, 2, 3 . . . .  ). The  
zeros  o f  (25 )  for  X o f  large modulus  are asymptot ic  to o ,  
fo l lowing  the theo rem o f  Rouch6  (Car r ie r  et  al., 1983) :  

Rouchd's Theorem: Let  f ( z )  and g(z )  be  analytic  inside 
a n d o n  C,  with Ig(z) t  < If(z) l  on C. T h e n f ( z )  a n d f ( z )  + 
g(z)  have  the same number  o f  zeros  ins ide  C. 

In the present  case,  l e t f ( k )  = e x - 1 and g ( k )  = ( 2 / m ) ( 1 /  
x) + o ( I x l - 2 ) .  A disk C,, cen te red  at or,, is defined:  X = or,, + 
(e/Io, , I )e  ~°, where  0 -< 0 _~ 27r. On C, ,  we  have 

] f (X)l  = le (<~ ' lw° - I I  = i @ . l e  '° + O(Icr,,I -2) 

E 
- - -  + O(Icr,,] -2) ( 2 6 )  

Io,,I 

where  the Taylor  expans ion  has been  used in ( 2 6 ) .  Because  
IX[ - I~,] - ( e / l ~ , , I ) ,  we  have  

1 1 
- -  -<  ( 2 7 )  

Io,,I 

Take e > 0, such that 

2 1 e 
- -  < - -  • ( 2 8 )  
m Io,,[ - e Io,,I 

Io,,I 

That  is, ( 2 / m ) l o , , I  < elo, ,I  - e2 / [0 , , I .  So if  e > 2/m,  there  
exists  N > 0, such that for  n -> N,  (28)  is satisfied. H e n c e  by 
( 2 7 ) ,  ( 2 / m ) / ( 1 / l k ] )  < ~ / I o . I .  Take No -> N,  such that for n 
->No,  

1 -2) 
Ig (X) l  = ~ + O([Xl  

2 1 

m IXl 
- - - -  ÷ O ( [ X [  -2 )  < I f ( X ) l  ( 2 9 )  

on C,,. By  RouchE ' s  Theorem,  there  exists  one solut ion k,, to 
(25 )  ins ide  C,, f o r n  -> No, i.e., IX,, - 05,] < e / ]o , , ] .  H e n c e  by 
re turning to the fo rmer  var iables  in ( 2 2 ) ,  the e igenvalues  o f  
the s econd  branch  are 

k , , = ( 1 - v 2 ) a , , +  0 ( 1 ) = 2 n T r ( 1 - v 2 ) i +  O ( 1 ) .  (30 )  

Each  e igenva lue  X,, o f  the  s econd  branch in (30 )  is asymptot ic  
to one  on the first branch,  2nTr(1 - v2)i. H e n c e  e igenvalues  
o f  h igh m o d e s  exist  in c lose ly  located pairs  near  the imaginary  
axis. They  are independen t  o f  the cons t ra in t  parameters ,  m,  c,  
and k, to the first order.  

Case H: m = 0 and c ~ 1. Equat ion  ( 2 4 b )  becomes  

c - 1 2k 1 
e x = - -  + - -  (31 )  

c +  1 1 + c ( 1  + c ) k + k  

The  solut ions to e x = (c  - 1 ) / ( c  + 1) are 

c - 1  
0 ,  = l n - -  + 2n~ri, for  c > 1 ( 3 2 a )  

e + l  

1 - - C  
= - -  + ( 2 n -  1)Tri, for  c < 1 (32b)  or,, In 1 + c 

for n = l, 2, 3 . . . . .  Hence  by (22 )  the exact  e igenvalues  o f  
the s econd  branch  for k = 0 are kn = (1 - v2)cr,,. By  use o f  
the R ouch6 ' s  T h e o r e m  and (22 )  s imilar  to Case  I, the e igenval -  
ues o f  the second  branch  for  k ~ 0 are 

c - 2  
hn = (1 - v  2) 1 n -  

c + 2  

for c > 2, ( 3 3 a )  

2 - - C  
k,, = (1 - v  2 ) l n - -  

2 + c  
+ ( 2 n - 1 ) T r ( 1 - v 2 ) i +  O ( ¼ ) ,  

for  c < 2. (33b)  

They  are i ndependen t  o f  k to the first order.  In ei ther  case  #,, 
= REX,, = ( t  - v 2) In 1(2 - c ) / ( 2  + c)l ÷ O ( 1 / n ) .  H e n c e  
the decay  rates for h igh  m o d e s  are near ly constant .  

Case l lh  m = 0 and c = 1. Equat ion  (24b)  reduces  to 

(2k  + k)e  × = k (34 )  

and k ~ 0, e ~x = k/]2X + k]. Hence  ReX = In (k/12k + kl ) ,  
and # = ReX ---~ -c~ as Ixl --, ~ .  Reduc ing  k increases  the 
damp i ng  rates for all the m o d e s  on the second  branch.  ReX 
- ~  in (34 )  y ie lds  2Xe ~ = k. H e n c e  (34 )  is asymptot ic  to 

Journal of Applied Mechanics SEPTEMBER 1997, Vol. 64 / 615 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



k 
ReX + In Ixl = I n ± .  (35)  

2 

The asymptotic locations of the eigenvalues of (35)  can be 
obtained. Let X = [hi e ~°, 

ReX 1 k in I k l 
c o s O = - - =  In , 0 ,  as IX ~ o ~ .  (36)  

Ixl Ixl 2 Ixl  

Hence 0 ~ ( r r /2 )  as [hi --~ o~. Also, 

eiim a = & e - R e  x = Ixl = e _ , 0 .  ( 3 7 )  

2X X 

Hence by (22) ,  (35) ,  and (37)  the asymptotic elgenvalues of 
the second branch are given by 

co,, = ImX, = ( 1 -  v 2 ) ( 2 n r r  - ~ )  (38a )  

# ,  = ReX, = (1 - v  2) In 
4(1  - v 2) 

- ( 1 - v 2 )  l n ( 2 n r r - ~ ) .  ( 38b )  

By (38a)  co,, is independent  of  k to the first order. 
For k = 0 there are no finite solutions to e ~ = 0. Hence there 

are no eigenvalues corresponding to (34) .  ReX = -oo in this 
case implies that all the modes of the second branch are com- 
pletely dissipated by damping after a finite time. 

3.2 S p e c t r u m  for  m ~ 0 a n d  a r b i t r a r y  d.  Equation (23)  
is written in the form 

e2X --  e2aX _ e2(l d)X + 1 X(e 2x - 1) (39)  
m k  2 + cX + k "  

If ReX --+ -oo as ]X] --+ 0% (39)  yields a contradiction, 1 = 0. 
Hence there exists A > 0, such that - A  < ReX -< 0. Therefore 
e x and e -x are bounded. As IX] ~ 0% we have from (23) :  

(e 'Ix - e - a X ) ( e  (t-'~)x - e (I-,J)x) 

X(e x - e-h)  
- ~ 0 .  ( 4 0 )  

m k  2 + cX + k 

Hence either e 2~x ~ 1 or e 2~ d)x ~ 1 as IXl ~ ~ .  In either 
case ReX --, 0 as I xl - ,  ~.  For irrational d,  though ReM < 0 
for all n,  all eigenvalues approach the imaginary axis as I k l 
c~. Hence the system is asymptotically, but not exponentially, 
stable. 

D e t e r m i n a t i o n  o f  E igenva lues .  By (23)  we have 

1 2x 
(e 2 J a -  l ) ( e  2~l~d)x- l )  + ~ ( e  - 1) 

+ O ( I X 1 - 2 )  = O. (41 )  

L e t f ( X )  = (e 2Jx - 1 ) (e  2(1 d ) x _  1 ) a n d  g ( X )  = (1 /mX) (e  2x 
- 1 ) + O(  I X1-2).  The roots o f  e 2dx = 1 are ~ ,  = nrr i /d .  Def ine 
C,, around cry: X = or,, + (e / l c r~ l )e i ° ,  where 0 -< 0 ~ 27r. For  
any X on C,,, using the Taylor expansion we have 

le  2 a x -  II  = le 2'~(<~'1)''°- i I  

6 - 2 )  
= 2 d - ~ -  + O(]cr,,] (42)  

[ e2(, ,~)x _ 11 = [ ec2":r/d)ie 2(l-d)(e/la'il)e'° -- i I 

= le ( ~ ' ' ' " ) ' -  I I  + O(1~.1- ' )  

le zx - 11 = le ( 2 ~ ' ) ' -  I I  + O(1~, , I - ' ) .  

Hence on Cn, 

If(X)l  = le 2 a x -  llle z ( ' - a ~ x -  11 

C ]e(2mr/d)i • 2)  = 2 d  i-~,,] - 11 + O(Icr,,I 

(43)  

1 1 
Ig (X) l  le ~2"~'~)'- 11 + o(Ic~, l -Z).  ( 44 )  

m Io,1 

For irrational d, [ e (2"~/~°~ - 1 [ ~e 0. For rational d = p / q ,  with 
p and q co-prime, [ e <2"~m~ - 11 = 0 only when  p divides n. 
In this case (43)  and (44)  become 

[e 2('-a~x - 1[ - 2(1  - d ) e  + o (1~ .1_2)  

2E 
le  2x - 11 = ~ + O(1~,,1-2) (45)  

I c~,,I 

I,f(x)l 4 d ( 1  - d ) e  2 + O(l~r,,[_3) 

Io,,I = 

2E 

t g ( h ) l  m'~r,  ' ~ 1  I + O ( l a " [ - 3 ) "  (46)  

Choose c > 1 / [ 2 d ( 1  - d ) m ] ,  then for either (44)  or (46)  
there exists N > 0 such that when  n >- N, Ig(X)l < If(X)l 
on C,,. By R o u c h t ' s  Theorem, there is one solution k,, to (41)  
inside C, for n ~ N, i.e., IX,, - cr, I < e/l~rnl.  Hence by (22)  
one branch of eigenvalues is 

X,, = 7 (1 - v2) i  + 0 . (47a )  

Similarly the roots of e 2 ( t - a ) x  --  1 = 0 are or,, = n r r i / ( 1  - 

d) .  Following the same analysis, the other branch of eigenvalues 
is 

k,, = 1 - d (1 - va) i  + 0 . (47b)  

For d = ½ the two branches  of  eigenvalues are both of the form 
2nrr(1 - v2) i  + O ( 1 / n ) ,  consistent with Section 3.1. 

3.3 S p e c t r u m  for  m = 0 a n d  A r b i t r a r y  d.  Because of 
symmetry of the spectrum with respect to d = ½, we consider 
d < ½. Because k = 0 is not an eigenvalue, (23)  becomes 

( c  + 1 + ~)eZX-- ( c  +--~)e 2(l-d)x 

-- (C q- --~) e2dx + c - l + -k- = (48)  

For c ~e 1 the roots of (48)  
those of the characteristic 
(Bel lman and Cooke, 1963) : 

(c + l ) e  2x - ce 2(l-~t)x - ce 2uh + c - 1 = 0. (49)  

For c = 1 and k =~ 0 (48)  is written as 

2eZ(~-,~)x- e2(~ 2d)k__ 1 

k [e 2ax + e2(l-a)x _ e 2 ( I - 2 d ) X  1] = 0. (50)  + ~  

For c = 1 and k = 0 (48)  becomes 

of large modulus are asymptotic to 
equation corresponding to k = 0 
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2 e  2x = e 2(I-d}x + e 2Jx. (51)  

If ReX --* -c~ as Ik I --* ~ ,  (48)  implies c = 1. For c = 1 
and k = 0, we have by (51)  

2 = e2(d-t~x(1 + e 2( l -2d)h)  (52)  

Reh ~ -c~ in (52)  leads to a contradiction, 2 = c~. Hence there 
exists A > 0, such that - A  < Rek _< 0. For c = 1 and k ~ 0, 
Rek ~ -oo in (50)  yields 1 = ke  2dx/k. Hence, e -2dRex = 

I k l / k .  A branch of eigenvalues of (50)  of large modulus is 
asymptotic to 

ReX + ~ In I xl -- ! In k, (53)  
2 d  2 d  

which is similar in form to (35)  for the case d = ½. Let ~ = 
Ixl e i°, we have 

ReX 1 In Jkl 1 I n k  
cos 0 . . . .  + 

Ixl 2 d  Ixl 2 d  Ixl 
~" 0', 

as Ixl ~ o~. ( 5 4 )  

Hence 0 ~ 7r/2 as I x l  ~ ~.  Further, 

e_i2a~mx = _k e2aR~X ---- - - ~k  = eiO. ( 5 5 )  
k IXl 

Hence by (22)  and ( 5 3 ) - ( 5 5 )  the asymptotic locations of the 
eigenvalues on (53)  are 

c~,, = Imh,  1 - v 2 (  2 )  = 2-d 2nTr - (56a )  

#,, = REX,, 

1 - v 2 _[, .  , 
2 d  2(1  - v 2) 2 d  

All other branches of eigenvalues of (50)  must  satisfy - A  < 
ReX _~ 0 for some constant  A > 0. They are determined next. 

C a s e  I: R a t i o n a l  d .  Let d = p / q  with p and q co-prime, 
and 2p  < q. Equations (49)  and (51)  reduce, respectively, to 
the polynomial  equations 

( C  + 1 ) Z  q - -  CZ q-p  - -  CZ p + C --  1 = 0 (57)  

2z  q - Z q--p - z p = 0 (58)  

where z = e (2/q)x.  Because there are no finite solutions for X 
corresponding to the root z = 0, (58)  reduces to 

2zq-p  - -  Z q 2p _ _  1 = 0. (59)  

There are at most  q and q - p distinct roots for (57)  and (59)  
respectively. By (22)  the branch of eigenvalues corresponding 
to the root z~ of (57)  or (59)  is 

q 
X~ = ~ (1 - v2)[ ln  Iz, I + i (a rg  zz + 27rn)], 

n = 1 , 2 , 3  . . . . .  (60)  

Each branch of  eigenvalues in (60)  lies on a straight line parallel 
to the imaginary axis and hence represents a constant rate of 
damping. Because z = I is a root of (57)  or (59) ,  the corre- 
sponding branch of eigenvalues is imaginary: nqvr (  1 - v 2 ) i  ( n  
= 1, 2, 3 . . . .  ) by (22) ,  in agreement  with (21) .  Note that (60)  
is the exact solution to (48)  when k = 0. 

In addition to the branch of eigenvalues given by (56a ,  b ) ,  
we show that all other eigenvalues of  (50)  are asymptotic to 
those of (51)  determined by (59)  and (60) .  Let 

f ( k )  = 2e  2~1 a~x_ e2(l 2d~×_ 1 

k [e 2dk e-2(~ d)X e2~ 2a~a 1] g ( k )  = ~ + -- -- . (6 l )  

Equation (50)  becomes f ( k )  + g (h )  = 0. Each branch of zeros, 
~r,, o f f ( h )  = 0 satisfies 

e 2e' /q = z,, 2z,~ -I' = Z~ --2p + 1. (62)  

Define C,, around a,, by )t = ~r,, + (1/ ] IG, , I )d  °, where 0 -< 0 
-< 27r. For any h on C,,, by using the Taylor expansion and 
(62)  we obtain 

2(1 - d) ] 
I f (X)l  = 2z~-" 1 + ~ - ~  e i° 

I 2(1 - 2d) 1 ) ~) - z~ -2p 1 + ~ 1 ~ ,  ~ e i° - l + O(Icr,, I 

1 
- - - - 7 ,  12dz,'~ -2"  + 2(1  - d ) l  + O(1~,,I - ' )  

Vla,,I 
(63)  

k 
- Iz, ," - z U ' l  + o ( 1 ~ , , I - 3 ' 2 ) .  (64) 

Because there are only a finite number  of zeros z,,, 12dz~ 2I, + 
2(1  - d)l  and Iz,/ '  - z~ I'1 are bounded. It can be further 
shown that 12dz~ 2p + 2(1 - d) l  ~ 0 in (63) .  Hence r g ( h ) l  
< If(X)I on C,, for sufficiently large I~,,I. By Rouch6 's  Theo- 
rem there is one solution h,, to (50)  inside C,, such that IN,, - 

~r,,I < t/]l~r,,I. On the other hand, if  (50)  has a branch of 
zeros kl other than those of X,,, let F (X)  = f ( k )  + g ( k )  and 
G ( h )  = - g ( k ) .  Because - A  < ReX -~ 0, e -2aRcx is bounded. 
Following the same approach we can show that I G ( h ) l  < 
I F ( h ) t  on a disk Ct around kz for sufficiently large I htl. Hence 

F ( h )  + G ( h )  = f ( h )  also has another branch of zeros around 
kt, which is impossible. Therefore eigenvalues of (50)  of large 
modulus are asymptotic to those given by (59) ,  (60)  and (56a ,  
b ) .  Note that (56a ,  b)  apply for both rational and  irrational d. 

C a s e  II: I r r a t i o n a l  d .  For irrational d all eigenvalues lie 
strictly within the left half-plane and the system is asymptoti- 
cally stable. We will show that there are an infinite number  of 
eigenvalues arbitrarily close to the imaginary axis, hence the 
system is not exponential ly stable. 

By Theorem 185 of Hardy and Wright  (1979) ,  every irratio- 
nal number  0 < d < 1 can be approximated by an infinite 
number  of rational fractions p / q such that I P / q - dl  < 1 / q 2 .  
Hence we assume d = p,,/q,,  + bn /q~  (n  = 1, 2, 3 . . . .  ), where 
Pn and q,, are co-prime positive integers arranged in the as- 
cending order of magni tude of  q,,, and ]bn ] < 1. Let 

f ( h )  = (c + 1)e  zx - ce  2ll-(p,/q,,)xl - -  ce2(p,/q,, ~x + c - 1 (65)  

g(X)  = k e2 x _ _k e2(~_~l~x _ k e2~  + _k 
h h h k 

+ c e 2 ( I - P , , / q , , ) x ( 1  - -  e 2(b,,/d)x) 

+ c e 2 ( p " / q " ) X ( l  - -  e 2 ( b " / q ~ X ) .  ( 6 6 )  

Equation (48)  becomes f ( k )  + g ( k )  = 0. B e c a u s e f ( k )  = 0 
has zeros ~r,, = lq,,Tri, where l is any posit ive integer, we define 
C, around or, by k = or,, + (1 / l~ , , I ) e  ~°, where 0 -< 0 ~- 27r. 
For any h on C , ,  using the Taylor  expansion we have 
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Fig. 2 Distribution of the first 50 eigenvalues for m = 0, d = ~, v = 0.1,  
and c = 2. (a )  N u m e r i c a l  ( " + " )  and asymptotic ("×")  solutions for k = 

2; ( b )  numerical solutions for k = 2 ( " + " )  a n d  k = 0 ( " × " ) .  

I f ( x ) l  : I (c  + 1)e (z/l°''l)e'°- c e  <t-p'''q'')(211°'l)`'° 

--  c e  (p'/q')(211a'l)ei° q- c - -  11 

= , 2  e , O +  O( io .  1_=) 
la , , I  

2 
- + O(Io-, , I  -z )  (67)  

I~,,I 

k [eZX _ e2(1_,) ~ _ eZ,t ~ + 1] 
X 

: ~ [ e  ( 2 1 t ° ' l ) e i °  - -  e [ l - ( p " / q ' ) ] ( 2 / l ° ' l ) e i °  X e - 2 ( b " l q ~ ) [ a " + ( l / l a ' l ) e i ° ]  

k 

-- e(P"/q")(2/l~r"l)eiOe2(b"/q~)[°"+(llla"l)eiOl 4- l] 

= - _ 1 - 2 - -  + + 0 ( 1 ~ . 1  
q~ / ~ 

= O ( I G . 1 - 3 )  

ce2[l-(P"/q")]x(  1 - -  e-2(b"/q~)X)+ ce2(p"lq")X( l - -  e 2(b'lq~)x) 

= c[-27r2b'12+~, O(]crn l -Z) ]  

(68)  

+ c[27rzb"12+~, o ( l ~ l - z ) ] = o ( [ ~ . l - 2 ) .  (69)  

Hence I g ( X ) l  = O(1~.1  -~) < I f ( X ) l  on  C. ,  By  Rouchd's 
Theorem,  there exists one solution Xn to (48)  inside C,, that is 
IX,, - cr, I < 1/[a,,I = 1/lq,,Tr. Because there are an infinite 
number  of distinct q, ,  qn --* co as n --* co. Therefore ReXn --* Recr, 
= 0 as n --* co. As noted, an = lq,,Tri ( l  = 1, 2, 3 . . . .  ) correspond 
to the infinite number  of eigenvalues on the imaginary axis 
when d is approximated by the rational fraction pn/q,. As n --* 
co, p,/q,, --, d and a ,  (1 = 1, 2, 3 . . . .  ) approach those correspond- 
ing to the irrational d. 

4 Examples and Discussions 
Eigenvalues for different cases are calculated numerically from 

(16)  and compared with the analytical solutions in Section 3. 
In the first example m = 0, d = ½, v = 0.1, and c = 1. When  

k = 0 the locations of the first 50 eigenvalues agree with the 
exact solutions in (24a )  and (32b) .  One branch of  eigenvalues 

lies on the imaginary axis: 2nTr(1 - vZ)i = 6.22ni  (n = 1, 2, 
3 . . . .  ). They correspond to the even-numbered modes with 
nodal  points at d = ½. The other branch of eigenvalues given 
by (1 - vZ)[ln (2 - c ) / ( 2  + c) + (2n  - 1)Tri] = - 1 . 0 9  + 
3 .11(2n  - 1) i  (n = 1, 2, 3 . . . .  ) corresponds to the odd- 
numbered  modes. These eigenvalues have a constant  real part 
# = -1 .09 .  When  k = 2 the branch of eigenvalues on the 
imaginary axis remains unchanged,  while the other branch is 
quickly asymptotic to that for k = 0 (not  shown here) ,  in 
agreement  with (33b) .  

In the example shown in Fig. 2, c = 2 and all other parameters 
remain the same as those in the previous example. The first 50 
eigenvalues for k = 2 separate along two branches.  The first 
branch lies on the imaginary axis as in the previous case. Loca- 
tions of the eigenvalues on the second branch agree with the 
asymptotic solution in (38a ,  b ) .  Unlike any other damping 
constant  c which would yield a nearly constant  decay rate, 
rates of decay of  the eigenvalues on the second branch increase 
monotonically.  Hence c = 2 is optimal damping in this sense. 
When k = 0 as shown in Fig. 2, the second branch disappears 
and all eigenvalues lie on the imaginary axis, as predicted in 
Case III of Section 3.1. 

The distribution of the first 50 eigenvalues for m = v = d = 
0.1, k = 2, and c = 1 is shown in Fig. 3. The eigenvalues on 
the imaginary axis are 10nvr(1 - v2)i = 31.1ni (n = 1, 2 . . . . .  
5) ,  as predicted by (21) .  In addition there is a sequence of 
eigenvalues asymptotic to each eigenvalue on the imaginary 
axis, in agreement  with (47a ) .  Hence introduction of a small 
inertia m alters the behavior  of the spectrum significantly. For 
m = 0.5 and other parameters unchanged (not  shown here) ,  
the eigenvalues approach the imaginary axis faster and all k,, 
for n > 10 are located close to the imaginary axis. 

For m = k = 0, d = 1, v = 0.1, and c = 1, the first 50 
eigenvalues shown in Fig. 4 are in agreement  with the exact 
solutions in (57)  and (60) .  The roots of (57)  are 1, -5 .523 ,  
and - 0 . 0 5 7 2  + 0.7748i. By (60)  the resulting four branches 
of eigenvalues are: 12.44ni,  - 1 . 1 8  + 6 .22(2n  + 1) i ,  - 0 . 5 0  
+ (3.26 + 12.44n)i ,  and - 0 . 5 0  + (9.18 + 12.44n)i  (n = 1, 
2 . . . .  ). They are distributed along three # = constant lines 
because the last two branches are both located on # = - 0 . 5 0 .  
When  k = 2 with other parameters unchanged,  eigenvalues of 
high modes are asymptotic to those corresponding to k = 0, as 
predicted by (49) .  

In Fig. 5 are shown the first 50 eigenvalues for c = 2 and 
other parameters same as those in Fig. 4. The roots of  (58)  
are 1 and - 0 . 2 5  +_ 0.6614i. The corresponding branches of 
eigenvalues for k = 0: 12.44ni,  - 0 . 6 8 6  + (3.83 + 12.44n)i ,  
and - 0 . 6 8 6  + (8.61 + 12.44n)i  (n = 1, 2, 3 . . . .  ) by (60)  are 
distributed along two lines # = 0 a n d / z  = -0 .686 ,  as shown 
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Fig. 3 Distribution of the first 50 eigenvalues for m = v = d = 0.1,  k = 
2, a n d  c = 1 
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Fig.5 Distribution ofthe first 5O eigenvalues for c = 2 and other parame- 
ters same as those in Fig. 4. (a) Numerical ( " + " )  and asymptotic ( " x " )  
solutions for k = 2; (b) numerical solutions for k = 2 ( " + " )  and k = 0 
( " x " ) .  

in Fig. 5. When k = 2, the branch of eigenvalues on the imagi- 
nary axis is unchanged, and the other branch is asymptotic to 
that con'esponding to k = 0, as expected. In addition to those 
two branches, there is a branch of eigenvalues shown in Fig. 
5 (a)  with increasing rates of decay 1/.z t, as predicted by (56a,  
b).  

5 Conclusions 
1 When c :~ 0 the constrained translating string is asymptot- 

ically stable if  and only if d is irrational. However, even for 

irrational d, there are an infinite number of eigenvalues ap- 
proaching the imaginary axis. Hence the system is not exponen- 
tially stable. If d = p/q is rational, where p and q are co-prime, 
the branch of eigenvalues on the imaginary axis is given by 
nqTr(1 - 1~2)i (r l  = 1, 2 . . . .  ). 

2 When m e: 0 and c and k are arbitrary, eigenvalues of 
the high modes are asymptotic to (nTr/d)(1 - v 2 ) i  and [nTr/ 
(1 - d ) ] (1  - v2)i (n = 1, 2 . . . .  ). The asymptotic behavior 
of the eigenvalues for sufficiently high modes is independent 
of m, c, and k. 

3 For d = p/q, m = k = 0, and c =~ 2, the exact solutions 
for the eigenvalnes are given by (57) and (60).  All eigenvalues 
are distributed along the imaginary axis and along at most q - 
1 lines of constant # = Reh in the left half-plane. The distribu- 
tion of  the eigenvalues for nonzero k is asymptotic to that corre- 
sponding to k = 0. Hence the asymptotic locations of the eigen- 
values are independent of  k. 

4 c = 2 is a special damping constant when m = 0. If d 
is rational, the exact eigenvalues for k = 0 are given by (58) 
and (60) .  They are distributed along the imaginary axis and 
along a maximum number of  q - p - 1 lines of  constant # 
= ReX in the left half-plane. The vibration corresponding to 
the other p branches of eigenvalues is dissipated by damping 
in finite time. When k :x 0, in addition to the branch of eigen- 
values in (56a,  b) which has monotonically increasing decay 
rates, all other eigenvalues are asymptotic to those correspond- 
ing to k = 0. 
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Transient n nalysis of a 
Propagati In-Plane Crack in a 
Finite Geometry Body Subjected 
to Static Loadings 
In this study, a cracked body with finite boundaries subjected to static loading and 
the crack propagating with a constant speed are analyzed. The interaction of the 
propagating crack with reflected waves generated .from traction-free boundaries is 
investigated in detail. The methodology for constructing the scattered field by superim- 
posing the fundamental solution in the Laplace transform domain is proposed. The 
fundamental solutions represent the responses of applying exponentially distributed 
loadings in the Laplace transform domain on the surface of a half-plane or a crack. 
The dynamic stress intensity factors of a propagating crack induced from the interac- 
tion with the first few reflected waves generated from the traction-free boundary are 
obtained in an explicit closed form. The analytical solutions of dynamic stress intensity 
factors are compared with available numerical and experimental results and the 
agreement is quite good. We find one thing very interesting: the dynamic stress 
intensity factor for a long time period is a universal function of the instantaneous 
extending rate of a crack tip times the static stress intensity factor for an equivalent 
stationary crack for the finite strip problem. It was also found that the reflected waves 
generated from free boundaries always increase the stress intensity factor, and the 
influence from reflected waves generated from the boundary, which is perpendicular 
to the crack, are weaker than those generated from the boundary, which is parallel 
to the crack. 

1 I n t r o d u c t i o n  

When a static loading is applied to a cracked body and is 
increased to a sufficiently large magnitude, the crack will begin 
to extend. The most frequently observed phenomenon in the 
experiments shows that the crack growth rate is constant during 
the extending history except in the final unstable or arresting 
stage. The crack propagating velocity measured experimentally 
by Kalthoff, Beinert, and Winkler (1977) shows that the as- 
sumption of a constant extending rate is acceptable. If the ex- 
tending rate is high, the inertial effect must be taken into consid- 
eration in the analysis. The inherent time dependence of a crack 
propagation process makes the mathematical models more com- 
plex than the equivalent quasi-static models. 

The effect of reflected waves interaction with a moving crack 
had only been discussed in numerical calculation and experi- 
mental observations. Kobayashi and Wade (1972) studied the 
problem of crack propagation and arrest in a tensile plate made 
of Homalite-100 by using the dynamic photoelastic method. 
The significant influence of the reflected stress waves generated 
from the plate boundary was investigated. Experimental results 
indicated that the reflected waves dominate the stability of crack 
propagation. The possibility of crack arrest, acceleration, or 
branching depends on the responses of reflected waves gener- 
ated from the specimen boundary. Some significant numerical 
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results were obtained by using the finite element method (see 
Kishimoto, Aoki, and Sakata, 1980). At the same time, Nishi- 
oka and Atluri ( 1980a, b) developed a moving singular element 
of the finite element method to calculate the dynamic stress 
intensity factor. 

The theoretical analysis of crack propagation, due to general 
static loading in an unbounded medium, was first addressed by 
Freund (1972a, b). Freund proposed a superposition method in 
the time domain to study the dynamic effect of crack propaga- 
tion in which a fundamental solution is proposed and is used 
to develop the solution for the negation of the stress distribution 
on  the prospective fracture plane. But this method is valid only 
for the semi-infinite crack embedded in an infinite medium. 
Analytical solution for a crack in a finite geometry body is rare. 
The only available results are provided by Nilsson (1973) and 
Ma and Ing (1995) for a mode III crack propagating in a finite 
strip and subjected to static and dynamic loading, respectively. 

An interesting conclusion obtained in Freund's paper 
(1972b) is that the dynamic stress intensity factor has the form 
of a universal function of an instantaneous extending rate of a 
crack tip multiplied by the stress intensity factor of an equivalent 
stationary crack for the unbounded medium problem. The equiv- 
alent stationary crack is subjected to the same static loadings 
and the crack length is equal to the instantaneous length of 
the actual crack. Whether the above-mentioned result can be 
generalized in the case of finite boundaries and how the dynamic 
solutions converge to the corresponding static solution will be 
discussed in this paper. 

A powerful and efficient methodology for constructing the 
scattered field by superimposing the fundamental solution in 
the Laplace transform domain has been proposed in recent years 
by the authors. The Cagniard's method for Laplace inversion 
is used to obtain the transient solution in a time domain. This 
methodology was first addressed by Tsai and Ma ( 1991, 1992) 
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in solving the problems of applying a buried dynamic point 
body force in a half-plane and a dynamic point body force 
interaction with a semi-infinite stationary crack. The solution 
of applying exponentially distributed traction at the surface of 
a half-plane or a stationary crack face in the Laplace transform 
domain is considered as the fundamental solution. The reflected 
and diffracted fields generated from a half-plane and crack tip 
can be obtained by superimposing the fundamental solutions. 

In this paper, the above-mentioned methodology will be gen- 
eralized and applied in the research of an extending crack. The 
transient response for a propagating crack with constant velocity 
in a finite geometry body is obtained by using the generalized 
method. The orientations of a crack face considered in this study 
are parallel or perpendicular to the boundary. The main purpose 
in solving problems concerned with dynamic crack propagation 
is to determine the dependence of characterizing parameters of 
the crack-tip field on the applied loading and on the configura- 
tion of the body. Since the stress intensity factor is the key 
parameter in characterizing dynamic crack growth, we will fo- 
cus our attention mainly on the determination of the dynamic 
stress intensity factor. 

When the stress intensity factor for a stationary crack sub- 
jected to static loading reaches its fracture toughness, the crack 
starts to extend with constant velocity. The diffracted longitudi- 
nal wave (denoted by P) and shear wave (denoted by S) will 
be emitted from the propagating crack tip. The P wave will be 
reflected from the traction-free-boundary of a half-plane and 
will generate reflected longitudinal waves and shear waves, 
which are denoted as PP and PS waves, respectively. Similarly, 
the S wave will be reflected from the boundary of a half-plane 
and generate reflected longitudinal (SP)  and shear waves (SS) .  
All these reflected waves will arrive at the moving crack tip at 
a later time and interact with the moving crack. The diffraction, 
for the second time, will repeat the forward reflection phenom- 
ena. In this study, we will neglect the reflected effect on the 
crack tip of the second time, the third time, etc., because the 
first reflected waves are much stronger than the reflected waves 
of later times. 

Finally, the analytical solution of a finite cracked body of a 
rectangular specimen subjected to static loading is obtained 
without considering the effect of the reflected waves generated 
from the boundaries perpendicular to the crack and the dif- 
fracted, waves generated from the corners of the plate. The 
experimental results obtained by Kalthoff, Beinert, and Winkler 
(1977), and Hodulak, Kobayashi, and Emery (1990) are dis- 
cussed and compared with the analytical prediction in light of 
the present theoretical analysis. 

2 Proposed Fundamental Solutions 
The solutions of the problem considered in this study can be 

determined by superposition of the following problems. Prob- 
lem A treats a static loading applied to a cracked body in an 
unbounded medium, at time t = 0. The crack starts to grow and 
a new crack propagates out of the original crack with a constant 
velocity, which will induce a traction on the plane that will 
eventually define the traction-free boundary of a half-plane. In 
problem B, a half-plane is considered in which the boundary is 
subjected to tractions which are equal and opposite to those on 
the corresponding planes in problem A. Problem C considers 
an infinite body containing a propagating crack in which the 
crack face is subjected to the reflected waves which are gener- 
ated by the half-plane boundary in problem B. The above-men- 
tioned problems A, B, and C are superimposed to construct the 
solution for propagating crack interaction with stress waves 
generated from the boundaries. 

From physical consideration, the reflected and diffracted 
waves are generated to eliminate the stress induced by incident 
waves on the traction-free boundaries. For most of the dynamic 
problems the stress induced by incident waves can be repre- 

sented in an integral form of which the kernel is usually an 
exponential function in the Laplace transform domain of time, 
so that the solutions of applying exponentially distributed trac- 
tion at the boundary (surface of half-plane or crack faces) in 
the Laplace transform domain are considered as the fundamental 
solutions. The reflected and diffracted waves can be constructed 
by superimposing the predetermined fundamental solutions in 
the Laplace transform domain. Some symbols are defined as 
follows for convenience in the following derivation: 

a+ = a±(X) = [a _+ X(1 7- av)] ~/2, 

o~ = a(X) = a+(X)a_(k) ,  a ° = a°(X) = o?+(X)o~(X), 

13-, =/3+(h)  = [b _+ X(1 7- by)] ~/2, 

~+ = t 3 ~ ( x )  = ( b  7- X) "~, 

¢~ = ¢~(X) = # + ( X ) ~ _ ( X ) ,  ¢~0 = ~ 0 ( X  ) = ~ 0 + ( X ) ~ 0 ( X )  ' 

R = R(X) = (b2(1 - by) 2 - 2k2) 2 + 4k2ce/3 

= K ( d -  h)2(q - k)(c2 + h ) S + ( h ) S  (h), 

x = 4 ( 1  - a % 2 ) J / 2 ( 1 - b 2 v 2 )  1 / 2 - ( 2 - b 2 v 2 )  2, d =  l /v ,  

a~ = a / ( 1  + a v ) ,  b~ = b/ (1  + by),  c~ = c / ( l  + cv) ,  

a2 = a / (1  - a v ) ,  b2 = b / ( l  - by),  c2 = c / ( l  - c v ) ,  

S+ = S_+(k) 

, T 3 - , 

R ° = R ° ( X ) = R ( X ) I v = o ,  S~=S~(X)=S_+(X) I~=o (1) 

where a (=l/vz),  b (=l /vs) ,  and c (= l /vr )  are the slowness 
of the longitudinal wave, the shear wave and the Rayleigh wave, 
respectively. Here v~, v,, vr, and v are the propagating speed of 
the longitudinal wave, shear wave, Rayleigh wave, and the mov- 
ing crack tip, respectively. 

2.1 Fundamental Solution of a Half.Plane. The solution 
of applying an exponentially distributed loading in the Laplace 
transform domain at the surface of a half-plane is denoted as 
the fundamental solution of a half-plane. Consider a half-plane 
as shown in Fig. 1. An exponentially distributed normal traction 
in the Laplace transform domain is applied on the surface of 
the half-plane. The relation between the fixed and moving coor- 
dinates is x] = ~ + vt. The boundary conditions on the half- 
plane can be written as 

~22(~, 0, p )  = e p~ for - ~  < { < ~, (2) 

~12(~,0, P) = 0 for -c~ < ( < o0, (3) 

where p is the Laplace transform parameter and is assumed to 
be real and positive, and r/ is an arbitrary imaginary number. 
The overbar symbol is used for denoting the transform on time 

t=O 
IX2 

, X 1 

t>O 

v t - - - ~ v  

Fig. 1 Configuration and coordinate systems o f  a ha l f -p lane  
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t. The solutions of stresses that satisfy boundary conditions (2) 
and (3) can be expressed in the Laplace transform domain as 

((b ~ - 2a2)(1 - 7v) 2 + 2r/2)(bZ(l - ~Tv) 2 - 2q 2) 
~11 

~22 

R 

X e-P"~2 +~"¢ + 472°zfl e-p~xz +p'a, (4) 
R 

- 2 7 a ( b ~ ( l  - 7v) 2 -- 27 ~) e_p.x~+p,~ ~ 

R 

+ 2~a(b2( l  - ~v)2 - 2r/Z) e -p~÷~''~, (5) 

R 

( b 2 ( 1  - TIU) 2 - -  2 7 2 )  2 e_Pax;+tm( 

+ 4OttO2 e -pB~2+p~(. (6) 
R 

If the surface traction is applied in the tangential direction, 
the corresponding boundary conditions are 

~ 2 2 ( ~ ,  0, p )  = 0 for --w < ~ < ~ ,  (7) 

~ 2 ( ~ , 0 ,  p)  = e p'~ for - ~ <  ~ < c~. (8) 

The solutions of  the stresses which satist 3, boundary conditions 
(7) and (8) are expressed in the Laplace transform domain as 
follows: 

~11 : -27f l ( (b2  - 2a2)(1 - fly)= + 272) e P~+P"~ 

R 

+ -2r l f l ( (b2(1  - 7v)2 - 272) e -p&~+~m~, (9) 

R 

4~?2afl e-PaX2+p~ (62 (  I - -  771)) 2 -- 2~2) 2 
~12 = + e -pflxa+pO( , ( 1 0 )  

R R 

~22 = -2~1fl(62(1 - 7v) 2 - 2r/2) e_p~,~+po¢ 

R 

+ 27fl(b2(1 - flY)2 - 272) e -~'~+p~. (11)  
R 

2.2 Fundamental Solution of a Propagating Crack. 
The solution of applying an exponentially distributed load in 
the Laplace transform domain on the propagating crack faces 
is denoted as the fundamental solution of a propagating crack. 
Consider a semi-infinite crack propagating with constant speed 
v = 1 / d  in an unbounded medium as shown in Fig. 2. The 
coordinate system (4, x2) is fixed with respect to the moving 
crack tip and moves with a constant speed v. The upper and 
lower crack faces are acted by opposite distributed normal trac- 

X2 

T 
• X 1 

~ V  
t = O  I 

X2 

T 
t - -  V t  ~ I'-'~" v 

t > O  

Fig, 2 Configuration and coordinate systems of a propagating crack 

tions which yields the boundary condition in the Laplace trans- 
form domain as follows: 

~22(~,0, P)  = e p'~ for -c~ < ~ < 0, (12) 

~ I 2 ( G O ,  p ) = O  for - o o < ~ < ~ ,  (13) 

ff2(~,0, p ) = 0  for 0 < ~ < o o ,  (14) 

where r / i s  a complex number. Applying the two-sided Laplace 
transform with respect to ~ and using the Wiener-Hopf tech- 
nique, the full-field solutions can be obtained as follows: 

2_ f [ S ~ ( k ) e - " x ~  ÷px~ + S}(h)e-"~x~÷PX~ldk , or° = 27ri d 

(15) 

where 

SIi(N) = - ( ( b  2 - 2a2)(1 - kv) 2 + 2k 2) 

× (b2(1 - kv) 2 - 2k2)c~÷(7)G(r/,  k ) / a + ( k ) ,  

sZ,(k)  = 4k2 /3 (h )~_(k )a+( r / )G(7 ,  k) ,  

SI2(K) = 2X'(b2(1 - kv)  z - 2 k 2 ) a _ ( k ) o G ( 7 ) G ( 7 ,  k),  

S~2(X) = -2X(b2(1  - kv) 2 - 2k2)o~_(k)oz+(7)G(r?, k),  

S~z(X) = - ( b 2 ( 1  - kv) 2 - 2XZ)Zc~+(7)G(7, k)/c~+(h), 

S~2(k)  = - 4 h z f l ( k ) o l _ ( k ) o l + ( 7 ) G ( r l ,  k), 

G(7,  X) = 1/(K(d -- k)2(cl -- X) 

x (c2 + 7 )S_(X)S+(7) (X - 7)) .  (16) 

The associated mode I stress intensity factor expressed in the 
Laplace transform domain is 

1~ : ( f i  ~1 - a v ( c 2  + 7)S+(7)  (17) 

3 Transient Analysis for a Propagating Crack Inter- 
action With Boundaries 

Consider a stationary semi-infinite crack subjected to a gen- 
eral static loading, the crack tip is located at x~ = 0 for t < 0. 
Let the resulting normal stress ~r22 along the crack-tip line xl > 
0, xz = 0 be - p ( x j ) ,  when the loading is increased to a suffi- 
ciently large magnitude, the crack will begin to extend at a 
constant speed and the normal stress - p ( x l )  will be released 
from the growing traction-free surface of the crack along 0 < 
x~ < vt,  x2 = 0. The released stress will induce diffracted waves 
radiating from the moving crack tip. According to the result 
provided by Freund (1972a), the radiated stress fields ab~ and 
the con'espondence stress intensity factor K~ can be obtained 
from the following superposition integral: 

o-~(~,x2, t) = c r i j ( ~ - x o , x 2 ,  t - X o / v ) p ( x o ) d x o ,  (18) 

fi" K ~ ( t )  = K~(t - xo /v )p(xo)dxo  (19) 

where cro.( ( - Xo, x2, t - Xo/V) and Kl(  t - Xo/V) are the transient 
solutions of a crack extending at a constant rate v and subjected 
to the dynamic concentrated forces of unit magnitude appearing 
at the crack tip at time t = xo/v. 

The diffracted waves  emit ted f rom the moving  crack tip 
will  be reflected f rom the boundaries  of  the finite cracked 
body. In order to extend Freund ' s  method to apply in the 
analysis of a finite cracked body, the prel iminari ly  required 
solutions ~ j ( ~  - Xo, x2, t - x o / v )  and K l ( t  - Xo/V) with the 
reflected effect  are der ived in detail  in the fo l lowing  Sec- 
tions 3.1 to 3.3. Then the stress intensity factor of  a crack 
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H t x2 

i 1 
t X1 

X1 X2 
t 
! 

×1 ~2 

1 
I" L 

Fig. 3 Configuration and coordinate systems of a semi-infinite crack 
embedded in a strip Fig. 4 Configuration and coordinate systems of a semi-infinite crack 

embedded in a half-plane 

in the finite body subjected to a general static loading and 
extending at a constant speed can be obtained by the super- 
position integral (19).  

3.1 Dif fracted  Waves  in Infinite  M e d i u m ,  A semi-in- 
finite crack moving in a strip and moving in a half-plane is 
considered in Fig. 3 and Fig. 4, respectively. The distance 
from the crack tip to the boundary parallel to the crack is 
denoted as H and to the boundary perpendicular to the crack 
is denoted as L. The coordinate system (G x2) is attached at 
the moving crack tip and the extending rate is v. A concen- 
trated force of unit magnitude is applied at the crack tip at 
time t = 0. Before the diffracted wave generated from the 
moving crack tip reaches the boundary, the problem can be 
considered as a semi-infinite crack propagating in an un- 
bounded medium and the boundary conditions can be ex- 
pressed as follows: 

O'22(~ , O, t) = --6(~ + v t )H( t )  for - ~  < { < 0, (20) 

~r~2({,0, t) = 0 for - w  < ~ < 0% (21) 

u2({,0, t) = 0 for 0 < ~ < oz. (22) 

The boundary conditions represented in the Laplace transform 
domain are 

~ = ( G 0 ,  t ) = - d e  v'~ for - o z < ~  < 0 ,  (23) 

~f2(~,0, P) = 0 for - c ~ <  ( <  oz, (24) 

ffz(~,0, p) = 0 for 0 <  ~ <oz. (25) 

The fundamental solutions for applying the exponentially dis- 
tributed traction ~2(~, o, p)  = e one at crack faces have been 
obtained in Section 2, so that the radiated diffracted stress fields 
from the moving crack tip can be obtained by taking r? = d and 
multiplying the magnitude - d  to (15). The stresses expressed 
in the Laplace transform domain are 

1 f -2ka_(b2(1  - kv) 2 - 2k z) 
27r--i _ ~ ----~v)-2~c~ -- k)-S_--~ F(k)e ~'%+P×~ 

2ha_(b2(1 - kv) 2 - 2h 2) 
F(k)e Pflx2+pMdK, (28) 

Kd2(1 - hV)2(Cl -- K)S_(R) 
+ 

where 

dce+ ( d ) 
V(h) = (29) 

(d - X)(c2 + d)S+(d)  

The associated stress intensity factor expressed in the Laplace 
transform domain can also be obtained by taking r/ = d and 
multiplying - d to (17) as follows: 

d~f2a+(d) 
= ( 3 0 )  

IK, ~p 41 - av (c2 + d)S+(d)  

The stress intensity factor in the time domain is 

K, = . / 2  K(d), (31 ) 

where 

•(d) = 
~/1 - a /d  (c2 + d)S+(d)  

3.2 D y n a m i c  Stress Intensity Factors due to Reflected 
Waves  Generated From the Boundary  Parallel  to the Crack. 
The diffracted waves emitted from the propagating crack tip 
will be reflected from the boundary which is parallel to the 
crack at x2 = H. From Eqs. (27) and (28), it is obvious that 
the traction, which must be applied at x2 = H to eliminate the 
stresses ~2 and ~2 induced at the boundary, can be represented 
by the exponential function e p~. The fundamental solutions for 

1 f ( (b  2 _ 2a2)(1 _ Xv)2 + 2X2)(b2(1 _ by)2 _ 2 2 
27r---i _ ~ ~ + ( T ~  k-v)2~cl 7 k ) S _ ( ~  2k ) ) F(k)e_,,~,,.2+,,x~ 

4k2~_fl 
F ( k ) e  PaX=+P~edX, 

Kd2(1 - kv)2(¢, - k)S_(k) (26) 

f (b2(1 - kv)z - 2K2)z  F(K)e P"*2+Pa~ 
27ri J KdZo~+(1 - kv)2(cl -- X)S_(R)  

+ 4X2cr_/3 
t<d2(1 - kv)2(cl - k)S_(k) 

F(k)e-I'~x2+PX~dk, (27) 

applying the normal traction e prl( and tangential traction e p< at 
the surface of the half-plane have already been obtained in (6) 
and (11). 

The reflected waves generated fi'om the boundary can be 
obtained by superimposing the fundamental solutions as fol- 
lows: 
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1 i' - ( b 2 ( 1  - x l ) ) 2  - -  2X2)2((b2(1 - ~ ' U ) 2  - -  2X2)2 - 4h2°~fl)F(k)e-"n"-v"*2+PX~dk 

~ = 27r-----i - ~d20e+(1 - Xv)2(c~ - X)S_(K)R 

1 r -8x2°e-fl(b2(1 - kv)z - 2k2)a 

1 f -8k20~_/3(b2(l - kv) 2 - 2x.2) z 
+ 2rr---i , ,  ~ 7 kv)2--"--Tc~ _-- ~ S _ ( ~  F(X)e-pOH-""~=+P×'dM 

1 r 4 K  20~ f l ( ( / - ~ 2 (  1 - a v )  2 - o \ 2 ' ~ 2  _ 4 K e ~ , ' . , N  ~"" ~ ~ )  F ( k ) e  P°U-Peh+"Xedh. 
+ 27r----i J Kd2(1 - kv)2(c~ - K)S_(K)R - - (32) 

It is noted that the traction, which should be applied at 2-~ = H to eliminate the stress ~ z  at the propagating crack face, is 
represented by the function e TM. The fundamental solution for applying the normal traction e v~ at the crack surfaces has been 
expressed in (17) ,  so that the stress intensity factor induced by the reflected waves generated from the boundary can be 
obtained by superimposing the fundamental solution as follows: 

K71 - 27rip,l----- f - 2 ( b 2 ( 1  - hv)2 - 2~2)2((b2(1~1 - av R 2- by)2 - 2kz)2 - 4°~flh2) F ( k ) e  2pandX 

1 f -32k2oefl(b2(1 ~ kv____) ~ - 2k2) 2 F(k)e-, ,~n-vZ.dX 
+ 2~ip'/--5 -~  ~ av R ~ 

1 f 801/~k2((b2(1 - ~-l)) 2 -- 2X2) 2 -- 40~fl ~-2) 
+ 27rip ~/--5 ~/1 - av R z F(k)e-2pZ'dX'  (33) 

By using the Cagniard-de Hoop method for Laplace inversion, the stress intensity factors in time domain can be obtained, 

and the results are 

1 f l  1 [ - ( b z ( 1 - K j v ) a - 2 ) ~ ) 2 ( ( b 2 ( 1 - k l v ) z - 2 K z ) 2 - 4 ° q 3 ) ~ z ) F ( k l ) O R l  ] 
K , = ~  ~ I m  ~ / 1 - a v R  2 Or 

d r  

1 £ 1 [-16k~c~fl(b2(1 - -  ~ . 2 V )  2 - -  2K~)ZF(N2) 0K2] 
+7777 >s - ~ - ~  Im L ~ / i - a v R  2 -O-rT] d r  

~-~~ f l l  ' 1 [4o~&'k]((b2(1 - -  ~ . 3 U )  2 - -  2 X ~ )  2 - -  4c~flk])F(X3)o~,]d~, 
+ s . , ~ I m  (1 - a v R  2 O rJ  

(34) 

where 

-2vaaH + i~r 2 - a2V2T 2 _ 4a2H 2 

~'~ = 2H(1 - a2v 2) ' 

-2ubZH + i~/-r z - b2u2T 2 -- 4b2H 2 
X3 = 2H(1 - b2v 2) ' 

and X2 is the root of  cffX)H + f i (X)H - r = 0. The arrival 
times are Tpv = 2 ~ -  H, Tss = 2 b~lb2 H, Tes = Tse, where 
Tps is the corresponding value of r at which the imaginary part 
of X2 begins to vanish. 

3.3 Dynamic Stress Intensity Factors due to Reflected 
Waves Generated From the Boundary Perpendicular to the 
Crack. Now, we consider the case that a propagating crack 
interaction with the boundary which is perpendicular to the 
crack as shown in Fig. 4. The diffracted waves expressed by 
the moving coordinate system (G x2) can be rewritten in the 
stationary coordinate system (x~, x2) in Laplace transform do- 
main as 

1 ~ ((b 2 - 2a2)(1 - kv) 2 + 2~2)(b2( l - ~v) 2 - 2k2) 

27ri =1 a+(~.)Kd2(l  - Xv)~(cl - X)S_*(X)(1 + Xv) 

X F ( X ) e  -p'~°l@+pxx' 
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m 
xd2(1 - Xv)2(c~ - X)2(c, - X)S_(X)(1 + ;to) 

× F(k )e  PP°lx2l+Px",dM (35) 

sgn (X2) r -2KcL(X)(b2(1 -- KU)2) -- 2X2) 
~ 2  27ri d •d2(l - Xv)2(ct - K)S_(K)(1 + kv) 

X F ( X ) e  -pa°lx21+p×x' 

2Xoe (X)(b2( l  - Kv) 2 - 2X 2) 
+ 

Kd2(1 - Xv)2(cl - X)S_(k)(1  + kv) 

where 

× F(X)e P'q%'21+px",dk, (36) 

h 

l + k v '  

and sgn ( X 2 )  = 1 for x2 > 0, sgn ( X 2 )  = - 1  for x2 < 0. The 
diffracted waves emitted from the crack tip will be reflected 
from the boundary at some later time. It is obvious to see that 
the traction, which must be applied at xl = L to eliminate the 
stress ~ l  and ~2 ,  can be represented by the exponential func- 
tion e ~'~°lx2E, e -P~°lx21. The fundamental solutions for applying 
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normal traction and tangential traction e P"°lxd or e -pO{'lxd 
at the surface of a half-plane were proposed by Tsai and Ma 
( 1991 ). So that the reflected waves can be obtained by superim- 
posing the fundamental solutions as follows: 

and 

fi = ~ ( ~ ) ,  f i  = ~ (X) ,  

~ o  = c ~ o ( x ) ,  

r i o  = f l ° ( X ) ,  

~2  = 2rr---il f [ - ( ( b  2 .  - 2 a 2 ) ( 1 7 ~ - ( ~ 2 (  1 -  Xv)2 + 2XZ)(b2(17. ~ - ~ -  7-X-)-(-i ~d))2 --  2X 2)(b2----~vTR°7~ ° ) -  20e°2)(b2 - 2R2)F(X) 

4gX(ba( 1 - Xv) 2 - 2K2)°~.-(X)cr°fl°(a°)( b2 - 2X2)F(X)I  2,,a[+,,x~ ,. 
D ~ i i -  7 - ~ p ( ~  - = - - = -  . . . .  - 7  , e  . . . .  a ~  - X)S_(R)(1 - av)R°(e~ ~) J 

1 f 8(( b2 -- 2a2)( 1 -- Xv) 2 + 2KZ)(b2( 1 - Kv) 2 - 2~2) O~ (K)Xa/3°ZF(x) ,,°'~°-z xz+ x 
. . . . . . . . . . . .  j -'" ~ - ' - ~ " -  '- e - i  co , , - i ,  . v X, d X  

+ 2rri ~ ( ~ d 2 ( 1  - Xv)2(cl - X)S_(K)(1 - a ° ( f l ° ) v ) R ° ( f l  °) 

1 ~ --SX2fl(X)o~ (~ ) (b  2 - 2~°(o~°)2)(b 2 - 2R2)RF(X) . . . . . . .  ~ ~e+ x 
- -  J - --77-  -- ~77~"77"7 " - - - - - - - - = - - -  --7iT-~f~'77"~"'g'~"7"Z-7:~ e ~ t~ ~ , P ~ d h  

+ 2rri xd (1 - av) (ct - k)S  (X)( I  - /3 (o~)v)R ( ee )  

1 f - 16X2 f l (X )ee_ (X)X f l °2~° ( l?  °) - 4XX(b2(1 - Xv) e - 2X~)t* (X)f l°(b  2 - 2X~)F(X) e ~,,~L+,,~.,.g x 

+ 27r--i a ~d2(l  - ~ u ) 2 ( C l  - -  ~ ) S  ( X ) ( 1  - X v ) R ° ( f l  °) 
(37) 

where 

1 - k v  

for the first and fourth terms, and 

X -  - c ~ ° ( f l ° )  X -  - f l ° ( c d )  
1 - c d ( f l ° ) v  ' l - f l ° ( c d ) v  

for the second and third terms. 
In order to obtain the stress intensity factor attributed to the 

reflected waves, the reflected waves must be transformed to the 
moving coordinate system (G x2) by using the transformation 
principle. The stress intensity factor induced by reflected waves 
generated from the boundary can be expressed as follows: 

f G l ( h ) e  2"×Zdh IK3 - 27rip l/2 

~f2 f G2(k)e-pXL p."(B%(1 ~)LdX 
+ 27rip 1/------5 

x/2 f G~(k)e_paz_v~o~ t x~Cdh 
+ 27ripl/------- ~ 

+ 2trip l/---S f G4(X)e-2VXt'dM 

where 

X F ' ( h )  = oL+(k) F ( ~ ) ,  (40) 
X - 1 - Xv ' ~/1 - av (c2 + M S + ( a )  

and 

1 - 2 k v  ' 

for the first and fourth terms of (38),  

_ _ M , ( f i o )  X -  _¢~o(~o) 

l - , ~ ° ( f i " ) v  ' t - p"(~°)v' 

for the second and third terms of (38). By using the Cagniard- 
de Hoop method, the stress intensity factors can be obtained in 
the time domain as follows: 

.5_f' [ oh,] 
K , =  ~rB/2jT,,p tff~--~_ r Im G,(Xl)-gTjdr 

' J : :  f o 27 +757~ ,>.,.~/7--7--7 Im G 2 ( M ) ~ ? 7 - j c l r  

(38) 1 ' 1 Im G3(X3) d r  
+ 7 a T , , , , 5 - 7 7  " 0 ~ J  

( ( b  2 - 2 a 2 ) ( 1  - ~.v) 2 + 2 ~ 2 ) ( b 2 ( 1  - -  )k l ) )  2 - -  2 ~ ) ) &  ( b  2 - 2 ~ ° 2 ) ( b  2 - 2 R 2 ) F ' ( X )  

G i ( R )  = ted2(1 - Kv)2&(c ,  - )~)S ( h ) ( 1  - K v ) ( I  - k v ) R ° ( ~  °)  

G2(~) = 

4K(b2(t  _ ~.v)2 _ 2~2)& ~ 0 / ~ 0 ( ~ 0 ) ( ] ) 2  - -  2 X 2 ) F , ( ~ )  
+ 

Kd2(1 - ~.v)2(cl - )t)S (K)(1 - Xv)(1 - Xv)R°(ge °) 

_8X2fi2((b 2 - 2a2)(1 - ~.v) 2 + 2~.2)(b2(1 - ~v) 2 - 2~2)F ' (~ . )  

Kd2(l  - ~v)2&+(cl - ~)S ( k ) ( l  - o L ° ( f l ° ) v ) R ° ( f l " ) ( l  - kv) 

8~2fi&+(b 2 - 2flo(~o)2)(b 2 _ 2X2)XF,(~.)  

G3(K) = ~:d2(1 _ ~v)2(c I _ k )S_( ) t ) ( l  - f l ° (~° )v )R° (~° ) (1  - Xv) 

16~.2fi& fl°2c~°(fl°)X + 4~(b2(1 - ~v) 2 - 2~2)&__XflO(b 2 - 2X2)F,(g . )  

G4(~k) = Kd2(l - ~tv)2(cl - k)S. . (K)(I  -- Xv)(1 - kv )R°( f l  °) 
, ( 3 9 )  
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Fig. 5 Stress intensity factors of an embedded crack in a strip subjected 
to a pair of concentrated forces applied at x~ = 0 

, 1 [ 
dr, (41) 

w h e r e  X 1 = ~k 4 = ( T / 2 L )  and X2 and X3 are the roots of 

NL + a°(/3°)(1 - k v ) L  - T = O, 

and 

KL + fl°(~°)(1 - k v ) L  - "r = O, 

respectively. The correspondent arrival times are 

aL  
Tpp = 2 a l L ,  Tps - + b l L ,  

1 + b y  

bL  
T s p = - - +  a l L ,  T s s =  2 b l L .  

1 + a v  
(42) 

4 Numerical  Results 
With the analytic solution constructed in the previous section, 

we now perform the numerical investigation of the dynamic 
stress intensity factor for a propagating crack interaction with 
stress waves reflected from boundaries. In this study, Poisson's 
ratio u is assumed to be equal to 0.25 which gives ratios of the 
slowness of b = "/3 a and c = 1.884a. First, the results of an 
embedded semi-infinite crack contained in a finite strip and in 
a half-plane, as shown in Figs. 3 and 4, are investigated. At 
time t = 0, a concentrated force of unit magnitude is applied 
at the crack tip, and the crack begins to propagate along the 
crack tip line with constant speed v. The extending rates v = 
0.lye, 0.2vt (i.e., slowness ratios d / a  = 10, 5) are chosen for 
numerical investigation. 

For the case of a semi-infinite crack which is embedded 
parallel to the boundaries of the strip (i.e. Fig. 3), the diffracted 
waves will be emitted from the propagating crack tip and will 
be reflected from the two boundaries of the strip. The transient 
results for the dynamic stress intensity factors are shown in Fig. 
5. At the time t = 2.04all (=2.01all) ,  the reflected P P  wave 
for the extending slownesses d / a  = 5 (=10) arrives at the 
propagating crack tip. The reflected waves from the boundaries 
will enlarge the stress intensity factor. The dash line represents 
the stress intensity factor without considering the reflected 
waves from the boundaries, i.e., a semi-infinite crack propagates 
in an unbounded medium. 

In order to understand how dynamic transient response ap- 
proaches the corresponding static value the long-time behavior, 
which accounts only the first few reflected waves, is calculated 

[.~ 1"3. 

~ " e +  

- -  Kf , .~ / ,~(d)  

. . . . .  K I , , / ~  

123 
0 5 10 15 20 25 30 

t/~H 
Fig. 6 Dynamic and static stress intensity factors (K~, K~') of a crack 
embedded in a strip subjected to a pair of concentrated forces applied 
at xl  = 0 

and shown in Fig. 6. The dynamic stress intensity factors K} ~ 
divided by the universal function K(d) are presented by solid 
lines that are evaluated without considering the reflected waves 
of the second time, the third time, etc., from the horizontal 
boundary. The dash lines represent the equivalent static solution 
K~ at which the point loading is applied at a distance vt from 
the crack tip. It is shown that these two lines will approach 
each other as time is large. Even though the reflected waves of 
the second time, the third time, etc, are neglected in the numeri- 
cal calculation, it is reasonable to concluded that the long-time 
behavior of a stress intensity factor of a propagating crack in a 
strip has the form of a universal function K(d) of an instanta- 
neous extending rate of crack tip multiplied by the stress inten- 
sity factor for a stationary crack with the instantaneous length 
of the actual crack subjected to the same static loadings. Hence, 
Freund's result (1972b) is shown to be valid for the finite strip 
problem also. It is also concluded that the result is accurate 
enough to evaluate the dynamic stress intensity factor without 
considering the reflected waves of the second time, the third 
time, etc., and only when taking the first reflected waves into 
consideration. The result will cause only a small tolerance 
(about six percent) in the calculation of dynamic stress intensity 
factor. 

For the case of a semi-infinite crack which is embedded 
perpendicularly to the boundaries of a half-plane (i.e., Fig. 4), 
the numerical results of transient stress intensity factors are 
shown in Fig. 7. The dashed line represents the value without 

'W" 1 I~- - - no reflected waves 

PP PS 

0 1 2 3 4 5 

t / a L  

Fig. 7 Stress intensity factors of an embedded crack in a half-plane 
subjected to a pair of concentrated forces applied at xl = 0 
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Fig. 8 Specimen configuration of rectangular double cantilever speci- 
men investigated by Kalthoff et al, (1977) and Atluri et al, (1985) 

considering the contribution from reflected waves. At time t = 
1.67aL (= 1.82aL), the reflected PP wave generated from the 
boundm'y for the extending slownesses d/a = 5 (= 10) arrives 
at the propagating crack tip. Unlike the case of an embedded 
crack in a strip as discussed in Fig. 5, the reflected effect for 
this case is relatively small. 

Next, experimental results reported by Kalthoff, Beinert, and 
Winkler (1977) and the numerical results reported by Atluri 
and Nishioka (1985) are discussed, and both results will be 
compared with the present analytical solutions. A rectangular 
double-cantilever specimen made by photoelastic material Aral- 
dite B, as shown in Fig. 8, is considered. The material properties 
of Araldite B are density p = 1047 kg/m 3, Poisson's ratio 
u = 0.33, Young's modulus E = 3.38 GPa, which yield the 
longitudinal wave speed vt = 1903 m/s, shear wave speed vs = 
1102 m/s, and Rayleigh wave speed VR = 1081 m/s. When a 
static loading is applied and is increased to the the fracture 
toughness Kc = 2.32 MPa l~n, the crack begins to extend at a 
constant speed v = 295 m/s during the early 300 #s. 

The function p(xl) as shown in (18), which is the resulting 
negation of the stress ~22 ahead of the crack tip before extension 
occurred, is calculated by the finite element method. Then sub- 
stitute the numerical result of p(x~) into (18), the stress inten- 
sity factor can be obtained based on the analysis in the previous 
section and the result is shown in Fig. 9. Since the reflected 
effect generated from boundaries perpendicular to a crack and 
reflected waves of the second time, the third time, etc., are small 
enough, only the first few reflected waves generated from the 
boundaries parallel to the crack are considered in the analysis. 
The results based on the theoretical solution are consistent with 
the finite element results of Atluri and Nishioka (1985) and 
experimental results of Kalthoff, Beinert, and Winkler (1977). 

" / /  

°U° 

/ / / / / / / / / / / / / /  

• 5 3 - - - - ~  

I 

Fig. 10 Specimen configuration of rectangular double cantilever speci- 
men investigated by Hodulak et al. (1980) 

The equivalent static stress intensity factor for the given crack 
growing length referred to in Kalthoff (1985) is also presented 
in Fig. 9. 

At the instant of crack prop&gation, the stress intensity 
factor jumps from 2.32 M/~a ~mt0  2.07 MPa ~ with the 
decreasing ratio K(d), where d = (vdv)a = 6.45a. Because the 
kinetic energy is radiated into the specimen, the dynamic stress 
intensity factor is smaller than the equivalent static stress inten- 
sity factor for the given crack growing length (i.e., K} ~ < 
K]). As the crack continuously propagates, the distance be- 
tween the loading point and crack tip will increase, and the 
stress intensity factor will decrease. After the first reflected PP 
wave arrives at the crack tip (i.e., at time t = 67.55 #s), the 
tensile effect of the reflected waves will slow down the decay 
effect of the stress intensity factor and make K} ~ > K]. 

Finally, a similar photoelastic specimen of material Araldite 
B, as shown in Fig. 10, which is studied by Hodulak, Kobayashi 
and Emery (1980), is considered. When the loading_is increased 
up to the the fracture toughness Kc = 2.0 MPa Vm, the crack 
begins to extend at a constant speed v = 240 m/s. By using the 
same procedure as mentioned in the foregoing problem, the 
finite element method is applied to obtain the stress distribution 
function p(x~ ) along the crack-tip line, and the dynamic stress 
intensity factors are shown in Fig. 11. The theoretical results 
presented in this study are consistent with the finite element 
results and experimental results by Hodulak, Kobayashi, and 

! O o ~  Present \ . . . .  Static 
o \ o Atluri FEM 
c4 x Kalth0ff Exp. 

\ 

x ~ o o o 

o 

o 
U o  . . . . . . . .  ~66 . . . . . . .  ~d6 . . . . . . .  ~d6 

Fig. 9 Dynamic stress intensity factor  of a propagating crack as shown 
in Fig. 8 

U3 

o Finite element 
x Experiment 

I o o 

do ' " 5 0 ' " i o d " i s d " 5 0 d " 5 5 0  

~ s  

Fig. 11 Dynamic stress intensity factor of a propagating crack as shown 
in Fig. 10 
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Emery (1980). At the instant of crack propagation, the stress 
intensity factor jumps from 2.0 MPa ~mm to 1.81 MPa ~mm with 
the decreasing ratio K(d), where d = (vJv)a = 7.93a. At time 
t = 28.07 #s, the reflected PP wave returns to the crack tip and 
induces a tensile effect for the crack which will slow down the 
decay behavior of the stress intensity factor. 

5 Conclusion 
A powerful method for the theoretical formulation of a crack 

propagating in finite boundaries and subjected to general static 
loading is proposed in this study. The effects of reflected waves 
generated from boundaries and their interaction with a propagat- 
ing crack have been successfully obtained and are shown to be 
in good agreement with the existing experimental and numerical 
results. 

Freund's remarkable result (1972b) for crack propagating in 
an unbounded medium is shown to be valid for the finite strip 
problem also. For the finite boundary problem, we have shown 
that the long-time behavior of the stress intensity factor pos- 
sesses the form of a universal function K(d) of an instantaneous 
extending rate of a crack tip multiplied by the stress intensity 
factor of an equivalent stationary crack. The equivalent station- 
ary crack is subjected to the same static loading and the crack 
length is equal to the instantaneous length of the actual crack. 
It is also concluded that the result is accurate enough to evaluate 
the dynamic stress intensity factor without considering the con- 
tribution for reflected waves of the second time, the third time, 
etc., and only when taking the first reflected waves into consid- 
eration, which will result only in a small tolerance (about six 
percent) in the calculation of the long-time behavior. 

The reflected waves generated from the boundary, which is 
parallel to a crack, have a stronger influence on the stress inten- 
sity factor of crack propagation than that generated from the 
boundary perpendicular to a crack. The reflected waves usually 
behave as a tensile effect, the dynamic stress intensity factor 
will generally increase after the reflected waves generated from 
a free boundary arrive at the crack tip. 

There still are many unanswered questions in dynamic frac- 
ture and this work may provide a useful technique for further 
investigation in more complicated dynamic fracture problems, 
especially on the crack propagation event. The proposed method 
in this study has already been extended to solve more difficult 

problems of crack propagation in a finite geometry body sub- 
jected to dynamic impact loadings, and the results will be shown 
in a future paper. 
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An Eigenvector Expansion 
Method for the Solution of 
Motion Containing Fractional 
Derivatives 
The use of fractional derivatives' has proved to be very successful in describing the 
behavior of damping materials, in particular, the frequency dependence of their 
parameters. In this article the three-parameter model with fractional derivatives of 

l order ~ is' applied to single-degree-of-freedom systems. This model leads to second- 
order semidifferential equations of motion for which previously there were no closed- 
form solutions available. A new procedure that permits to obtain simple closed-form 
solutions of these equations is introduced. The method is based on the transformation 
of the equations of motions into a set of  first-order semidifferential equations. The 
closed-form expression of' the eigenvalues and eigenvectors of an associated eigen- 
problem are used to uncouple the equations. Using the Laplace transform method, 
closed-form expressions to calculate the impulse response function, the step re.sponse 
function and the response to initial conditions are derived. 

1 Introduction 
The use of passive damping treatment in structures subjected 

to excessive vibrations levels is a well accepted and established 
technique to attenuate the vibratory motion (Nashif et al., 1985; 
Rogers, 1986). All the materials used for damping applications 
are known to have a strong dependency of their parameters on 
the frequency of vibration and temperature (Lazan, 1968; Na- 
shif et al., 1985). In the search for analytical models that de- 
scribe the frequency variation of the commonly used viscoelas- 
tic materials in damping treatments, the model based on frac- 
tional derivatives has been shown to be one of the most effective 
approaches. Although fractional derivatives are rarely used in 
other engineering areas, the concept of fractional calculus is 
nearly as old as the conventional derivatives of integer orders 
(Ross, 1977). There are several definitions of a derivative of 
fractional order; for our purpose we will adopt the definition 
based on the Riemann-Liouville integral: for 0 < a < 1, the 
derivative of order a of a function x(t)  is (Oldham and Spanier, 
1974) 

1 d fo x(t  - u_____~)du" D~x(t) V(1-  a)  dt u ~ (1) 

The fractional calculus model of viscoelastic behavior employs 
these derivatives of fractional order to relate the stress fields to 
the strain fields in viscoelastic materials. In a one-dimensional 
state of stress, the simplest form of the constitutive equation of 
the fractional calculus model can be expressed as 

or** = Eoex, + E1D%~ (2) 

o r  

"7-xy • GoTxy + GIDaTxy.  (3) 
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This model is known as the three-parameter model. Although 
they will not be discussed in this paper, there are more elaborate 
models in which the single fractional operator D ~ is re- 
placed by linear fractional differential operators of the form 

p,,D% acting on the strains and stresses (Bagley, 1979; 
n=0 
Bagley and Torvik, 1983, 1986; Rogers, 1983). 

When the viscoelastic behavior of a single-degree-of-freedom 
oscillator is described by either Eq. (2) or (3), the equation of 
motion assumes the form 

mD2x(t) + cD~x(t) + kx(t)  = f ( t )  (4) 

where, as usual, m, c, and k represents the mass, damping, 
and stiffness coefficients, respectively. The meaning of c and k 
depends on the constitutive equation, the mathematical model 
and the discretization method used to obtain Eq. (4). Although 
the coefficient a, known as the memory parameter, can take 
any value between 0 and 1, the value ½ was adopted for this 
study because it has been shown that it describes the frequency 
dependence of the damping materials quite satisfactorily (Bag- 
ley, 1979; Bagley and Torvik, 1983; Torvik and Bagley, 1984). 

We will presently introduce an analytical method, which we 
will use to obtain the response of an oscillator whose equation 
of motion can be written in the form of Eq. (4). The method 
is based on a transformation of the equation of motion from the 
configuration space to another space akin to the state space. 
The expanded equations of motion are then solved using an 
eigenvector expansion and Laplace transforms. It is shown that 
it is possible to obtain closed-form solutions which will enable 
us to predict the response to several types of excitations. The 
method presented can also be implemented to obtain the re- 
sponse to a load with arbitrary time variation. 

The problem of calculating the response of oscillators in 
which the damping is described by a fractional calculus model 
was previously studied by several authors. The methods pro- 
posed for this purpose include Laplace transforms (Bagley and 
Torvik, 1979, 1983, 1985; Shokooh and Suarez, 1994; Suarez 
and Shokooh, 1995; Suarez et al., 1995), Fourier transforms 
(Gaul et al., 1989, 1991; Shokooh and Suarez, 1994), numerical 
methods (Koh and Kelly, 1990; Padovan, 1987; Shokooh and 
Suarez, 1994), and power series expansions (Shokooh and 
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Suarez, 1994, 1996). None of these methods, however, is able 
to provide full closed-form solutions. For instance, the Laplace 
transform methods require the numerical evaluation of an im- 
proper integral. The Fourier transform methods also require 
a numerical implementation, either via an FFT or numerical 
integration. The power series expansion, although theoretically 
interesting, cannot be used in its present form for response 
calculations because of its slow convergence rate. 

2 
t ion  

The equation of motion (4) can be written in the form 

D 2 x ( t )  + 2rico3/2Dl/ZX(t) + w]X( t )  = f * ( t )  

where 

State-Space  F o r m u l a t i o n  of  the Equat ion  of  Mo-  

(5) 

~/2 c k f ( t )  
rico;, = - - ,  w ] = - - ,  f * ( t ) -  (6)" 

m m m 

The coefficient ri is the damping ratio of an oscillator with 
fractional damping of order ½. The reason for defining 77 in this 
way is to use an expression similar to that for the damping ratio 
of oscillators with viscous damping. The exponent ~ was intro- 
duced for consistency of dimensions. 

Introducing the following variables 

Zl = D3/2x( t ) ,  Z2 = D x ( t ) ,  

Z3 = D l / 2 x ( t ) ,  z,l = x ( t ) ,  (7) 

and letting 

a = 2~co~/2 ,  b = co,I, 

the equation of motion (5) can be transformed into the follow- 
ing system in a state space: 000 1 o1] 

1 0 0 Dl/2 Z2 
Z3 

0 0 a z4 

[i° il( za} i} _ 1 0 z2 = (8) 
0 0 z3 
0 0 z4 f t) 

To solve the system of differential Eqs. (8) we will consider 
the following eigenvalue problem: 

[A] {~I,}j = hi[B] { ffJIj (9) 

where the matrices [A] and [B] are 

[000!1 El [B] = 0 0 1 0 1 0 0 
1 0 ; [A] = 0 0 . (10) 
0 0 0 0 

Note that the eigenvalue problem (9) cannot be obtained in the 
usual way, namely by considering the free vibration case of Eq. 
(8) and assuming a solution of the form eX'{ 0 } .  The reason 
is that the application of the operator D m to the exponential 
term e"  does not produce he x'. Therefore, Eq. (9) is an eigen- 
value problem, associated with Eq. (8),  which will permit us 
to obtain the solution in a relatively simple way. 

The matrices [A] and [B] are symmetric and hence, if the 
eigenvectors are normalized with respect to [ B ], they have the 
following orthogonality properties: 

{,12}T[BI{~b = 6  0 (11) 

{ ~ I / } T [ A ]  { ~II} T = ~kj~ij, ( 1 2 )  

It is shown in Appendix A that it is possible to obtain closed- 

form solutions for the eigenvalues hj and the normalized eigen- 
vectors { • }i. Letting 

{z}  = [ ~ ] { y }  (13) 

where 

{ Z }  : [Zl, Z2, Z3, Z4] T, {y} = [y l ,Y2 ,  Y3, Y4] r (14) 

premultiplying Eq. (8) by { • } [, we are led, in view of Eqs .  
( 11 ) and (12), to a set of four decoupled differential equations 

DI/2yj( t )  - kjyj(t) = g/4jf(t); j = 1, 2, 3, 4 (15) 

where, as shown in Appendix A, 

1 
1~/4J = ~4k2  + 2 r i c o ] / 2 '  (16) 

Differential equations of the form of Eq. (15), involving frac- 
tional derivatives of order ½, are referred to as "semi-differential 
equations" (Oldham and Spanier, 1974). In certain cases it is 
possible to obtain closed-form solutions of these equations by 
means of the Laplace transform, which is based on the following 
property: the Laplace transform L [ . . . ]  of a fractional derivative 
of order a of a function x ( t )  is 

L [ D " x ( t ) ]  = s " X ( s )  - C (.17) 

where X (s) is the Laplace transform of x (t) and C is a constant 
defined as 

C = D~- 'x ( t ) l t=o .  (18) 

It is important to note that the value of C is as yet undetermined, 
and cannot be set C equal to zero arbitrarily. Taking the Laplace 
transform of Eq. (15) and using the result in Eq. (17) for a = 
1 g, we obtain 

• 4jF(s) + R j  ; j = 1 , 2 , 3 , 4  (19) 

where l,](s) and F ( s )  are the Laplace transforms of y / t )  and 
f ( t ) ,  respectively. The coefficient Rj is defined as 

Rj = D-' /2yj(t)] ,=o. (20) 

To obtain the response in the time domain, we need to calculate 
the inverse Laplace transform of ~ ( s )  and substitute it in Eq. 
(13). If we are interested in the displacement x ( t ) ,  from Eqs. 
(7) and (14) it follows that 

4 4 
x ( t )  = Y. ',I,4jy/t) = Y~ ff~4jL--I[Yj(s)] (21) 

j= t  j= l  

where L-  ~ [ . . . ]  is the inverse Laplace transform of the function 
in brackets. We will apply this formulation to calculate the 
response to three types of input: free vibrations with initial 
displacements and velocities, step function load, and impulsive 
load. 

3 Response  to Init ial  Condi t ions  

We will assume that at time t = 0 the oscillator has initial 
displacement x (0) = x0 and initial velocity ~(0)  = .f0. To obtain 
the free-vibration response, we set F ( s )  = 0 in Eq. (19) and 
calculate the inverse Laplace transform of the remaining terms. 
Using residue theory and contour integration, it can be shown 
(Suarez et al., 1995) that 

= V ~  + kJeX~'[1 + E r f ( k j ~ ) ] .  (22) 

Using this result in Eq. (21), the response x ( t )  becomes 
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1 4 4 
x(t) = ~t Z ~II4j1~ + Z ~4jk:Rjgj(t) (23) 

~ t  j=l j=l 
where we introduced the notation 

&(t) = ea3'[l + Erf(kj~)]. (24) 

Note that the first term in Eq. (23) becomes unbounded as t 
0. Therefore, the constants Rj must be such that 

4 
Z ~,~jRj = o. (25) 

j=, 

Moreover, at time t = 0, &(0) = 1 and Eq. (23) yields an 
additional condition 

4n 
x0 = E ~4jRjRj. (26) 

j - I  

In addition to Eqs. (25) and (26), we need two more equations 
in order to solve for the four constants Rj. These can be obtained 
by examining the velocity 2(0.  Considering Eqs. (7),  (13), 
and (14), the velocity can be obtained as 

4 
2(t)  = ~ ~zjL-~[~(s)]  (27) 

j=l 

and with Eqs. (19) and (22), the velocity can be written as 

1 4 4 
X(t) = - -  ~ ~s2sR j + Y~ ~2jXaR:&(t). (28) 

For the response to be bounded, the denominator in the first 
term must be zero: 

4 
Z qfl2sRJ = O. (29) 

j=l 

Evaluating Eq. (28) at t = 0 yields the fourth condition 
4 

Xo = Z ~AjRj.  (30) 
j=l 

Equations (25), (26), (29), and (30) can now be written as 

21 ~22 ~2~ ~24 | R~ 
,~/41 X2~/42 X3~I/43 ~k4k~/44 / R3 = ( 3 1 )  

Before attempting to solve the system of equations, it is conve- 
nient to note the following. From the eigenproblem in Eq. (9),  
it is easy to conclude that 

~t~13j = Xja,il 4. j 

% j  = xj~'3j = x~ I , , j  

I,Y~llj = Xj~zl2j = Xj3~k~/4j, j = 1, 2, 3, 4 ( 3 2 )  

in view of which the system of Eqs. (31) can be written as 

[~1 R2 = ~)0 (33) 

R4 

Using the orthonormality condition of the eigenvector matrix 
[,.Iq, the constants R~ are now easily calculated: 

R~ ~/~4~(X0 + k~x0)~ 
R3 = [~t~/]T[B] -~ 1~I/43(3C0 + X32X0)| (34) 

R4 [;°J ÷ 1~ ;tXI4d ( .,~ 0 ~k42Xo) J 

The displacement of the oscillator is then obtained substituting 
the constants Rj in Eq. (23) and taking into account Eq. (25): 

4 
x(t) = ~ ~4jh~Rjgi(t) 

j=l  
4 4 

( Z  ~2jhj&)Xo + ( Z  z 3 = ff~.t4j~k) g))Xo. (35) 
j=l j=l 

As it is explained in Appendix A, two eigenvalues, say X~ and 
X2, always occur in complex conjugate pairs. The remaining 
eigenvalues can be real or complex conjugates depending on 
the value of the damping ratio z/. Therefore, the response can 
be written as 

x(t) = {2 Re[~n21klgl(t)] + 'ffJ423k3g3(t) 

+ ~424h494(t) }.,% + {2 Re[~]lk~gl( t ) ] .  

+ ~423h~g3(t) "4-- ~a24h]g4(t)}Xo. ( 3 6 )  

4 Step Funct ion  R e s p o n s e  

We will now consider an initially stationary oscillator sub- 
jected to an excitation of the form 

f ( t )  = fou(t) (37) 

where u(t) is the Heaviside function. Substituting the Laplace 
transform of the excitation, F(s) = Fo/s, in Eq. (19), the time 
domain solution of the decoupled equation is 

yj(t) = go'~T-t4jt-l[~s L h i ) | - I - e j t - ' [ ~ s  1~:i I . ( 3 8 )  

It can be shown that the inverse Laplace transform of the first 
term in Eq. (38) is (Suarez et al., 1995) 

L_l[ 1 ] & ( t ) -  1 (39) 
L s ( ~ -  XJ) x, 

where gj(t) is defined in Eq. (24). The total solution is obtained 
via modal combination 

x(t) = Fo ~ q~]j 11 j=l ~ [&(t) - 

+ ~ ~4j + Xjgj(t) . (4o) 
j~ |  

Note that since &(0) = 1, the first term vanishes at t = 0. 
Therefore, the constants R: can be obtained as explained in the 
free vibration case and the second term is identical to x(t) in 
Eq. (36). Since we assumed that the initial conditions xo and 
Xo are zero, the response to the step function loading is 

Re( <1 } x(t) = 2Fo [ - ~ -  [g , ( t )  - 1] 

Foil/~3 Fo~t 424 + k3" [g3( t ) -  1] + ~ [ g 4 ( t ) -  1]. (41) 

5 Impulse Response 
The third case to be studied is the response to a unit impulsive 

load F(t) = 6(0 and zero initial conditions. Taking F(s) = 1 
in Eq. (19), the time response of the decoupled semidifferential 
equations is 

yj(t) = (~4j + R:)L-~(~-~--~) .  (42) 

Recalling Eq. (22) and Eq. (21), the impulsive response is 
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Fig. 1 Impulse response function for oscillators with damping ratios 'q 
= 0.05, 0.5, and 1 

x(t) = 
1 ~ (~I'~j + q-%/~j) 

V T r t j = t  

,I 

+ ~ (kj~]:gj(t) + kjgJ4jgj(t)Rj). 
j= l  

(43) 

It is shown in Appendix B that the eigenvalues kj and the 
eigenvectors { ~I,}~ of Eq. (9) satisfy the following relation- 
ships: 

4 

Z ~P]j = 0 (44) 
j= l  

4 

Z kjxI"42: = 0. (45) 
j = l  

Therefore, evaluating expression (43) at time t = 0, and recall- 
ing that gj(0) = 1, the constants Rj must satisfy the condition 
in Eq. (25) for bounded response. Moreover, since we are con- 
sidering zero initial conditions, the remaining terms yield 

4 

0 : Z X;q,,jR;. (46) 
, i=l 

If we calculate the velocity £(t) by substituting t94j by ~2j, and 
study the resulting expression at t = 0, we obtain again the 
condition in Eq. (29) and one additional condition 

4 

0 : Z k:92:R;. (47) 
]=1 

The above results mean that the constants Rj are obtained from 
the solution of the system in Eq. (31 ) with xo = £o = 0. There- 
fore, the constants are zero, and Eq. (43) reduces to 

4 

x(t) = ~ k;g~42jgj(t) (48) 
j =  1 

which, using the usual notation for the unit impulse response, 
can be written as 

h(t) = 2Re{X,g~42tg,(t)} + X3~423g.~(t) + k 4 / I / 2 4 g 4 ( t  ) .  (49) 

Finally, replacing the eigenvector elements ~4; from Eq. (16) 
the impulse response function of the oscillator with fractional 
damping: 

h ( t ) =  Re{2x~ k, ( t )}  
+ ~Taj~/2 gl 

k3/2 h3/2 + g3(t) + g4(t) (50) 
2h~ + ~Tco~/2 2hi + ~--------~,]:2 

6 Numerical Results 
The analytical expressions previously obtained to calculate 

the response to the three loading conditions were implemented 
in the program MATHEMATICA (Wolfram Research, 1993). 
The procedure is quite simple. First, the eigenvalues k~, k3, and 
k4 are calculated using Eqs. (A.6) - (A.7) of Appendix A. Next, 
the eigenvector elements gJ4:, ~4.3, and ~4.4 are calculated using 
Eq. (16). The auxiliary functions gl(t), g3(t) and g4(t) are 
defined as in Eq. (24). Equations (36), ( 4 l ) ,  and (50) are 
then used to obtain the response to initial conditions, the step 
response, or the impulse response, respectively. 

Equation (50) was used to calculate the impulse response 
functions shown in Fig. 1 for oscillators with natural frequency 
aJ,, = 10 rad/s and damping ratios r 1 = 0.05, 0.5, and 1. Note 
that the impulse response for rl = 1 has an oscillatory character. 
In fact, fractional model predicts that the system will experience 
oscillations with sign change even for value greater than 1. 
More precisely, the fractional damping models does not present 
an overdamped behavior in the sense of the standard viscous 
model. When the damping ratio is equal to ~/-~, the curves are 
tangent to the axis of zero displacement, regardless of the value 
of co,,. For values greater than ~/-~, the curves tend to zero 
without crossing the zero axis. In this regard, the value r 1 = 

can be considered as a "critical" damping ratio, in the sense 
that it separates two different behaviors of the impulse response 
function. Figure 2 shows the impulse response functions for an 
oscillator with a:,, = l0 rad/s and damping ratios equal v~,  3 
and 5. Note that the first curve touches once the zero axis 
whereas the impulse functions for r 1 > ~ show oscillations 
above the equilibrium position. 

In the next numerical example, three oscillators with un- 
damped natural frequency w,, = 10 rad/s and damping ratios 
equal 0.05, 0.5, and 1 are given a unit initial displacement. The 
subsequent displacements as a function of time are plotted in 
Fig. 3. Here again, the damping ratio rl = 1 is not associated 
with any special situation. Note that, as expected, if an oscillator 
is given a unit initial velocity, the response obtained with Eq. 
(36) coincides with the impulse response function. This can be 
clearly seen by comparing Eq. (36) and Eq. (49) with x0 = 0. 

In the next numerical example, three oscillators with natural 
frequency of 5 rad/s and damping ratios 0.05, 0.5, and I are 
subjected to a step load of magnitude F0 = 1. Figure 4 shows 

0.06 

0.05 

i 0.04 

O. 03 

O. 02 

0.01 

=5  

0.2 0.4 0.6 0.8 1 

Time 

Fig. 2 Impulse response function for oscillators with damping ratios ,q 
= sqr t (~r) ,  3 and 5 
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the displacement response of the oscillators. Note that the curves [ 
for r/ = 0.5 and 1 do not show oscillations around the static o.o7 
equilibrium response Fo/cO~ = 0.04. However, all the curves 

O.06 
approach the equilibrium position as time grows. 

Finally, although it was not presented in this paper, we must sos 
point out that all the responses presented here were compared 
with results obtained using other available techniques, (such as ~o.o4 
the semi-analytical expressions obtained by the authors based ~0.03 
on the Laplace transform (Suarez and Shokooh, 1994) and the 
direct integration of the equations of motion using numerical 
algorithms (Shokooh and Suarez, 1994, 1996)). The results o.o2 
match perfectly in all cases, except for the cases where the 0.0t 
numerical algorithms fail to converge to the correct answer. 

0 

7 Conc lus ions  

This paper presents a methodology to calculate the response 
of damped oscillators in which the damping is described by the 
fractional calculus model of viscoelasticity. In the model used 
for the present study, the viscous damping term in the equation 
of motion is replaced by a term proportional to the derivative 
of order ½ of the displacement. The equations of motion of the 
oscillators with fractional damping become second-order semi- 
differential equations. To solve these equations, they are first 
transformed into a set of four first-order semidifferential equa- 
tions. The transformed equations are decoupled using an eigen- 
vector expansion. Closed-form solutions of these eigenproper- 
ties are provided. The decoupled semidifferential equations are 
solved using the Laplace transform technique. 

Some of the unique features of the fractional model are re- 
vealed in the numerical examples presented. It should be pointed 
out, however, that it is not the object of this paper to discuss 
the phenomenological aspects of the model, but to present tools 
for the time response analysis of these systems. If the fractional 
calculus model is to become a strong and convincing competitor 
of the classical damping models, it is imperative to have avail- 
able simple closed-form solutions. 

It is possible to extend the methodology presented to calculate 
the response of multi-degree-of-freedom systems. Moreover, it 
is also possible to generalize the method to treat models with 
more elaborate constitutive equations than the Eqs. (2) and (3) 
used in this paper. The response to loads with arbitrary time 
variations can also be calculated with the proposed methodol- 
ogy. For this, the loading function must be first sampled and 
assumed to be constant within small time intervals. The re- 
sponse at the end of each time interval is then calculated by 
adding the response to the initial displacement and velocity at 
the beginning of the interval and the response to the step load. 
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Fig. 3 R e s p o n s e  of osci l lators with damping ratios , ,  - 0.05, 0.5 and 1 
to a unit initial d i sp lacement  
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t I 
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Fig. 4 Unit step response function for oscillators with damping ratios 
= 0.05, 0.5, and 1 
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A P P E N D I X  A 

Eigenvalues and Eigenvectors of the (4 × 4) Problem 
for the Single-Degree-of-Freedom Oscillator 

To solve the eigenproblem in Eq. (9), it is convenient to 
write it in the standard form: 

[B]-'[A]{ @}j = kj{@}s (A.1) 

where 

[Bi_a[A] = 1 0 0 (A.2) 
1 0 
0 1 

Expanding the characteristic determinant one obtains 

k 4 + ak + b = 0. (A.3) 

This is the same equation obtained in the Laplace transform 
solution of the equation of motion by Shokooh and Suarez 
(1994). The authors have shown that the roots or eigenvalues 
a re  

hi = X~ = p + iq 

X3 = - p  + is 

h 4 = - p  - is (A.4) 

where 

q =  w, K + ~--~ 

S : 0d n K -- (A.5)  

and t~ is a function of the damping ratio defined as 

K = - -  
21'3 ~ 16]"3 

4 [ ( . 2 +  ,4 __ ~ j  

16]"~]. 
(A.6) 

The function K is a nondecreasing function of ~7 and therefore 
the coefficients p and q are always positive which in turn implies 
that hi and M are always a complex conjugate pair. The coeffi- 
cient s, however, can become imaginary when K < (~/2) 2/3. 
It can be shown that this occurs for r? > 2 / 3  3/4 = 0.877. In this 
case the eigenvalues M and k4 become real and equal to - ( p  
+ s) and - ( p  - s), respectively. In any case, Eqs. (A .4 ) -  
(A.6) can always be used to define the eigenvalues hi. 

From the eigenvalue problem in Eq. (A.1), the elements of 
the jth eigenvector are related as 

q)ij = kj~2j; ~92s = kj~93j; ~3j = kj~4j. (A.7) 

Selecting the last element of the eigenvector equal to an 
arbitrary constant, 

~J4j = aj (A.8) 

the eigenvector becomes 

{ ~ b =  [X 3 h~ kj 1]raj. (A.9) 

The constant aj can be selected such that the eigenvectors 
are normalized with respect to matrix [B]: 

{@}]"[Bl{,.IsIs = 1. (A.10) 

Sustituting {~}j from Eq. (A.8) in Eq, (A.9) one obtains 

1 (A.11) 
o~ - 74k] + a 

and the fourth element of the eigenvectors is given by Eq. (16). 

A P P E N D I X  B 

Orthogonality Relationships 
From the orthogonatity properties of the eigenvectors { ~j  } 

in Eqs. (11) and (12) written in matrix form 

[@]T[BI['tI'] = [I] (B.1) 

[@]T[A][~]  = [A] (B.2) 

it is straightforward to obtain that 

[ B ] - ' [ A ] [ B ]  -1 = [ ~ ] [ A ] [ ~ ]  r (B.3) 

where [A] is a (4 × 4) diagonal matrix with the eigenvalues 
ki. Using the matrices [B] and [A] defined in Eq. (10), the 
left-hand side of the above equation becomes 

L - ;  001 001 (B.4) [ B ] - I [ A ] [ B ] - I  = 

Recalling from Eq. (A.7) that the elements of the eigenvec- 
tors { ~j  } are related through the eigenvalues, the matrix of 
eigenvectors [ ~ ]  can be written as 

[,I,] = @3 = I~4A / (B.5) 

where IS'i] are (1 × 4) matrices with the elements ~ik: 

[ ( I~i ]  = [ItI/ i l  , ltI#i2 , ltIfi3 , I I / i4  ] . (B.6) 

Substituting [~ ]  from Eq. (B.5) in the right hand side of 
Eq. (B.3), carrying out the triple products leads to 

[,I,] [A]  [@] T 

[ ~4A7~[  ~,456,I,~ , I , , a ' ~  ~4a4¢)[ - 
~4AS&b[ ~ 4 A 4 ~ [  ~ 4 A 3 ~  

= (i)4A 3(i) 4 T ~ 4 A  2(I.~ ~ 

LSYMM. ~4A~4 T 

(B.7) 

Equating Eqs. (B.4) and (B.7) one obtains the following 
relationships: 

[cI~4] [ A  7] [ I I~4]T = - b  (B.8) 

[~I~4] [ A  6] [(I~4] T = - a  , ( B . 9 )  

[~4][A3][~4]  r =  1 (B.10) 
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[~4][Ak][¢4] T = 0 ;  k =  1 ,2 ,4 ,5  (B.I1) 

Taking k = 1 in Eq. (B.11) we verify Eq. (45): 

4 
[@4][A][,I~4] r = ~ Xj~] J = 0. (B.12) 

j= l  

The proof of Eq. (44) requires further work. Substituting 
[~]  from Eq. (B.5) and [A] from Eq. (10) in the orthogonality 
property in Eq. (B.2), leads to 

[A2][cI~4]r[~4][A 2] + [A3][~4]T[~4][A] 

+ [A][~4]T[O4][A 3 ] - b [ ~ 4 ] [ ~ 4 ]  T= [A]. (B.13) 

Pre and post-multiplying by [04 ] and [ O4 ] T, respectively, and 
making use of Eq. (B.11), Eq. (B.13) reduces to 

--  b [ ~I~4 ] [ cI~4 ] T [ ~I~4 ] [ ~I~4 ] T =  0 (B.14) 

which verifies Eq. (44), 
4 

['cI'4][':I'4] r =  Z ~]j = 0. (B.15) 
j= l  
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Nonseparable Solutions to the 
Hamilton-Jacobi Equation 
The Hamilton-Jacobi partial differential equation is solved for  potential energy func- 
tionals o f  constant, linear, and quadratic form using a class o f  nonseparable solu- 
tions; these solutions give a geometric property to the generating solution, embedding 
it into the class o f  conics. These solutions have two basic components, that designated 
as a kernel component which belongs to the system regardless of  the specific dynamics 
o f  the system and the primary and secondary system functions that are dependent on 
the specific initial conditions. Solutions are obtained for  the linear oscillator, a 
rheonomic oscillator and a two-degree-of-freedom system, the latter suggesting an 
approach for  general multidegree-oJZfreedom systems. 

I n t r o d u c t i o n  

The Hamilton-Jacobi theory has been developed from Hamil- 
ton's principle and the use of  ignorable variables via Jacobi 
(canonical) transformations; this theory is not repeated here 
since it is fully developed in many texts on classical dynamics 
(Lanczos, 1966; Goldstein, 1980; Pars, 1965; Landau and Lif- 
shitz, 1969; Leech, 1965; Synge, 1960; Saletan and Cromer, 
1971; S anz-Serna and Calvo, 1994). In this article, nonsepara- 
ble solutions for the principal function are developed; separable 
solutions, developed for example in Pars (1965),  Saletan and 
Cromer (1971),  Benton (1977),  and Denman and Buch 
(1973),  are those whose forms are the sum or the repeated 
product of functions, each of these a function of only one gener- 
alized coordinate or time. There is also a geometrical aspect to 
these solutions, in the form of multidimensional ellipsoids or 
hyperboloids for a specific class of Lagrangians. 

B a c k g r o u n d  

The Hamilton-Jacobi theory is summarised in outline so that 
there is a starting point for the present development. Consider  
a dynamic system with n generalized coordinates ql, q2 •. • q,,. 
The system has inertia and this is represented by the kinetic 
energy T which is a function of the generalized velocities Vl, 
v2 . . . .  v,, where v~ = dqj/dt,  the generalized coordinates ql ,  q2 
• . .  % and possibly time t. The system also has stiffness repre- 
sented by a work function U, a function of the generalized 
coordinates and time. 

The terms scleronomic ~ and rheonomic are usually applied 
to constraints; however, the explicit resolution of the constraints 
into a reduced set of  unconstrained generalized coordinates will 
usually result in the time explicitness being transferred to the 
kinetic and/or  potential energy functions; the classification "au-  
tonomous" is usually applied to equations and this excludes 
the explicit appearance of  time in the equations of motion. In 
this paper, Lagrangians that contain time explicitly will be re- 
ferred to as rheonomic as there does not appear to be an alternate 
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Lanczos (1966) states " I f  both the kinetic energy and work function are 
scleronomic, i.e., time-independent . . . .  If either kinetic energy or work fnnetion 
or both are rheonomic, i.e. t ime-dependen t . . . " .  

appropriate label. Monogenic 2 systems are considered in this 
development as the Hamilton-Jacobi theory is applicable to 
those systems where all the noninertial forces are derivable 
from a work function, Lanczos (1966).  For systems in which 
the work function is not explicit in time the system is conserva- 
tive, and there exists a potential (energy) function V ( =  - U ) .  
The kinetic energy T and work function U or the potential 
energy V are then combined to form the Lagrangian, L = T + 
U = T - V; the Hamiltonian H is then defined by the following: 

i=n  

H =  ~, pivi - L 1) 
i=1 

where the generalized momenta pi are 

OL 
i =  1 , 2 . . . n .  (2)  

Pl = Ov-~i ' 

This latter equation can usually be inverted to present the 
generalized velocities in terms of the generalized momenta and 
generalized coordinates 

vi = vi (pl , p2 . . . .  P, ,  ql , qz . . . .  q,, t) (3) 

so that the Lagrangian, and more importantly the Hamiltonian, 
can be expressed in terms of the generalized momenta and 
generalized coordinates 

H = H(p i ,  pz . . . .  Pn, ql, q2 . . . .  q,, t). (4) 

The generalized momenta are then transformed to ignorable 
coordinates a l ,  O L 2  , . ,  O/n. This leads to the Hamilton-Jacobi 
equation 

Os + , .  - -  o (5) 
Ot L ~qt ' Oq2 "" Oq,, ' ql, q2 . . . .  qn, t = 

where S is the Hamilton principal function (or the generating 
function); this is a function of ql, qz . .  • q,, and t and can be 
thought of as a surface moving in ql,  q2 • • • q,, space. This is 
a partial differential equation with one dependent, the principal 
function S, and n + 1 independents, the generalized coordinates, 
qi,  q2 . . . .  q,, and time, t. There are thus n + 1 constants of 
integration and if the system is conservative, one of these can 
be and usually is the total energy of the system E and the others 
are ignorable constants, a~, o/2 , , . a n . Since these are ignorable, 
there are constants of motion/3i where 

2 The term monogenic has been introduced by Lanczos (1966) and is applied 
to systems where there exists a work fraction, a scalar function from which the 
generalized forces are derivable. If this function is not explicit in time the system 
is conservative. 
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OS 
/3i O a  i i = 1,2, n. (6) 

However, there is a development that starts with the first-order 
partial differential equation, with the generalized coordinates 
and time as the independent coordinates; since the Hamilton- 
Jacobi equation when derived for dynamic systems is in this 
category, the development continues with the search for specific 
Lagrangians and Hamiltonians that lead to any of the class of 
Hamilton-Jacobi equations. This is the inverse problem and 
this has been examined by Havas (1956) who considered the 
question: given the following system of equations of motion 

Gi(ql,  qz . . . .  q,,,'4J, 42 . . . .  4,, O'~, #2 . . . .  ~,,, t) = 0 

for i =  1 , 2 . . . n  

find the Lagrangian(s) L(ql ,  q2 . . . .  q,,, 4~, 42 . . . .  4~, t) such 
that 

d OL OL 
= Gi = 0 for i = 1, 2 . . .  n; 

dt 04~ Oqi 

he then investigated the introduction of suitable integrating fac- 
tors, linear combinations of the equations of motion, and trans- 
formations of the generalized coordinates in order to generate 
a Lagrangian. The Lagrangian thus found is not unique and 
indeed given a form for G~ there are a multiplicity of candidate 
Lagrangians. 

Currie and Saletan (1966) and Kobussen (1979) established 
procedures for retreiving these Lagrangians through "fouling" 
and "gauge transformations," respectively; they labelled the 
candidate Lagrangians introduced above as "equivalent La- 
grangians." A comprehensive survey of the inverse problem 
appears in the text by Santilli (1978). Denman (1966) and 
Denman and Buch (1973) examined the inverse problem for 
dissipative systems, namely linearily damped systems and 
showed the existence of a constant "Hamiltonian" even though 
the total energy of the systems considered is not conserved. In 
fact what they show is the existence of parallel systems where 
the governing equations of motions produce similar solutions 
even though the systems are quite different. For example, the 
system shown in Denman and Buch (1973), the motion of a 
particle, mass m0 in a one-dimensional viscous medium given 
by the following equation of motion: 

moY+ moy2 = 0 

is exactly that for the free motion of a mass accruing system 
(re(t) = moer'), 

d 
m 

dt (m°er'2) O. 

These are two different systems with the same equation of 
motion, and the Lagrangian of the second could be assumed to 
be a candidate Lagrangian for the first system; however, al- 
though the free motion of the two systems is the same, the 
forced motion, due to the action of an external force, of the two 
systems is quite different. Also the kinetic energy in the two 
systems decreases by different (multiplying) rates, e-2~' in the 
first system and e -~' in the second. 

The solution for S has been achieved classically by consider- 
ing separable functions (Benton, 1977) and this is illustrated 
in the following; consider a linear oscillator with constant mass 
m, and constant stiffness, k. The Hamiltonian is 

1 p 2 + l  
H = 2--£ -2 kq2 (11) 

and the Hamilton-Jacobi equation is 

os+ 1 (os)2+1 
Ot 2---£ \ O q /  2 kq2 = 0. (12) 

The conventional additive separable solution for S is taken 
as 

S(q,  t) = Sc,(q) + S,(t) (13) 

and substituting in the above Hamilton-Jacobi equation yields 

S, = - at  and 

= f,i 7 ~/m(2a - kq2)dq (14) Sq 

Although the latter can be integrated to give the following, 

Sq = 2 ~ -  kq 2 + ~  q , (15) 

this is not a necessary step; instead the constant of motion/3 is 
immediately obtained from the following: 

/3 0a cos -I q t 

or q = cos (t + /3) 16) 

where a and/3 are the constants of motion determined by the 
initial configuration q (t = 0) and the energy of motion E ( = a) .  

This separable form for S has been used for a variety of 
conservative systems; other separable forms for S invoke the 
separation into a fanction of time times a function of q (Denman 
and Buch, 1973), that is 

S(q,  t) = Sq(q)S,( t) .  (17) 

Other forms for S have been used, for example, Saletan and 
Cromer (1971) and Benton (1977); however, there does not 
appear to be a unified solution for rheonomic and multidegree- 
of-freedom systems. 

Nonseparable  Solutions 
These are demonstrated using the above linear oscillator and 

are then generalized for multidegree-of-freedom systems; the 
systems are restricted to quadratic forms of potential but are 
not necessarily scleronomic. 

The solution form is based on the polynomial expansion in 
the generalized coordinates 

S(q,  t) = a ( t )q  2 + b ( t )q  + c( t )  (18) 

where a, b, and c are functions to be determined. Using the 
above, 

da 2a 2 k 

dt m 

db 2ab 
and 

dt m 

dc b 2 
- (19)  

dt 2m " 

The function a( t )  will be labeled the kernel function as it will 
be Seen to be independent of the initial conditions or constants of 
integration and is a function that is core to the system. The 
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solution to this set of equations is not unique; a candidate solu- 
tion is 

a ( t )  - tan ~t  (20) 
2 

where the system frequency co = ( k / m )  '/2. It is observed that 
this solution approaches infinity for many times, t = (2i - 1 )Tr/ 
(2co), i being any integer; this presents a problem if the kernel 
solution were to be determined numerically)  The primary sys- 
tem function b ( t )  is then 

-J~' (2alm)dt Ot 
b ( t )  = Ote - (21) 

cos cot 

where the initial condition is b = o~ when t = 0. The final 
(secondary) system function is 

Ol 2 

c ( t )  - 2k~m tan cot (22)  

and the principal function can be assembled; finally the constant 
of motion fl is determined since 

OS Ob Oc q a 
/3 0ot 0ot q + 0ot cos wt  V~m tan cot 

o r  

Ot 

q = /3 cos cot + ~ sin cot. 

Note that the constant of motion/3 depends explicitly on the 
primary and secondary system functions b ( t )  and c ( t )  and not 
the kernel function a ( t ) ;  thus the kernel function has to be 
determined only once for a given system whereas the system 
functions are configuration dependent. 

A second type of solution belonging to scleronomic systems 
is a = j ( m k / 4 )  '/2 where j = ~ / ( -1 ) ;  the associated system 
functions are 

b = oLe ~ a ' t  and 

= _ j, 2_ e -2j ' 
c 4x/krn 

and the solution follows 

q = ~3e jut -q- JOt e_j~ t 
2 ~ / ~  ' 

which is the same as the previous solution with different values 
for a and/3. This exercise has been pursued to demonstrate the 
alternate principal function S for the Hamilton-Jacobi equation; 
there is no advantage to using this specific solution for the 
single-degree-of-freedom system considered. However, for 
multidegree-of-freedom and/or  for rheonomic systems there 
may be benefits in the form of the solution obtained. 

Nonseparable Solutions, Rheonomic Systems 
A rheonomic system was defined .as one in which the La- 

grangian L is explicitly dependent on time t. An example from 

3 Although it is not necessary to compute S or its components, a ( t ) ,  b( t ) ,  and 
c ( t )  numerically, this option is useful if these components cannot be established 
analytically; their numerical evaluation can then be used to find the system dynam- 
ics since only b and c are dependent on the constant of integration and both can 
be explicitly differentiated with respect to this constant. 

Havas (1956),  Denman (1966),  Denman and Buch (1973),  
and Logan (1977) is introduced: 

L - ½(mY 2 - kq2)e  ~'. (27) 

This 4 exhibits the characteristics of a linear damped system 
even though there exists a work function (½kq2e"'); the free 
response of this system can be shown to be 

q ( t )  = f l ,e  ~' + fl2e "2t (28) 

where fl, and/32 are the constants of the motion and s~ and s2 
are the roots, 

sl.2 = - ~  1 _+ 1 ' -  , (29) 

and hence the solution can be written as (for k / m  > #2/4) 

q ( t )  = e-("t/2)(/31 sin cot + /32 cos cot) (30) 

where 

#2 
co = 4 (31) 

(23) The generalized momentum is 

OL 
p = ~ = rnve "t (32) 

(24)  and the Hamiltonian becomes 

p2 
H pv L e -"t + kq2 . . . . .  e u'. (33) 

2m 2 

Using the Hamilton-Jacobi equation and introducing the non- 
separable solution 

S ( q ,  t) = a ( t ) q  2 + b ( t ) q  + c ( t )  (34) 

gives the following coefficients of q2, q, and q0, 

da + 2a z _k e"' 
- -  ~ e  -~ '  + = 0 
dt m 2 

db 2ab 
(25) dt  + m e -"t 0 

dc b 2 
and - -  + - -  e -~' = 0. (35) 

dt  2m 

(26) The first equation admits a kernel solution 

a ( t )  = Ae" '  (36) 

where the constant A is determined by substitution, to be 

The primary system function is 

b ( t )  = Ote - ( 2 A t / m )  

(38) 

4 The linearily damped oscillator and the associated equivalent Lagrangians 
have been considered by other investigators. Havas (1956) used a different equiva- 
lent Lagrangian which is also considered by Kobussen (1979); this Lagrangian 
is not reproduced here as it is complex and would not contribute to the following 
development• 
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where 0/ is the constant of integration. The secondary system 
function is 

0/2 
c ( t )  : e - [ ( 4 A I m ) + M t  

2(4A + m#) 

_-7_0/2 
e ±2j~,. (39) 

2 m # ~ l  4k 
m/.z 2 

Finally, the constant of motion/3 is given 

OS Ob Oc 

P =5~  = q s s  + 00/ 

= qe_(Za/m) t + a e - [ ( 4 a / ' n ) + M t .  (40) 
(4A + m#) 

This can be simplified so that 

q = e  (u'/2)(/3eJ~' (4A +a m/z) e j~o,) 

or = e - ( # t l 2 ) ( / ~ l  sin a~t + r2 cos cot), (41) 

which is the solution initially quoted; the constants fl~ and f12 
are determined from the initial conditions and may be related 
to the constants of motion a and ft. 

Multidegree-of-Freedom Systems 
The generalised coordinates are q~ written in vector form as 

q, a column vector; the velocity v is d q / d t .  The Lagrangian L 
is given generally for quadratic potential energy functions as 

L = ½v'Mv + q 'Dv - ½q'Kq - G ' q  (42) 

where M, D, and K are square matrices; M and K are symmetric, 
and M is positive definite (IIMII > 0, where the I[ II denotes a 
matrix norm). The last term in the Lagrangian, G'q ,  allows for 
a uniform gravitational-type potential. The generalised mo- 
menta p are thus 

p = XT~L = Mv + D'q. 

Then 

(43) 

v = M - l ( p  - Dtq) (44) 

and the Hamiltonian H is 

H = ptv - L = ½P'M-lp - ½(ptM-ID'q + q 'DM-lp)  

x q , ( D M - I D ,  + K)q + G'g. (45) + ~  

dA 
- -  + A t M - I A  - A t M - I D  t - D M - I A  + D M - ~ D  t + K = 0 
dt  

+ (A  - D ) M - ~ B  + G = 0  
dt 

d_if_ + ! BtM-1B = 0. (48) 
dt  2 

The first of these equations may be integrated (even numeri- 
cally) to find the kernel function matrix A; the system functions 
could then be determined with the initial conditions for Bi ( ----ai 
at t = 0). The constants of motion fl~ are then used in the 
following: 

~' = 00/--~ j~0 o~ i  q~ + 5 ~ '  i = 1, 2 . . .  n. ( 4 9 )  

Using the above formulation, B is linear in the initial condi- 
tions a and the partial differentiation of B and C is explicit; it 
is thus possible to determine the vector function B due to unit 
initial conditions and then to rewrite the last equation in terms 
of the initial conditions. In this way the vector function B and 
the scalar function C can be determined. 

Example 
To demonstrate the above solution, consider a two-degree- 

of-freedom system shown in Fig. 1. 
There are two masses, m~ and m2 connected to the three 

springs k~, k2, and k3. The kinetic and potential energies are as 
follows: 

1 dq~ 1 dq__~ 
T = -2 mJ ---~t + "2 m2 dt 

l 2 1 1 2 V = ~klql + 7kz(q2 - q l )  2 + ~k3q2 (50) 

and the mass and stiffness matrices are 

o] 
m2 

kl + k2 -k2 ] 

K = L --kz k2 + ks J ' 
(51) 

The substitution of these matrices into the Hamiltonian results 
in the following: 

dA 
- -  + A t M - I A  + K =  0 
dt  

dB 
- -  + A ' M - I B  = 0 
dt 

The principal function S is now posed as 

S=½q 'Aq  + B ' q +  C (46) 

d___C_ 
+ ½BtM-IB = 0. (52) 

dt  

where A is a square symmetric matrix, the kernel function ma- 
trix, B is the primary system function (vector) and C, the sec- ' 
ondary system function is scalar; these functions can be time 
dependent. 

The Hamilton-Jacobi equation is i 

OS 
- -  + H(VqSq, t) = 0 (47) 
Ot 

and substituting the above principal function and comparing 
coefficients of the multiplied combinations of qi leads to the 
following: 

t ....... t:t T t ...... 212 

Fig, 1 Two-degree-of-freedom system 

,, ,\ 
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Since the system is scleronomic the kernel function can be 
written as 

A t M - ~ A  + K =  0 

or A = j~'#q~q/Mb (53) 

where qSis the modal matrix for the mass matrix, q, is the modal 
matrix for K, and # and ~ are diagonal matrices derived from 
the eigenvalues of M and K as detailed in the following: 

M = c~tM~ 

and K = ~'M0. (54) 

The masses and stiffness in the following will be assumed 
equal (m, = m2 = m, and kl = k2 = k3 = k) to simplify 
the arithmetic; in this case the modal and diagonal eigenvalue 
matrices are 

and 

1[1 l] 
O : ~  1 - 1  

I; 0] A =  3k " 

The # and X matrices are thus 

k =  0 

# =  0 ~ 

so that the kernel matrix A is 

(57) 

= 2 - ~ / 3  1 + ' f 3  ' (58) 

The primary system vector B can be determined by solving 
the second equation 

+ A ' M - ' B  = 0 (59) 
dt 

and since this is integrable, 

B = e ~t~7~'' f~ 'P'X~'dtce 

= ~p'vqJa, (60) 

where the matrix v is again a diagonal matrix developed from 
the eigenvalues, and for scleronomic systems is as follows: Ee?, 

v = e_j3k~mt . (61) 

e JYlt - e JT2t~ 

e -jT,t q- e Jr2'J B°"  
(62) 

Finally B becomes 

_ l i e -S t ' , '+  e-S~J 

B = 2Le_J~,, _ e_i~ J 

where 

y l = and ")/2 = • (63) 

The constant vector B0, arising as a constant of the motion 
is rewritten in terms of the constant vector a ,  resulting in B as 
follows: 

[e -JV , '  e JeJ ] 

B = Le_J~,, _e__j~2,_a.j (64) 

The secondary system function C results from the solution 
of 

yielding 

dC 1 
- -  + - B ' M - ~ B  = 0 ( 6 5 )  
dt 2 

+ 2,,,) C 
2jm \ 311 T2 

(66) 

Finally the constants of motion/3~ and f12 are determined by 

3~ ~ OBj OC = ~ q j + ~ , ;  i =  1,2.  (67) 
j =  I 

Thus 

fll = e Jr"(q l  + q2) + 

f12 = e-J~2'(ql - q2) + 

Oll e 2 jYl t  

j m %  

a2 e_2i~2, (68) 
jmy2  

o r  

ql + q2 = fir eject + j a l  e_J~,t 
m~q 

ql - q2 = 132e j~2' + ja~  e ;~2'. (69) 
roT2 

These are the equations for the normal modes, the two fre- 
quencies ( k / m )  L/2 and ( 3 k / m )  1/2 being the oscillation of the 
decoupled modes, first when the masses move together and the 
connecting spring (k2) is unstretched and second the asymmetric 
mode when the two masses move in opposite directions. 

C o n c l u s i o n s  

The theory of the Hamilton-Jacobi equation is briefly re- 
viewed and a form of solution is proposed. This form, which 
does not require separability is first illustrated by considering 
a single-degree-of-freedom system; its application to the analy- 
sis of multidegree-of-freedom systems is then demonstrated by 
considering the motion of a two-degree-of-freedom system. 
This approach opens the way for other forms of nonseparable 
solutions, that is sequence functions other than polynomial; it 
also offers other solutions to the inverse problem where the 
Hamilton-Jacobi equation is developed from the equations of 
motion. 
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Nonlinear System Response for 
Impulsive Parametric Input 
Inn engineering applications when the intensity of  external forces depends on the 
response o f  the system, the input is called parametric. In this paper dynamical systems 
subjected to a parametric deterministic impulse are dealt with. Particular attention 
has been devoted to the evaluation of the discontinuity of  the response when the 
parametric impulse occurs. The usual forward difference and trapezoidal integration 
schemes have been shown to provide only approximated solutions of  the jump of  the 
response; hence, the exact solution has been pursued and presented under the form 
of  a numerical series. The impulse is represented throughout the paper by means of  
a classical Dirac's delta function; however, a new model of  Dirac's delta is presented 
and adopted in order to validate the results provided by the numerical series. 

1 Introduction 
In many cases of engineering interest, such as the case of 

follower-type forces, the equations of motion are such that the 
intensity of the forcing function depends on the state variable 
itself. These systems are usually referred to as parametric ex- 
cited ones. An example is wind-exposed suspended bridges (Lin 
and Li, 1993). In view of the random nature of the loads, 
such systems have been considered within the framework of 
the stochastic analysis and studied by means of the stochastic 
differential calculus. However, this paper is essentially devoted 
to deterministic analysis of nonlinear systems excited by a para- 
metric deterministic impulse; in fact, in the authors' opinion, 
the tools of the stochastic analysis are strongly based on the 
deterministic analysis. 

As far as the stochastic analysis is concerned, many books 
(Arnold, 1973; Soong and Grigoriu, 1993; Jazwinski, 1973; 
Gardiner, 1990; Ibrahim, 1985) have been devoted to the subject 
of nonlinear systems under parametric white noise stochastic 
input, increasing the interest of scientists and engineers in this 
area. The white noise can be thought of as a particular case of 
delta-correlated process, which is in general composed of a 
sequence of impulses uncorrelated to each other; when the im- 
pulse occun'ences tend to infinity and, at the same time, the 
mean square of such impulses remains constant, then we obtain 
a white noise. In view of the irregularity of such a stochastic 
process, the Riemann integrals of the differential equations does 
not converge to a unique value; this is due to the fact that the 
Wiener process, whose derivative is the white noise, exhibits 
unbounded variations in infinitesimal intervals. In order to inte- 
grate differential equations involving so irregular kind of input, 
the stochastic differential calculus has to be adopted. Two main 
integrals can be used for the integration of such differential 
equations: the It6 stochastic integral (It6, 1951 ) and the Strato- 
novich stochastic integral (Stratonovich, 1966). These two inte- 
grals are mainly related to the choice of the value of the response 
at each impulse occurrence. It6 selected the initial value, hence 
fully representing a forward difference integration scheme, 
while Stratonovich considered the average of the initial value 
and the final value corresponding to a trapezoidal integration 
scheme. 
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From the above discussion researchers not working in the 
random vibration area are disconcerted since so irregular input, 
showing "unbounded variations in infinitesimal intervals" is 
quite different from the usual kind of deterministic input. As a 
consequence, such a sophisticated calculus seems to be an ex- 
clusive background of scientists working on random vibration 
theory. However, a particular effort is devoted in this paper 
to provide an easy deterministic background to the stochastic 
differential calculus. More precisely, since a white noise can 
be thought of as a sequence of impulses, the case of a single 
parametric impulse (where no "unbounded variations" occur) 
is important and should be studied. 

Nonlinear systems excited by a parametric impulse are con- 
sidered in this paper, where the impulse is represented by means 
of a classical Dirac's delta function. In correspondence with the 
impulse occurrence, the response exhibits a discontinuity whose 
evaluation can be obtained by means of the classical forward 
difference or trapezoidal integration schemes. However, it will 
be shown how these integration rules provide only approximate 
solutions and represent the first few terms of the exact solution, 
which is here presented under the form of a numerical series. 

On this basis it can be recognized that a forward difference 
integration scheme is the deterministic counterpart of the It6 
integral, while a trapezoidal integration rule is the counterpart 
of the Stratonovich integral. 

For better understanding, a quasi-linear system is treated first, 
then more general nonlinear cases are treated. 

A further insight into the performance of the proposed numer- 
ical series is provided in this paper by introducing a new model 
of the Dirac's delta representing a physical deterministic im- 
pulse. 

2 Quasi-Linear Systems 
In this section a very simple case of parametric input will be 

dealt with in order to show the meaning of It6 and Stratonovich 
integrals in deterministic analysis. 

We will evaluate the response of a dynamical system whose 
equation is written in the form 

Z( t )  = b + y Z ( t ) 6 ( t  - to); Z(0) = Z0 (1) 

where b and 3, are constants, 5(" ) is the Dirac's delta. Since 
the impulsive external force y~(t  - to) multiplies the response 
Z, this kind of input is called "parametric" or "multiplica- 
tive," and the particular system under study in this section is 
called "quasi-linear" or "bilinear." The initial condition Zo 
is here assumed to be zero. 

Integration of Eq. ( 1 ) can be performed in the time interval 
[0, tff ], where tff is the instant immediately before the Dirac's 
delta occurrence, and in this interval we obtain 
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Z ( t )  = bt V O < t < to (2) 

and, immediately before the impulse, the response is Z(to) = 
bto. 

The impulse can be thought of having some finite duration 
A, and in the time interval [to, to + A] the intensity of the load 
is 1/A so that Eq. (1) writes 

2 ( t )  = b + A Z ( t )  V to -< t < to + A (3) 

and the response can be immediately found in the form 

( Z ( t )  = bto + exp ~ 3" 

Vto-< t < to + A (4) 

and, at the limit, as the duration A tends to zero and the intensity 
of the load tends to infinity, the correct response at the time 
instant immediately after the Dirac's delta occurrence, in the 
following denoted as t~-, simply writes 

Z ( t g )  = bto exp(y).  (5) 

So, as the response at tff was Z ( t f f )  = bto and at t~- is given 
by Eq. (5), the response Z exhibits a jump given as 

J = Z ( t ~ )  - Z ( t ~ )  = bto (exp(3") - 1). (6) 

From Eq. (6) we recognize that the jump depends on the value 
of the response immediately before the Dirac's delta occurrence 
and on the intensity of the impulse. At last, for t > to the second 
term in Eq. (1) vanishes and the response is 

Z ( t )  = bt + b toexp (3" )  V t >  to. (7) 

In order to achieve this result we have only used the rules of 
classical differential calculus. 

Now we will deal with the same problem but working in 
integral form; in order to do this we rewrite Eq. ( 1 ) in the form 

d Z  = bdt  + g ( Z ) d H ( t  - to); Z(0) = Z0 (8) 

where H ( t )  is the unit step function and 

g ( Z )  = 3" Z .  (9) 

By performing integration of both members of Eq. (8) we can 
write 

f0 Y0 Z ( t )  - Zo = bdt + y Z('r)dH(~- - to). (10) 

The first integral in Eq. (10) is a classical Riemann integral, 
while the last is not a Riemann-Stiljies integral. In fact, the 
Riemann-Stiljies integral over the time interval [to - e, to + 
e], with e arbitrary small, can be written by selecting any parti- 
tion tl, t2 . . . . .  tk, . ,  t,, of the time interval [to - e, to + ~], 
as follows: 

f t  to+e Z( to  + e) - Z ( to  - ~) = Y Z ( r ) d H ( ~ -  - to) 
o . - e  

n 

= 3' lira ~ Z ( Y k ) [ H ( t k -  t o ) -  H( tk  ~--  to)] (11) 
n~c~ k= I 

Atmax~0 

where Z(~) is the response at an intermediate point Y~ between 
[tk ~, t~] and At ..... is the maximum amplitude of the intervals 
[t~ j, tk] (k = 1, 2 . . . . .  n). Now Z ( t )  exhibits a jump in the 
interval [to e, to + e] and the summation appearing in Eq. 
( 11 ) depends on the choice of the intermediate point selected. 
It has to be noted that in Eq. (11 ), since the interval e is 
arbitrarily small, the first term appearing in Eq. (10) is infinites- 
imal and it has been neglected; then Eq. (11) gives the total 

jump due to the Dirac's delta. If we assume gk = t~-l, we obtain 
a " f o r w a r d  in t egra l "  that is the deterministic counterpart of 
the It6 integral (It6, 1951 ). In this case the jump is 

J( Id)  = ybto (12) 

where J ( l e )  stands for jump evaluated in It6 deterministic sense. 
By comparing Eqs. (6) and (12) we recognise that J(l , t )  is the 
approximation of the exact jump obtained by truncating the 
Taylor series of exp(3') to the second term, it follows that the 
lesser the intensity of the Dirac's delta the better the prediction 
of the jump in It6 sense. 

Now we perform the summation appearing in Eq. (11 ) by 
selecting Z(~) as the average of the initial value Z(t~_~) and 
the final value Z( tk )  at each interval [t~-l, tk] hence adopting a 
" trapezoidal  integration s c h e m e "  which represents the coun- 
terpart of the Stratonovich integral concept (Stratonovich, 
1951) in the deterministic case, hence we obtain 

ft 
t0 + e 

Z( to  + e) - Z ( to  - e) = y Z ( ' r ) d H ( ' r  - to) 
o - e  

it 

= 3, lira y .  Z ( t k )  + Z ( t k - i )  [H(tk  - to) 
2 

Atmax~0 

- H( t k - i  -- to)]. (13) 

The jump of the response evaluated according to Eq. (13) is 

Z ( t ~ )  + Z(t0-) 
Z ( t ~ )  - Z ( t o )  = 3, (14) 

2 

From Eq. (14) we obtain 

Y bto~-  ( y +  Y---2) bto, (15) J(Sd)  - 1 -- 3'/2 

where J(ga)  stands for jump evaluated in Stratonovich deter- 
ministic sense. That is the jump evaluated in this form corre- 
sponds to the approximation of the exact jump obtained by 
retaining the first three terms of the Taylor expansion of 
exp (y) .  The problem now is concerned with the possibility of 
capturing the effect of all terms of the Taylor expansion of 
exp(y) in order to have the exact jump. The problem is very 
important since, although we possess the exact solution for the 
jump of quasi-linear systems, at this stage no exact prediction 
for the jump of the response can be provided when nonlinear 
parametric systems (any non linear function g ( Z )  in Eq. (8)) 
are dealt with. 

3 Nonlinear Parametric Dirac's Delta Input 
This section will be devoted to the general case of nonlinear 

systems excited by parametric Dirac's delta occurrence and it 
will be shown how the exact response can be identified as the 
counterpart in the nonlinear case of the Taylor expansion of 
exp(3,). 

Let now the differential equation be written in more general 
form, 

2 = f ( Z ,  t) + g ( Z ,  t ) 6 ( t  - to); Z(0) : Zo, (16) 

where f and g are nonlinear functions of Z and t. In order to 
evaluate the exact expression of the jump we can use a different 
approach to this problem. In a book by Picone and Fichera 
(1975) we read that the more general expression for the Taylor 
expansion of an increment of a real-valued function ~b(Z, t), 
continuously differentiable on t, and infinite times differentiable 
on Z, is given in the form 
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1 
A4,(Z,  t) = d4,(Z, t) + -~. d24,(Z, t) 

1 d3ck(Z ' t) + (17) 
+3-~ . . . .  

Using the common rules of differentiation of composite [unc- 
tions we can write (with arguments omitted) 

04, 04, 64, = - ~  dt + ~ az 

o ~  o4, 
d24, = ~ ( d Z )  a + - -  d 2 Z  

OZ OZ 

0340 024, 04, 
d34, = ~ 7  (dZ)3  + 3 ~ 5  duZdZ + ~ d3Z" (18) 

Selecting &(Z, t) = Z we obtain, according to Eq. (17), for 
an increment of Z 

1 ~ dJZ 
A Z  = dZ + 2! d2Z + -~- d3Z + ' = (19) 

- -  3 !  " "  j = l  

now, before the impulse and after the impulse, we have that 
A Z  = dZ, since higher order differentials are infinitesimals of 
order greater than dt, while at t = to, as Z exhibits a jump, 
the higher order differentials appearing in Eq. (19) cannot be 
neglected. Writing Eq. (16) in the differential form 

dZ  = f ( Z ,  t)dt + g(Z, t ) d H ( t  - to); Z(0)  = Z0 (20) 

the jump AZ, by accounting for all terms of Eq. (19), proves 
to be 

A Z  : ~ g(J)(Z, t____~) ( d H ( t  -- to)) s (21) 
j = l  J! 

where 

Og°- l ) (Z ,  t) 
g(J)(Z, t) - g(1)(Z, t); 

OZ 

g(l)(Z, t) = g(Z,  t). (22) 

The coefficients g(J)(Z, t) given by Eq. (22) have to be evalu- 
ated at to. Remembering that dH is the increment of the unit 
step function, that is H(t~  - to) - H( t8  - to) = 1, the incre- 
ment of Z in COlTespondence of the impulse, that is the jump, 
is given in the form 

j = ~ g ° ) ( Z ( t o ) ,  to) (23) 

j=~ J! 

For the quasi-linear c a s e  g ( l ) ( Z )  = 'yZ, g(J)(Z) = 'yJZ and the 
jump of Z is hence given by 

J = Z ( tg )  = ( e x p ( y ) - l ) b t o .  (24) 

That is the Taylor expansion given by Eq. (19) allows to capture 
the whole effect of the parametric Dirac's delta. 

As an example we will deal with the nonlinear system given 
in the form 

2 = b + y Z 2 6 ( t -  to); Z(0)  = 0. (25) 

The solution of Eq. (25) at to is bto; in order to evaluate the 
jump we need the coefficients gU)(Z( to)) ,  they are given, in 
view of Eq. (22), by 

g ( J ) ( Z )  = j ! T J Z  j+l  . (26) 

By means of Eq. (23), we obtain the exact jump of the response 
Z, which is otherwise unknown, as 

J = ~ 7YZ(to) = ~ 7J(bt0) J+~. (27) 
j = l  j=l 

From this simple example one immediately realizes that, de- 
pending on the various parameters y, b, to, the jump could 
become a divergent quantity. People can be disconcerted for 
this result, since for a physical impulse the jump is obviously 
a finite quantity. But this simply means that, if the duration of 
a constant amplitude impulse decreases one has to expect a 
different quantity whatever the physical duration of the impulse; 
as a result, the system is very sensitive to the input. 

On behalf of the reader who possesses a deep knowledge of 
stochastic analysis in Appendix A, a discussion concerning the 
stochastic differential calculus is presented on the base of the 
study of the single deterministic impulse. 

Furthermore, the study of n-degree-of-freedom nonlinear sys- 
tems excited by a parametric impulsive input is reported in 
Appendix B. 

4 A Dirac's  Delta Model  
A further insight into the performance of It6 and Stratonovich 

integrals, in order to evaluate the jump of the response of non- 
linear systems, can be provided by means of a suitable local 
interpretation of the impulsive input (represented by the Dirac's 
delta). To this purpose in this section a new model of Dirac's 
delta is presented. 

The Dirac's delta occuring at time t0~ represented in Fig. 
1 (a ) ,  is commonly defined as a discontinuous function attaining 
an infinite value at to and zero otherwise, and whose integral is 
one. The Dirac's delta is usually adopted to represent an impulse 
of unit intensity delivering its power in an infinitesimal time 
interval dt = tJ - to. We state that, if we shape the Dirac's 
delta in some way within the infinitesimal time interval dt = 
t~ - to but leaving unchanged the total area, the total jump of 
the response is always that provided by the numerical series 
(Eq. (23)) for both quasi-linear and nonlinear parametric im- 
pulses, how it will be shown in the following. 

Keeping this in mind, the Dirac's delta occurring at time to 
can be thought of as an arbitrary noise composed of individual 
spikes whose sum is deterministically one. A sample of such 
a model of Dirac's delta is provided in Fig. l (b) where the 
infinitesimal time interval d t =  t~ - t~ has been fictitiously 
stretched. In this way the numerical integration of Eq. (16) can 
be performed over the pseudo-time interval dt = t~- - t~ without 
taking into account of the te rmf(Z,  t), hence simply evaluating 
the jump of the response due to each single spike composing 
the Dirac's delta and neglecting the evolution of the response 
between two subsequent spikes. The jump due to each spike is 
evaluated by means of Eq. (23). The smaller the intensity of 
each spike, the lesser the number of terms to be included in the 
summation appearing in Eq. (23). 

As an example let us consider in the pseudo-time interval dt 
= t~ - t~ a sequence of n spikes of identical intensity. Since 
the summation of the intensities of these spikes is one, the 
intensity of each single spike is A,. = 1/n. In this way the 
number of terms in the summation appearing in Eq. (23) can 
be reduced since it depends on the intensity of the spikes. The 
jump of a quasi-linear system given by Eq. (24) can now be 
written as 

, ,  

s = E - 5 ~ . '  J z ( t ~ . , . )  
r = l  

= Z z(to,,.) 
r = l  

(28) 

where Z(t~.r) is the value of Z( to )  before the rth spike within 
the pseudo-time interval d t =  tg - to. The inner summation 

644 / Vol. 64, SEPTEMBER 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6( t - to )  

l/dt 

0 . 0 0  
0 . 0 0  

0.010 

0.009 - 

0.008 - 

0 .007 - 

0 .000 - 

oO 

t 

A = 1  

m 

t; t: 
I 

d t  ----~-o 

Fig. 1 (a} 

•l Ar =1 

t i m e  

AT 

0 . 0 0 5  - 

0 . 0 0 4  - 

0.003 - I I , 0 . 0 0 2  - 

0.001 

0 . 0 0 0  -', 

t; 
I 

, .,,,I .,., i,,J , I,f,. 
p s e u d o - t i m e  to + 

dt 

Fig. 1 (b) 

Fig. 1 Dirac's delta occurrence at real time to (a), and a Dirac's delta 
sample inside the pseudo-time interval dt = [t~, t~] (b) 
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Fig. 2 Evolution of the response Z(to) of a quasi-linear system inside 
the pseudo-time interval dt = [t~, t~] for samples of Dirac's delta com- 
posed of n = 3 spikes (a), and n = 7 spikes (b) 

appearing in Eq. (28) has been evaluated up to p terms but it 
can be further reduced by increasing the number n of spikes 
considered for modelling the Dirac's delta. 

At the limit, as n diverges, one can retain only the first term 
of the inner summation which corresponds to evaluating the 
jump due to a single spike in the It6 sense. As a consequence, 
as n diverges, repeated evaluations of the It6 approximated jump 
due to a single spike, as well as Stratonovich approximated 
jump, converge to the exact total jump caused by the parametric 
Dirac's delta provided by Eq. (23).  

Moreover, it will be shown in the following section that 
whatever casual sequence of n spikes of intensity Ar ( r  = 1, 2, 
. . . .  n) ,  occurring within the Dirac's delta, is adopted under 

the constraint that E A, = 1, the jump of the response attains 
r = l  

always the same value provided by the numerical series reported 
in Eq. (23).  

5 Numerical Aspects 

5.1 Quasi-Linear System. The quasi-linear system repre- 
sented by Eq. ( 1 ) has been considered first. The aim is evaluat- 

Journal of  A p p l i e d  M e c h a n i c s  

ing the jump of th e system at time to where the Dirac's delta 
O c c u r s .  

Let us perform hence the integration of Eq. ( 1 ) at time to by 
assuming 3' = 1 and Z( t f f )  = bto = 1. According to Eq. (6) 
the exact jump is given by J = Z(t~-) - Z ( t f f )  = exp(1) - 1 
= 1.718, hence Z ( t ~ )  = 2.718. 

On the other hand, evaluation of J in the It6 sense (Eq. (12))  
and Stratonovich sense (Eq. (15))  leads to approximate values 
of the jump J given by J(Id) = 1 and J(Sd) = 2, respectively. 

As previously stated, integration of Eq. (1) at time to can 
also be performed by modeling the Dirac's delta as a sequence 
of n spikes occurring inside the pseudo-time interval dt = t~- 
- tff. In Fig. 2 ( a )  the evolution of the exact It6 and Stratono- 
vich response Z(to)  of the quasi-linear system between to and 
t~- is represented, where the Dirac's delta has been considered 
as composed of n = 3 spikes of random intensity A, > 0 (s.t. 

5", A,. = 1). In Fig. 2 (b )  the path followed by the response is 
r = l  

then plotted for the case n = 7 spikes. 
Analysis of Figs. 2 (a ,  b) confirms that, as the number n of 

spikes increases the exact response Z ( t J )  does not change, 
while the It6 response and the Stratonovich response tend to 
the exact one. 
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5.2 Nonlinear System. A system excited by a parametric s.ao - 
Dirac's delta of the form given by Eq. (25) has been considered. Z(to ) 

The exact jump due to a single spike Dirac's delta occurring 
at time to has been evaluated by means of Eq. (27) ,  where it 3.0o. 
has been assumed 3' = 0.5 and Z(tg)  = 1, by truncating the 
summation at the 10th term: It takes the value J = 1. Approxi- 
mated values of J have been evaluated in the It6 and Stratono- 2.5o. 
vich sense as follows: J(Lt) = 0.5 and J(Sd) = 2, respectively, 
and the response Z(to), so evaluated, at time to is plotted in 
Fig. 3(a).  z.oo 

When the Dirac's delta is modeled by means of an increasing 
number n of spikes, as previously mentioned, it is possible to 
retain a decreasing number of terms in the summation appearing 1.ao 
in Eq. (27). 

Figures 3 (b, c) show the path followed by the exact It6 and 
Stratonovich response between tg and t~- if the Dirac's delta is 1.0~ 
composed of n = 3 and n = 7 spikes, respectively. The exact t~ 
response has been evaluated by retaining eight terms and five 
terms in the summation of Eq. (27) for the case n = 3 and n 
= 7, respectively. 

In Figs. 3(b, c) the path followed by the exact response, if 
the number of spikes tends to infinity and their intensity is z.so 
uniformly distributed, is also plotted. Z(to ) 

Analysis of Figs. 3(a,  b, c) proves that, as n increases, the 
It6 and Stratonovich jumps tend to the exact one and the path 2.oo 
followed by the response inside the pseudo-time interval tends 
to follow the exact one. 

The evolution of the exact response inside the pseudo-time t.5o 
interval has been also evaluated for linear distributions of 
the intensity of the spikes composing the Dirac's delta. In 
particular, both linearly increasing and decreasing distribu- t.00 1-" 
tions of intensities of a number n ~ ~ of spikes have been 
considered. The results are plotted in Fig. 4 together with A~ 
that of uniformly distributed intensities of spikes. Since the o.50 
same response Z(t~)  at time t~ is reached anyway, whatever 
the path followed by the exact response inside the pseudo- 
time interval, it can be stated that the governing differential 0.oo 
equation is not sensitive to the sample chosen to represent t~ 
the Dirac's delta. I 

6 Closure 2 . 5 o  

An initial effort conducted by several scientists in the past Z(to ) 
aimed at integrating differential equations subjected to paramet- 
ric normal white noise giving rise to a branch of stochastic e.oo 
analysis called "stochastic differential calculus." Further stud- 
ies extended the stochastic differential calculus to the case of 
non-normal delta correlated processes, t.so 

The strong feeling of the authors that the stochastic differen- 
tial calculus relies on a deterministic base has been the source 
of this paper, t.oo l~- 

Particular attention has been devoted, in fact, to the case of 
parametric impulsive input without any stochastic characteristic, Ar 
hence usually called deterministic. It has been proposed the o.5o 
correct numerical series that provides the exact response other- 
wise unknown (except in very simple cases). The concepts 

0.00 
introduced by It6 and Stratonovich for stochastic integrals have 
been adopted in the paper for deterministic integrals and they t2 
have been shown to rely on different integration rules, forward I 
difference and trapezoidal integration rules, respectively. Evalu- 
ations of the jump of the response by means of forward differ- 
ence or trapezoidal integration rule represent only approximate 
solutions. 

An interpretation of the Dirac's delta, as an arbitrary se- 
quence of spikes whose total intensity is one, has also been 
presented. On the base of this model of the Dirac's delta, 
it has been proved that a reiterated application of the It6 
or Stratonovich approximated response leads to the exact 
solution. 

- -  eXaCt 
. . . . . . .  Ito 
. . . .  S t r a ~ o ~ o v i c h  

i ...... ..... i ...... 
p s e u d o -  t i m e  to + 

dt 

Fig. 3(a) 

exact n = 3  
. . . . . . .  I to  
. . . .  S t r a t o n o v i c h  ~ 1  

0,47 

0 , 0 5  

I 
p s e u d o - t i m e  

0 ,48  

o 

I 
dt 

Fig, 3(b) 

elto.ct 

0 .13  0 ,15  0 . 2 3  0.11 0 .23  
0 .03  i0.12 

I I I , , 
pseudo- time t +o 

dt 

Fig. 3(c) 

Fig. 3 Evolution of the response Z ( t o )  of a nonlinear system inside the 
pseudo-time interval dt  = [to, t~] fo r  samples of Dirac's delta composed 
of n = 1 spike (a),  n = 3 spikes (b),  and n = 7 spikes (c) 

Finally it has been shown how this model of Dirac's delta 
provides the exact solution regardless of the distribution of the 
spike intensities composing the Dirac's delta itself, hence the 
validity of Eq. (23) is confirmed. 
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Fig. 4 Evolution of the exact response Z(to) of a nonlinear system inside the pseudo-time interval dt = [t~, t~] for three samples of Dirac's 
delta composed of n ~ cc spikes 
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A P P E N D I X  A 
Normal White Noise and Response 

In this Appendix a few remarks concerning the stochastic 
differential calculus are proposed and framed in the determinis- 
tic context outlined in the paper. 

The equation of motion of a system subjected to a stochastic 
input W ( t )  can be written as 

2 = f ( Z , t )  + g ( Z , t ) W ( t ) ;  Z ( O )  = Zo. ( A I )  

Let the time axis be subdivided into small intervals of length 
At: ,  and let to, t] . . . . .  t,, be the subdivision time instants. Let 
Yo, Y~ . . . . .  Y, be a realisation of a zero-mean normal random 
variable Y with unit variance. If we define at each time instant 
t: an impulse of amplitude ~ &VT~j, the stochastic process W( t )  
so constructed, appearing in Eq. (A1) ,  is a delta correlated 
process and at the limit, as At  .... = maxj(Atj)  ---, 0, the stochastic 
process tends to a normal white noise. As a consequence the 
cumulants Kr with r > 2 are of  order (Atmax) r:z hence are 
infinitesimals with respect to the second-order cumulant K2 
which is of order A t  . . . .  

For the integration of Eq. (A1) ,  it should be considered that 

the solution Z ( t j )  before the impulse occurrence ~ - ~ i  is 
known and the solution Z(t j+~) has to be evaluated. In order to 
do this the following two-step procedure can be adopted: 

V s 

Z ( t f )  = Z( tT)  + Y, ~ gC~)(Z(t~-), t : ) ) ( A t j )  '/2 (A2)  
s =  I 

Z ( t j + , )  = Z ( t S )  + f ( Z ( t / ) ,  t j )At : .  (A3)  

Equation (A2) ,  on the base of the jump evaluation provided 
by Eq. (23),  leads to the response at time t f  after the impulse 
occurrence; while Eq. (A3) ,  on the base of a forward difference 
integration scheme, provides the solution at time b+ ~ before the 
subsequent impulse occurrence. 
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Equation (A2), as Atm,x ~ 0, can be written as 

= y (1) Z( t f )  Z ( t f )  + - i t  (Z( t f ) ,  tj)(Atj) '/2 

+ Y__~ g(2)(Z(tf) ,  tj) Ati + ~ [O(At)~/2)]. (A4) 
2! ,=3 

The contributions included in the last summation appearing 
in Eq. (A4) can be neglected, hence Eqs. (A3) and (A4) repre- 
sent the integration scheme for the Monte-Carlo simulation of 
stochastic differential equations under parametric white noise 
processes. 

Equations (A3) and (A4) can now be written together in 
differential form, as Atm,~ ~ 0, as follows: 

dZ(t) = f (Z ( t ) ,  t) dt + g(1)(Z(t), t)) dB(t)  

1 g(Z) (Z(t), t)) (dB(t))  z (A5) 
+ 25 

where B(t)  is a Wiener process, hence Eq. (A5) represents an 
It6-type stochastic differential equation. The extra term 1/2! 
g(2)(Z(t), t)) (dB(t))  z, appearing inEq. (A5), is the so-called 
Wong-Zakai or Stratonovich correction term. 

A P P E N D I X  B 

Mult idimensional  Case 
In this Appendix the case of n-degree-of-freedom mechanical 

systems excited by a parametric impulsive input will be dealt 
with. 

The study of n-degree-of-freedom mechanical systems in- 
cluding the structural ones, can be reconduced to a set of first- 
order differential equations in the form 

Z = f ( Z , t )  + G ( Z , t ) F ( t ) ;  Z ( 0 ) =  Z0, (B1) 

where Z is the n-state-space variable vector, f (Z,  t) is the 
nonlinear n-vector function of Z and t, G ( Z ,  t) is a matrix of 
order n × m of functions of Z, and F(t)  is an m-vector of 
(known) forcing functions, Zo is the n-vector of initial condi- 
tions. Let F( t )  be a vector of Dirac's deltas occuring at time t 
= to, then one can write 

F( t )  = r6(t - to) (B2) 

where r is an n-vector whose components represent the intensity 
of the impulses. Then Eq. (B1) can be written in the form 

dZ = f ( Z , t )  dt + g ( Z , t ) d H ( t -  to); Z(0)  = Z0 (B3) 

where g(Z,  t) is the n-vector defined as 

g(Z, t) = G(Z, t)r. (B4) 

Let the solution vector at time tff, denoted as Z(tff), be 
known. In order to evaluate the jump vector we can apply the 
expansion given by Eq. (19) extended to the case of vector 
function Z in the form 

_ f i !  AZ = dZ + ] - d 2 Z  + 1 d3 Z + . . . .  dj Z (B5) 
2! 3! j=l J! 

where only at time to, at which the Dirac's delta occurs, we 
have accounted for the term g(Z,  t )dH(t  - to), then, keeping 
this in mind, the jump AZ in correspondence of the 5 occurrence 
writes 

AZ = ~ g(J)(Z(to), t) (B6) 
j=, J! 

where g(J)(Z, t) can be evaluated in the recurrence form 

g(J)(Z(t), t) = (Vzg(J-l)(Z(t), t ))g(I)(Z(t) ,  t) 

g(L)(Z(t), t) = g(Z( t ) ,  t) (B7) 

and Vzg(J-~)(Z(t), t) is the gradient operator of the vector 
g(J-~)(Z(t), t), that is 

V~g(J~(Z(t), t) = 

Og] j) Og] j) Og]J )- 
OZl OZz OZ,, 

Og~ j~ Og~ j~ Og~ j) 

OZ 1 OZ 2 OZ n 

Og~ j) Out~ ) Og~2 ~ 
OZ~ OZ2 OZ,, 

( B 8 )  

As an example, let the ec ,uation of motion of a single-degree- 
of-freedom system be given in the form 

2 +  2~wo2+ wax+ (px+ y 2 ) 6 ( t -  to) = 0 .  (B9) 

By means of the state variable approach we set Z~ = x, Z2 = 
2 and Eq. (B9) can be written in the standard form 

= DZ + g (Z)6( t  - to) (B10) 

where Z r = [Zi, Zz] and 

[0 1] [ 0 
D = -w~ -2tWo g ( Z )  = - p Z l -  yZ2 

by evaluating g(J)(Z ) we can write 

g(J)(Z) = ( - y ) J - l g ( Z )  (B12) 

and the jump, evaluated by means of Eq. (B6) is simply written 
a s  

AZ = Z ( t f f )  - Z(tff) 

= e x p ( - y ) [ - p Z , ( t o )  - yZ2( to)][~]  (BI3) 

that is, how we expected, for a single oscillator no jump is 
present for the displacement x, while the velocity exhibits a 
jump depending on the values of displacement and velocity 
evaluated at time to and on the coefficients 3' and p. 
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Response and Stability of 
Square Tubes Under Bending 
This paper addresses the response and stability of  elastic-plastic steel tubes with 
square cross section under pure bending. An analytical model with sufficiently nonlin- 
ear kinematics to capture the development of  ripples in the compression flange was 
developed. The results indicate that collapse of  such tubes is imperfection sensitive 
for tubes with "high" height-to-thickness ratio (h/ t ) ,  but the sensitivity decreases 
as h/ t  decreases. Experimentally, the tubes collapse due to a limit moment instability 
which is followed by the formation of  a kink on the compression flange of the tubes. 
The limit moment and the development of  the kink are captured well by the analytical 
model. 

Introduction 
Thin-walled tubes are commonly used as structural members 

in many engineering applications to resist axial and bending 
loads. It was realized by researchers in the 1920s that the defor- 
mation of the cross section which accompanies bending could 
influence the response, strength, and stability of such tubes. 
See, for example, the work of Timoshenko (1923) and Brazier 
(1927). The work of Brazier, in particular, demonstrated that 
bending-induced ovalization of tubes of circular cross section 
leads to a limit moment instability. It is also well known that 
shell-type instabilities can precede the limit moment and induce 
collapse of the tubes at lower curvatures. Kyriakides and Ju 
(1992) discuss the various instabilities which can occur in tubes 
of circular cross section under bending with emphasis on the 
elastic-plastic case. Tubes of rectangular and square cross sec- 
tion exhibit some instabilities similar to those identified in circu- 
lar tubes, although some clear differences are also apparent. 

Studies of the bending response of tubes with rectangular 
cross section have been conducted by Hasan and Hancock 
(1989). They found that, as bending proceeded, the bending 
moment of the tubes suddenly dropped when a kink formed in 
the compression flange. Corona and Vaze (1996) presented 
an experimental investigation of the pure bending response of 
elastic-plastic tubes of square cross section. This paper identi- 
fied that the response and collapse of tubes with height-to- 
thickness ratios (h/ t )  in the range 15.4 -< h/t  <- 28.6 are influ- 
enced by the development of axial ripples in the compression 
flange. These ripples arise from a shell-type bifurcation at a 
critical value of curvature. This study also considered the nu- 
merical modeling of the pre-bifurcation response of the tubes 
and developed a bifurcation test to determine the critical curva- 
ture at which these ripples appear. The limitations of the kine- 
matics used, however, precluded numerical studies of the col- 
lapse of the tubes. 

The present paper removes the limitations in the pre-bifurca- 
tion analysis and concentrates on the numerical prediction of 
the response and collapse of tubes of square cross section. The 
effects of initial imperfections are reviewed in detail for the h~ 
t range mentioned above. The salient aspects of the problem, 
which need to be modeled, can be identified by a careful look 
at one set of experimental results. 
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Review of Experimental Results 

Figure i shows a set of experimental results for curvature 
controlled pure bending of a steel 4130 seamless square tube 
with h/t  = 20.4. The nominal height of the cross section was 
h = 25.4 mm ( 1 in.) and the length of the specimen was 0.76 
m (30 in.). The experimental set-up and procedure are described 
in detail in Corona and Vaze (1996). Figure l ( a )  shows the 
moment-curvature response (M-K) of the specimen. The mo- 
ment and the curvature have been nondimensionalized by M,, 
= ~aoth 2 and •1 = 3(Tr2t2](h3(1 - /)z))) respectively, where 
cro is the 0.2 percent offset yield stress and u is the Poisson 
ratio. The response was initially linear but became nonlinear 
as the material yielded. The bending process was stopped at 
predetermined values of curvature to make the measurements 
presented in Fig. l (b ) .  The dips in moment were caused by 
material relaxation while the curvature was held at a constant 
value. Upon continued bending, the M-K response achieved a 
limit moment at ~/K~ = 2.52 after which a kink similar to the 
one shown in Fig. 2 developed in the compression flange caus- 
ing the moment to drop suddenly and the specimen to collapse. 

Figure 1 (b) shows measurements of the decrease in height 
of the cross section in the plane of bending (denoted by A in 
the insert) as a function of axial position s for several values 
of curvature. Both A and s have been normalized by h. The 
circled numbers in Fig. 1 (a) correspond to those in Fig. 1 (b). 
Measurement @ was taken prior to the beginning of the bending 
process, when the specimen was still unloaded. It revealed a 
periodic variation of A / h  with wavelength of approximately 
8.2 and an amplitude of 0.002. This is an initial geometric 
imperfection introduced during manufacturing of the tube. As 
the curvature was increased to point @, A increased in a fairly 
uniform manner along the specimen. Measurement @ revealed 
the beginnings of short wavelength ripples of normalized wave- 
length 1.1. These ripples became clearly defined by measure- 
ment @. From this point onwards, the growth of A had two 
components, one was uniform along the specimen and the other 
was periodic with wavelength k/h  = 1.1. Both components 
grew reasonably uniformly along the specimen up to point @. 
Note that the M-K response has a positive slope up until the 
vicinity of point @. Measurement @, taken just before collapse, 
indicates that the amplitude of One ripple had increased signifi- 
cantly in comparison with the others. This ripple gave rise to 
the kink which appeared on the compression flange of the tube 
at collapse. It is obvious that in this case the localization process, 
which led to the formation of the kink, was highly unstable. 

Clearly, the growth and localization of the ripples play an 
important role in the collapse of the tubes. The prediction of 
these events requires an analytical formulation that can capture 
axial variations in the deflections of the flanges and webs of 
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Fig. 1 Response of a square tube with h/ t  = 20.4 under pure bending; 
(a) moment-curvature, (b) A as function of axial location and curvature 

the tube. The objective of the present paper is to develop such 
formulation and use it to study the phenomena observed experi- 
mentally. 

F o r m u l a t i o n  
The formulation considers a tube with rectangular cross sec- 

tion of length 2L. The tube develops a bending moment M 
upon being bent to a curvature K as shown in Fig. 3 (a ) .  The 
cross section has wall thickness t, flange width b and web height 
h as shown in Fig. 3(b)  to accommodate for slight variations 
from the nominally square cross section of the tubes as observed 
in the experiments. The curvature is assumed to remain constant 
along the tube. Furthermore, deformations are assumed to b e  
symmetric about plane A-A in Fig. 3 (a)  and the plane of bend- 
ing in Fig. 3(b) .  The domain consists of the three regions 
shown in Fig. 3(b) :  half of the upper flange, one web, and 
half of the lower flange, which are denoted by @, @, and @ 
respectively. 

The coordinates used are also shown in Fig. 3 (b).  The coor- 
dinate along the tube axis is denoted by s. The y~ coordinates ~ 

l i denotes the region under consideration and will appear as a subscript of  
coordinates and displacements but as a superscript of  all other quantities. 

Fig. 2 Tube with nominal b/ t  = 20,4 after collapse 
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Fig. 3 Problem geometry 

run along the midsurface of each region and the zi coordinates 
point in the respective through-thickness directions. The com- 
mon assumption that plane sections originally perpendicular to 
the s and y~-axes remain plane during loading is adopted for all 
three regions. 

Kinematics. The kinematics employed are based on thin 
shell theory. In order to derive the strain-displacement relation- 
ships, we employ the deformation composition scheme shown 
schematically in Fig. 4, which is based on the work of Fabian 
(1981) and Ju and Kyriakides (1992) for circular tubes under 
bending. The objective of the scheme is to derive the expres- 
sions for the strain in a deformed tube shown schematically 
in Fig. 4(d)  referred to the imperfect straight configuration of 
Fig. 4(b) .  The displacement components in each region are 
shown in the insert @ in Fig. 4. 

The first and second fundamental forms for the imperfect 
straight tube, a °"~ and b °~'~, can be found from the respective 
forms of a perfect straight tube (Fig. 4 ( a ) )  which are given by 

0 ~1 (1) ape'S= [ ~ ~1 bP"~= [ 0 ' 

As an example, a geometric imperfection with displacement 
fields Ul ° = 0, v~ = 0 and w~ = wl°(s, Yl) has been shown in 
Fig. 4(b)  in region @. Similar imperfections can be prescribed 
• , 0 ( i )  0 ( i )  . . m the other regions. Both a and b can be obtained using 
the relationships 

o(~ p(e~ ovou) o(,) (~) go(1) (2) a.n = a.~ + ~ - n  b.~ = b~n + .~ .~  

where a and/3 can be s or yl. The quantities ,_~°(i)an and ,~z°(i)an 
are the membrane and bending strains in the imperfect, straight 
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Fig. 4 Deformation composition scheme 

tube with respect to the perfect configuration. For any region 
on the tube cross section, we can write 

+ w,O: w,Ow,O 1 
w° w ° 1 +w~,2yiJ k i,yi i,s 

.o,,,= [_W 0w0 -w'°-lwo 
- -  i ,YiS - -  i Yi~'i J 

For algebraic convenience and ease of interpretation of results 
we refer the displacement components (u~, v~ and wi) of the 
deformed tube in Fig. 4(d)  to a perfect toroid of curvature x 
shown in Fig. 4(c) .  The toroid has the following fundamental 
forms: 

[ ] I (1 - hoK/2) 2 0 b / l ~ =  
atll~ = 0 1 0 0 

atC2~= [ ( 1  +Y2t¢)20011 btC~= [~  : ]  

atC3~ = [ (1 + h°x/2)20 0 11 

b ' ~ =  [ M ( 1  + 0].0 

The fundamental forms for the final deformed tube configu- 
ration in Fig. 4(d)  can be obtained using 

= aaB + ~e(i) ~ a n  bail = ban + e(i) , , .n  (5) 

where E~,~ and e(i) ,~ ~ are the small strain, moderate rotation San- 
ders' (1963) membrane, and bending strain components of the 
deformed configuration with respect to the perfect toroid. They 

are presented for convenience in the Appendix. The expressions 
for the total strain components in the final deformed configura- 
tion can be obtained as follows: 

E(i) I z f ( i )  0(i) g l ~ f ( i )  0(i) on = ~t. a,~o - aap ) z(i)  = • ~ an ~ u an - b ,n ). (6)  

For the range of curvature considered, the total strain at any 
(3) point in the shell can be expressed by 

( i)  ~.,(i) v ( i )  e ~n = ~ n  + zi ,- an. (7) 

In order to satisfy compatibility of displacements and rota- 
tions at the junctions of the three regions, we introduce eight 
constraint equations, four each at corners A and B in Fig. 3 (b).  

At the junction of regions @ and @ (y~ = be~2, Y2 = -he~ 
2, s), 

C l  = 1)2 ' ~  Wl  = O,  C 2 = w 2 - u I = O,  

C 3 = ¢h(2)  - i ' h ( l )  = 0 ,  C 4 -~ u 2 - u I = 0 ,  ( 8 )  "fly2 "f'yl 

At the junction of regions @ and @ (Y3 = -be~2,  Y2 = he~2, 
s), 

C 5 = 1) 2 - -  w 3 = 0 ,  C 6 = w 2 -~ 1J 3 = 0 ,  

C v = ¢h(2)  - ¢h(3)  = O ,  C 8 ~.~ u 3 - u 2 = O.  (9) Y2 ~ Y3 

Here, ~b~i ) is the rotation of the outward normal of region i about 
(4) the s-axis (see the Appendix). 

Const i tut ive  Mode l .  The geometric and material properties 
of the tubes considered were such that the material was in 
the elastic-plastic range during most of the loading process. 
Consequently, we adopt the J2 incremental theory of plasticity 
with isotropic hardening to model the material behavior. The 
through-thickness stress components are neglected as it is cus- 
tomary in thin shell theory. The total strain increment is assumed 
to be given by the sum of elastic and plastic components. The 
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elastic components { de{,,, de~e,y, dy,~ } are related to the stress 
increments { dote,,, &ryy, dr,~ } through 

d@y | = ~ - u  1 0 do'yy / (10) 
dT~y.J 0 0 2(1 + / ) )  dT,.y._[ 

where E is Young's  modulus and u is Poisson's ratio. The 
plastic strain components are given by 

d~;y = 4cr---~ E , -  
d'y,~ 5 

× . SyyS~ SyySyy 2SyySsy do'y r | (11) 
L 2&yS;.~ 2Ss, vSyy 4SsySsy dTsy ...1 

where &,, Syy, and &y are components of the deviatoric stress 
and cr~ is the equivalent stress, given by 

ss 2 + 3%~. (12) (9- e = ~(T 2 -- O'ss~yy + O'yy 

E, is the tangent modulus of the stress-strain curve. The uniaxial 
stress-strain curves of the materials were measured experimen- 
tally as described in Corona and Vaze (1996) and represented 
with the three-parameter Ramberg-Osgood fit 

e = K 1 + - -  . (13) 
E 7 \ c r y /  j 

The initial yield surface is given by 

cr~ - ~ro = 0 (14) 

where ao is the stress at the proportional limit of the uniaxial 
stress-strain curve. Subsequent yield surfaces are given by 

~r~ - ~r ..... = 0 (15) 

where ~r,°,,~ represents the largest equivalent stress achieved 
during the loading history. 

Pr inciple  of Vir tual  Work .  Equilibrium is satisfied by in- 
voking the principle of virtual work. For this problem it can be 
stated as follows: 

t a . . . . .  ~SS + O'yiYi~E YiYi ~- "7-syi~Tsy~]dA ds 
J - ~ J A L  i= l  (i) 

+ f L l i ~ l [ k j ~ C j + C j c ~ . j ] d s = O •  = (16) 

where dA (~) = dyi dzi and Xjs are Lagrange multiplier functions 2 
used to introduce the eight constraints Cj into the principle of 
virtual work. The right-hand side of the equation is zero since 
loading is accomplished by prescribing the axial curvature of 
the tube. 

Numerica l  Solution. The displacement components u~, re, 
and w~ are discretized using the trigonometric series shown 
below. 

ul = e~sS + ~ a~,,, + X alL, cos sin (mils), 
, ,7- ,=~ \ b o / /  

v~ = ~ a~o,,y~ + Y, ay,,, sin lTry~ cos (mils), 
,.=0 ~=, \ bo / /  

Since  Cjs are  func t ions  o f  the  axia l  coord ina te  s ,  the  c o r r e s p o n d i n g  his are  
func t ions  o f  s as wel l .  

w~ = ~ a;;.  + X al;, cos cos (m i l s ) ,  
'~7--0 I=1 \ b o /  

N N 

.... , ,=, \ ho / 

"" sin lrcy2 1 )  +el,,, ( - - £ 7 - , , ) s i n ( m i l s ) ,  

va = b~om + CornY2 + bYm COS 
.... o ,=~ \ ho / 

+ c ~,,, sin lrcy2 

N a 

W2 = Z 
m=O 

boW, + b~,;, cos 
/=1 

w cos (mils), 
\ h o l  

,( , 
u3 = e°~s + ,,~1 d{;,,, + t:l ~ dl',,, cos sin (mils), 

v3 = ~'. d~o,,,y3 + Y~ dYm sin 1Try3 cos (mils), 
7.=0 ~=, \ bo / 

w3 = ,,~0 doW,, + l=l y '  d},~, cos \bT-o ,/ cos (mils), (17) 

where il = 7r/L. The coefficient d~o is set to zero to suppress 
rigid-body motion. The Lagrange multiplier functions are also 
expressed as trigonometric series expansions of the form 

U 

~.j = ~ hi,, COS (mils) for j = 1-3,  5 -7 ,  
m 0 

U 

Xj = ~ kj,, sin (mils) for j = 4 or 8. (18) 
m 1 

Substituting Eqs. ( 17 ) and ( 18 ) into Eqs. (A 1 ) - (A2) ,  (5) - 
(9) and into (16) yields a system of (18N~ + 2 ( N / +  Nw)(2 
+ 3N~) + 13) nonlinear algebraic equations in terms of the 
coefficients of the series expansions of the displacements and 
the coefficients of the Lagrange multiplier series. The system 
of equations is solved using the Newton-Raphson method. The 
nonlinearity in the constitutive relations is handled using the 
same iterative method. The integrations in (16) are carried out 
using Gaussian quadrature. In view of the size of the problem, 
it was important to limit the number of unknown coefficients 
and integration points. Accurate solutions were obtained with 
Nf = Nw = 4, five integration points along y~ and Y3, 12 points 
a long Y2 and three points through the thickness. The value of 
N, as well as the number of integration points in the axial 
direction depend on the nature of the case considered and will 
be indicated for each case in the Results section. 

Loading of the structure is achieved by prescribing the curva- 
ture K incrementally. Following convergence of the iterative 
scheme, the strains and stresses are updated and the resulting 
bending moment evaluated from 

M = 2  i f A , , ,  cr~)~(1)dA(~) (19) 
i=1 

at any value of s, where ~0) is the correct distance from any 
point in region i to the line Y2 = 0. 
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Table 1 Geometric and material parameters used in the calculations. (v = 0.3) 

b, mm h, mm t, mm E, GPa cry, MPa c~/,, MPa oo, MPa 
h/t (in) (in) (in) (Msi) n (ksi) (ksi) (ksi) 

28.6 25.25 25.49 0.886 208 13.4 534 296 564 
(0.9942) (1.0035) (0.0349) (30.1) (77.5) (43.0) (81.8) 

20.4 25.23 25.52 1.21 210 15.2 610 402 642 
(0.9932) (1.0047) (0.0476) (30.5) (88.5) (58.3) (93.1) 

15.4 25.15 25.29 1.6 [ 206 15.5 642 475 659 
(0.9901) (0.9956) (0.0633) (29.9) (93.1) (68.9) (95.6) 

Resul t s  

The results presented in this paper were obtained by introduc- 
ing a geometric imperfection in the initial configuration of the 
tube. The bending process was then simulated until a limit 
moment curvature was exceeded. The general response and sta- 
bility characteristics of a given tube were deduced from the 
observed responses for various different types of initial imper- 
fection. 

In the case of pure bending of  tubes with circular cross sec- 
tion, Ju and Kyriakides (t  992) demonstrated that prediction of 
the curvature at which a limit moment instability occurs requires 
a formulation which includes axial variations in the displace- 
ment of the shell if  it has sufficiently high diameter-to-thickness 
ratio. Corona and Vaze (1996) demonstrated that accurate pre- 
diction of the limit moment instabilities which lead to collapse 
in the case of square tubes with sufficiently high h/t also may 
require a model which can take the development and growth of 
ripples into account, similar to that presented by Ju and Kyria- 
kides (1992).  Predictions obtained by neglecting the develop- 
ment of ripples yielded limit moments which were entirely due 
to uniform deformation of the cross section along the specimen. 
The difference between experimentally measured and predicted 
limit moment curvatures ranged from 8.7 percent for tubes with 
h/t = 15.4 to 187 percent for tubes with h/t = 28.6. 

The first imperfection considered is harmonic in s with wave- 
length k and is given by 

w~U)-azx{1 +c°s (27ry'l}c°s ( -~ f )  2 \ bo / (20) 

This imperfection was introduced in the compression flange of 
the tube only. As it is customary in imperfection sensitivity 
studies, X was chosen to be kcr = 1.12h, which is the axial 
wavelength of  the bifurcation buckling mode calculated in Co- 
rona and Vaze (1996) for the tubes considered. This value also 
agrees with the experimental value given in the Introduction 
and is the same for all the h/t values considered. In view of the 
harmonic nature of this imperfection, the length of the domain L 
need only be kc/2.  A parametric study indicated that N, = 3 
and 16 Gauss integration points in the axial direction provided 
excellent accuracy. 

Measurements by Vaze (1996) indicated that the initial im- 
perfection of the tubes tested had short wavelength components 
with amplitudes a~ ~ 0.0002, so values of a6 in this vicinity 
will be considered. The geometric and material parameters used 
in all cases considered are shown in Table 1. Figure 5 (a)  shows 
the predicted M-~ response of a tube with h/t = 20.4 for various 
values of  az .  The case a~ = 0 was conducted with m = 0 in 
(17) and is presented for comparison. It is clear that the four 
M-K responses are virtually indistinguishable for K/K~ < 1.5 
but diverge from the perfect case as they approach their limit 
moment curvatures (teL, identified by t ). Notice that KL steadily 
decreases with increasing amplitude of the imperfection. 

Figure 5 (b) shows the predicted growth of A for the case 
az~ = -0 .0005 at regular increments in curvature 6K/K~ = 0.186. 
The initial imperfection has been shown in dashed line. As 
demonstrated experimentally, the growth of A with curvature 

has two components. A uniform axial component, which is 
dominant for lower values of curvature and a component which 
corresponds to an increase in the amplitude of the axial varia- 
tion. This component becomes more dominant as the curvature 
increases. The seventh line in Fig. 5 (b) nearly COlxesponds to 
the bifurcation curvature for this tube (K~,,/Ki = 1.24). Indeed, 
it is after this juncture that the second component seems to 
become more noticeable with A increasing faster at s = 0. The 
next to the highest trace nearly corresponds to the value of 
curvature at which the limit moment developed. 

Results similar to the ones in Fig. 5 are given in Figs. 6 and 
7 for cases with h/t = 28.6 and hit = 15.4, respectively. They 
qualitatively resemble the results in Fig. 5, but exhibit some 
important quantitative differences. Figure 6 (a )  shows that for 
a tube with hit = 28.6, the reduction in KL with increasing a~x 
is more drastic than that for hit = 20.4 (the limit moment 
curvature for the case a~ = 0, no t  shown in the figure, occurs 
at tc/K~ = 5.40). Also, Fig. 6 (b)  shows that the increase in 
the amplitude of the axial variation is even more pronounced, 
compared to the uniform component, than in the case with hit 
= 20.4. In fact, the growth of the cross-sectional parameter 
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Fig. 5 Response of a tube with h/ t  = 20.4; (a) sensitivity of the moment- 
curvature response to the severity of initial imperfection w~ °(n, (b) pre- 
dicted growth of A for a~ = -0,0005 
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Fig. 6 Response of a tube with h/ t  = 28.6; (a) sensitivity of the moment- 
curvature response to the severity of initial imperfection w~ °u), (b) pre- 
dicted growth of & for a~ = -0 .0005 

reverses at points close to s = Xo,/2 as ~ct, is approached. Predic- 
tions for curvatures higher than KL are not accurate since the 
use of the present imperfection cannot simulate the localization 
process which gives rise to the kink which appears at collapse. 

On the other hand, the reduction in KL for increasing values 
o faa  is mild for tubes with h/t  = 15.4 as shown in Fig. 7(a) .  
Notice that even the case a~x = 0 predicts a value of KL which 
falls in the vicinity of the imperfect cases considered. The rea- 
son for this is apparent in Fig. 7(b) where the uniform compo- 
nent of A is found to be dominant throughout the loading his- 
tory. 

Figure 8 compares predictions of the growth of A at s = 0 
and s = k~,/2 with experimental measurements. The measure- 
ments were conducted at the midspan of the specimens but the 
position of the measuring device with respect to the ripples is 
unknown, that is, it can not be correlated to a specific value of 
s. It can be expected, however, that the predicted responses will 
bound the experimental measurements. This is indeed the case 
in Figs. 8(a) and (b). The measured growth of A in Fig. 8(c) 
exceeds the predicted one beyond K/Kt = 1.0. This can be 
attributed to the fact that A was monitored in the region where 
localization occurred (see Fig. 9(b) in Corona and Vaze, 1996) 
and near the point where the kink developed. The agreement 
between experiment and analysis is very good in all cases. The 
somewhat abrupt changes in the curvature of the experimental 
curves in Figs. 8(a) (K/Ki = 0.8) and (b) (K/urn = 0.5) are 
due to the presence of residual stresses as discussed in Corona 
and Vaze (1996). This was not taken into account in the present 
analysis. 

The values of KL found in all cases discussed above have 
been tabulated in Table 2. The experimentally determined val- 
ues have also been given in the table. As observed previously, 

the values of KL for azx = 0 are consistently higher than the 
experimental ones. However, introducing the imperfection re- 
sults in a reduction in KL to the range observed in the experi- 
ments. The exception was the case with h/t  = 28.6 which has 
an experimentally determined value of •L which is lower than 
predicted. These tubes, however, exhibited significant residual 
stresses, which may be responsible for the disagreement. Notice 
that the higher the h/t  ratio, the more imperfection sensitive 
the structure. 

In order to verify the assumption that setting k = Xcr repre- 
sents the most critical imperfection, a study was conducted to 
quantify the influence of k on the response. This study was 
conducted by varying k/h between 0.8 and 1.3 with azx = 
-0.0005. The external work (W) required to bend a unit length 
of tube up to a curvature KL was then determined by integrating 
the moment-curvature response, 

W = f ~  Mdt¢. (21) 

The results are shown in Fig. 9 for tubes with h/t  = 20.4. 
The work done when k = her is denoted by Wet and is used to 
normalize W. The graph indicates that the least amount of work 
required to reach KL indeed occurs when k/h is in the vicinity 
of 1.12. 

The experimental results presented in the introduction show 
that the tubes tested had a "long" wavelength imperfection 
with significantly higher amplitude than imperfection features 
with shorter wavelengths. In order to investigate the effect of 
the long wavelength component of the imperfection, results 
were also generated using an imperfection which superimposes 
short and long wavelength features as follows: 
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Fig. 7 Response of a tube with h/ t  = 15.4; (a) sensitivity of the moment- 
curvature response to the severity of initial imperfection w~ (t), (b) pre- 
dicted growth of Zk for az~ = -0 .0005 
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~ - 1 + c o s  \ - b o - / J  

The domain of the region analyzed had a length of 7kcr/2, 
which nearly COlTesponds to one-half long wavelength in the 
initial imperfection shown in Fig. 1. Na = 14 and 56 axial Gauss 
integration points were used in this case. Results obtained for 
aa = -0.0001, ba = -0.001 (this value was chosen from actual 
measurement of the specimen), are shown in Fig. 10. Moment- 
curvature responses obtained with an initially perfect geometry 
and with aa = -0.0001, ba = 0 are also shown in Fig. 10 for 
comparison. The results indicate that the long wavelength fea- 
ture of the initial imperfection had a negligible effect on the 
predicted value of Kr. The evolution of A along the domain is 
shown in Fig. 10(b). The dashed line represents the initial 
imperfection. It is clear that both components of the imperfec- 

Table 2 Limit moment curvatures Kd~:l for imperfection 
W ~(/) 

Kt/KI 

aa h/t = 15.4 h/t = 20.4 h/t = 28.6 

0.0 2.76 3.59 5.40 
-0.0001 2.68 2.98 2.61 
-0.0005 2.53 2.40 2.12 
-0.0010 2.32 2.12 1.94 
Experiment 2.54 2.50 1.88 

W 1.10 
wet 
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Fig. 9 
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h / t  = 20.4 

~F-- ..... 0)5 1 . 6 o - - x ~ - ~  I.~o 
- - - - ~  ~ l h  

Effect of X on the work done (W) prior to the limit moment 

tion and the uniform component of A grow during bending, but 
the long wavelength component grows the slowest. The limit 
moment occurred at K/K~ = 2.99, between the last and next-to- 
the-last lines in Fig. 10(b). Also note that the short waves 
located in the crests of the long waves grow somewhat faster, 
especially near the limit moment. This trend is also clear in the 
experimental results presented in Fig. 1 (b). In fact, the kink 
which formed in the compression flange at collapse in the exper- 
iments occurred preferably at locations where the long wave- 
length imperfection produced a maximum in A. 

In order to simulate the localization process which leads to 
the formation of a kink in circular tubes with intermediate diam- 
eter-to-thickness ratios, Ju and Kyfiakides (1992) used an im- 
perfection with a domain spanning several short-wave tipples 
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Fig. 10 Response of a tube with h/ t  = 20.4 to an imperfection of the 
form w'~la); (a) moment-curvature, (b) predicted growth of A for aa = 
-0.0001, ba = 0.001 
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in which one of the ripples is "b iased,"  that is, it has larger 
amplitude than the rest. In the problem at hand, such an imper- 
fection can be expressed as 

{ (27ry1~ } w~ (m) aa l + cos 
h 2 \ b o /  

× l + ca cos \ 5 X / J  cos . (23) 

For negative values of aa and positive values of Ca, this imper- 
fection gives the ripple at s = 0 slightly higher amplitude than 
the others. The value of ca dictates the extent of  the bias. 
The length of the domain in this case is L = 2.5h. Again, 
the wavelength k is chosen to be k,:r. The axial direction was 
discretized by setting N, = 12 and using 56 Gauss integration 
points. 

Figure 11 shows a set of  results obtained for a tube with h/ 
t = 20.4. The moment-curvature response has been plotted in 
Fig. l l ( a )  for cases with a~ = -0 .0005 and three values of 
ca. Results from the perfect case are also shown for comparison. 
The data demonstrates that increasing the bias causes a reduc- 
tion in the limit moment curvature since the imperfection at s 
= 0 becomes more severe. Figure 11 (b) shows the growth of 
the parameter 2x along the tube at regular curvature increments 
6K/K~ = 0.186 for the case aa  = -0 .0005 with Ca = 0.1. Note 
that the effect of Ca is small and hardly noticeable in the initial 
imperfection shown by the dashed line. As the curvature in- 
creases, all ripples grow as expected but, as ~L is approached, 
the biased ripple grows faster. The limit moment occurs at K/ 
K~ = 2.38, just prior to the next to the last line in Fig. l l ( b ) .  

h 0"08 t 

0.081 

0.04 

0.02 

0.00 
0.0 

S-4130 
hit  = 20.4 
%lh = -0.0005 

ca= 0.1 @ 

S 

- -  , , , , 

1.0 2.0 a:o 
iD l(,,"E 1 

Fig. 12 Growth of ~ at six axial locations for h / t  = 20.4 with an initial 
imperfection of the form Wl °tin). Plot based on Fig. 11 (b) 

Once the Limit moment is exceeded, the ripple at s = 0 grows 
much more rapidly while ~ stops growing for s/h > 2. This 
behavior closely resembles the experimental observations. By 
comparing the M-K response in the cases with Ca = 0 and 0.1 
note that, although Ca = 0.1 produces a negligible change in 
KL, the post limit moment response displays a more precipitous 
drop in bending moment. Ju and Kyriakides pointed out that 
the post limit moment response is also highly dependent on the 
length of the tubes considered. 

Figure 12 illustrates the growth of ZX as function of curvature 
at the six points identified by the circled numbers in Fig. 11 (b) .  
It is clear that, at Low curvature, the traces of 2x at the three 
peaks and the three troughs are indistinguishable, but ~ grows 
somewhat faster at the peaks. For high curvature the traces 
spread and once the limit moment is reached, the trace at @ 
rises rapidly but those at @ and @ slow down considerably. 
Similarly, ~ at @ continues to rise but ~ at @ stops growing 
and 2x at @ reverses its growth as the moment drops. 

In order to compare experimental and analytical results, the 
case presented in Fig. 1 was simulated using an initial imperfec- 
tion of  the form w~ °urn with aa = -0 .0002 (as determined from 
measurements) and Ca = 0.1. Measurements of  ZX at the location 
of the ripple which eventually localized and formed a kink as 
function of curvature are shown by " e "  in Fig. 13. The scatter 
appears because the data were obtained from measurements 
taken with a moving instrument. Naturally, this instrument is 
less accurate than the stationary instruments used to measure 

in Fig. 8. The predicted growth of 2x at s = 0 is shown as 
a solid line. The agreement between experiment and analysis is 

A 
h 

T 
0.08  

0 .06  

0.04- 

0.02- 

0.00 
0.0 

S-4130 ° 
hit  = 20.4 

• Experiment 
- -  Analysis 

% = -0.0002 
cA= 0.1 • ° • • ,• 

1.0 210 3:0 
- ~ l q  

Fig. 13 Comparison of measured and predicted development of ~ at 
the fastest growing crest in Fig, 1 
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very good. The predicted value of KL was ten percent higher 
than the measured value. This difference is likely to be due to 
the inhomogeneity of the material properties and the presence 
of residual stresses in the actual specimens (see Corona and 
Vaze, 1996). 

Summary and Conclusions 
This paper addressed the response and stability of steel tubes 

of square cross section under pure bending. An analytical model 
with sufficiently nonlinear kinematics to accommodate axial 
variations of the deformation of the cross section was devel- 
oped. The material behavior was modeled using J2 incremental 
plasticity with isotropic hardening. The objective of the investi- 
gation was to enable accurate prediction of the limit moment 
instability which characterizes colhlpse of such tubes. 

The results obtained agree well 'with experimental data and 
suggest that collapse of the tubes is imperfection sensitive. The 
degree of imperfection sensitivity is particularly high for tubes 
in the high end of the range of h / t  Considered ( h / t  > 18, 
approximately, from observation of the experimental results), 
while collapse of tubes with low h / t  is relatively imperfection 
insensitive. In fact, in the case with h / t  = 15.4, the axial varia- 
tion in cross section deformation is not very significant in the 
determination of the limit moment curvature and can be ne- 
glected. 

The tubes used in the experiments had long wavelength im- 
perfection components of amplitude five times larger than that 
of components with wavelengths in the order of that of the 
buckling mode. The results obtained here, however, indicate 
that the effect of such long wavelength component in the imper- 
fection can be neglected in the calculation of the limit moment 
curvature. The phenomenon of ripple localization and formation 
of the kink which appears on the compression flange of the 
tubes upon collapse was successfully simulated by introducing 
an imperfection in which the amplitude of the ripples is biased, 
similar to the one used by Ju and Kyriakides (1992) for circular 
tubes. Again, comparison with experiment was very good. 
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(i) R(i)  
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l 
~) (i) = 2 [(O/(,i)Ui ) , s  - -  ( o ~ i ) u i ) , i l l  (A2) 

and, for a toroid of rectangular cross section, 

a~ I) = 1 - hoK/2 orS? = 1 1/R~ n = - 1 / ( I / K -  ho/2) 

a~ 2) = 1 + Ky2 aCy~ I = 1 I/R~ 2) = 0 

a~ 3>= 1 + ho•/2 a(y 3)= 1 1/R~ 3~= 1/(1/K + ho/2) 

I/R~,~ ) = 0 
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The Hamilton-Jacobi Equation 
Applied to Continuum 
The Hamilton-Jacobi partial differential equation is established for continuum sys- 
tems; to do this a new concept in material distributions is introduced. The Lagrangian 
and Hamiltonian are developed, so that the Hamilton-Jacobi equation can be formu- 
lated and the principal function defined. Finally the principal function is constructed 
for the dynamics of a one-dimensional linear elastic bar; the solution for its' vibra- 
tions is then established following the differentiation of the principal Junction. 

Introduction 
The Hamilton-Jacobi theory applied to discrete systems has 

been well established (Lanczos, 1966; Goldstein, 1980; Pars, 
1965; Landau and Lifshitz, 1969; Leech, 1965; Synge, 1960) 
and is indeed a major topic in classical mechanics. The principal 
function S is the dependent variable and the generalized coordi- 
nates are the independent variables; for discrete systems these 
are qi, i = 1 . . n for an n-degree-of-freedom system. The 
dynamics of the system is given by the gradient with respect 
to the constants of integration, of the principal function being 
constant, this consequent to the theory of ignorable coordinates. 

The exploitation of Hamilton-Jacobi theory for the solution 
of the dynamics of mechanical systems is the subject of some 
discussion; it may be that a unification of dynamics is possible 
and the theory will be commonplace in the way that Hamiltons 
principle and the Lagrange equations are common features of 
many dynamic problems. It is with this in mind that the follow- 
ing development is pursued. 

The principal function S has often been constructed as a 
summation of separable functions and this restricted form is 
useful for many classical systems. Leech and Tabarrok (1996) 
showed the existence of nonseparable forms for the principal 
function and the inclusion of these increase the number of 
known solutions to the Hamilton-Jacobi partial differential 
equation. These nonseparable functions are useful for rheo- 
nomic systems, but at this time they are restricted to quadratic 
and linear forms of the potential/strain energy of the system; 
the separable forms are useful for scleronomic systems and are 
not restricted to quadratic potential energy forms. 

The analysis of continuous systems by variational mechanics 
has been well considered; the establishment of the kinetic, po- 
tential, and strain energies is widely used to generate partial 
differential equations whose solutions model the behavior of 
the relevant system. The approaches of Konopinski (1969) and 
Saletan and Cromer (1971) are typical. However, it will be 
seen that the representations of the energies are not properly 
consistent with variational field mechanics, and have been use- 
ful solely because most fields are diagonal or the result of Local 
Action (Truesdell, 1965, 1977); this will be discussed later. In 
this paper the Lagrangian for a general continuum, albeit one- 
dimensional, will be posed and from this the generalized mo- 
mentum, the Hamiltonian, and finally the Hamilton-Jacobi par- 
tial differential equation. 
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Nonseparable solutions for the principal function are then 
suggested following the approach of Leech and Tabarrok 
(1996) and the whole is applied to a real problem, the axial 
vibrations of a shaft, the resulting solution being recognizable 
as a form of solution obtainable by classical methods. 

Hamilton-Jacobi for Continuous Systems 
Assume a one-dimension domain O-L, a coordinate ~ over 

that domain and a dependent variable w(~, t); then generally 
the Lagrangian can be written 

£ =  ~ M(~, ~) Ot Ot 

- K(~, ~)V~w(~, t)V~w(~, t)]d~d~ 
J 

where M((,  ~) is mass distribution and K(~, ~) is stiffness 
distribution over the domain O -< ~, ~ -< L; De and D; are 
differential operators. The M and K shown above are not usual 
and will be discussed later. 

The next step is to manipulate the integrand so that the differ- 
entials D~ and D; operate on the stiffness distribution and not 
on the dependent variable; this is done by integrating by parts 
and assuming that the edges of the domain are fixed, the follow- 
ing results: 

l f0. [ Ow(~,t) Ow(~,t) 
£ = ~ M(~, ~) Ot Ot 

- w(~, t) w(~, t)DeD¢K(~, ~)]d~d~. 
J 

The generalized momentum p(~, t) is given by 

p(L t) 0£ f j  Ow(~, t) d~ 
00w((, t) M(~, ~) 0---~ 

Ot 

and this can be inverted to give 

f2 Ow(~, t) M-I(~,  ~)p(~, t)d~ 
Ot 

where m -~ ( ( ~ )  is the inverse of M(~, ~) such that 

and where 6(~ - ~) is the Dirac delta function. 
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The Hamiltonian H is 

H = P(4, t) ~ d ~  - £ 
O t  

= - [M- ' ( 4 ,  ~)p(~, t) p(~,  t) 
2 

+ w(~, t) w(¢, t)D~DcK(4, ¢)]d~d¢. 

The Hamilton-Jacobi equation is 

_ ,,( ) OS + , w(~, t), t = 0 
Ot \Ow(~, t) 

where S is the Hamilton principal function, a function of the 
generalized coordinates w(~, t) and time t; this is a first-order 
partial differential equation in time and the generalized coordi- 
nate space w(4).  The generalized momenta p (~)  have been 
replaced by the gradient of the principal function S in the gener- 
alized coordinate space w ( ( ) ,  

OS 
- p ( ~ ,  t ) .  

Ow(~, t) 

Finally the constant equation of motion is obtained by differ- 
entiating with respect to the constants of integration 

l fo" fo-~ Oa(~, ~, t) Ot w(~, t) w(~, t)d~d~ 

fo " Ob(~, t) Oc(t) 
+ 0----5--w(6 t)d~ + O--7- 

+ 1 fL  f t ' M - ' ( 4 ,  ~ ) a(~ ,# , t )w(# , t )d#+b(4 ,  t ) 
~Joao 

× a(~, u, t) w(u, t)du + b(~, t) d~d~ 

+ ~ D~D~Kw(~, t) w(~, t)d~d~ = O. 

This can be rewritten as an integral, the integrand having 
terms that are multiplied by w(4, t) w(~, t), by w(~, t), and 
finally those that are independent of w(~, t).  The integrand is 
arranged in these groups and the coefficient multipliers are then 
put to zero and the following integro-differential equations re- 
sult: 

Oa(~, 4, t) + M '(#, u) a(#, 4, t) a(u, 4, t)dud# 
Ot 

and 
OS 

(b(~) - Ow(~, t=0) for all ~ in (0, L) Ob(~, t) 

Ot 
and the application of this equation gives the equation of motion 
of the system, and finally 

Nonseparable Solutions for the Principal Function S 

A nonseparable form for S is 

S = ~ a(~, 4, t) w(~, t) w(~, t)d4d~ 

+ b(~, t) w(~, t )d(  + c(t). 

An equivalent form for the principal function for discrete 
systems has been discussed by Leech and Tabarrok (1996); 
there the function a(t) has been designated the kernel function 
and is dependent only on the system configuration, b(t) and 
c(t) are called the primary and secondary system functions and 
these are dependent on the system initial conditions, that is the 
point in configuration space. Because of the quadratic form 
associated with a(~, 4, t), it is symmetric, that is a(~, 4, t) = 
a(~,  4, t); it then follows that 

and that 

OS - f o "  Ow((, t)  a (4 ,~ , t )  w(~, t )d~ + b(~,t)  

OS_ l f2  f ~ O a ( 4 , ~ , t )  Ot 2 Ot w(~, t) w(~, t)d{d~ 

f~  Ob(~, t) Oc(t) 
+ -- 0---[-- w (6  t)d~ +. Ot 

The next stage is to substitute for the above in the Hamilton- 
Jacobi equation; the result of these substitutions is a lengthy 
multiple integration equation as follows: 

+ D~D~K(~,~) = 0 

fL f0 L - -  + M-~(#, u) a(#, ~, t) b(u, t)d#du = 0 
) 

"~{Oc,t___~ + 1_ t']L t'[~'M ~(~, 4) b(~, t )b(~,  t)d(d~ = O. 
Ot 2 J~ Jc) 

These three integro-differential equations can be solved in 
the following way; the first is solved/'or a(~, 4, t) by integration 
in time given the initial condition, a(~, 4, O) = 0. The second 
is then solved for b(~, t),  again as integration in time; since 
this equation is linear, the solution is of the following form: 

b(~, t) = b0(~) ff'(~, t) 

where .T(~, 0) = 1. The final equation is solved for c(t), this 
being quadratic in b(~, t) and hence in the initial conditions 
b0(~); the initial condition for c(0)  is assumed arbitrarily zero 
as its value will not influence the solution. 

Finally the constant of motion is obtained by differentiating 
with respect to the constants of integration, 

OS 
• (~) - for all 4 in (0, L), 

Obo( ~ ) 

and the application of this equation gives the equation of motion 
of the system. 

The One-dimensional Axial Vibrations of an Elastic 
Rod 

To illustrate the previous theory and subsequent develop- 
ment, a typical elastic system is considered; this is a one-dimen- 
sional elastic rod that can vibrate along its length. The area 
distribution is assumed uniform; the ends of the rod are firmly 
fixed so that the displacement at these points is zero. The axial 
motion of any point in the rod is w(~, t), the density is p, the 
elastic modulus is E, the cross-section area is A, and the length 
of the rod is L. This is a well-considered system and the solution 
for w(~, t) is well documented. 
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The Lagrangian £ is 

£ = ~ pA(~, ¢) at at 

Ow((, t) Ow(¢, t)]d~d¢: 
- EA((, ¢) O~ 0¢ 

Considering the last term and integration by parts gives 

f: EA(~, ¢) O~ 0¢ 

~,Ow(¢,t) , ,  ]ee= I = EA(~, q ) - - -~- - -w~¢,  t) = d E 

- O~ w(~, t) dCd~ 

which can be further developed: 

fo~ fo ~ Ow(~, t) Ow(~, t)d~d~ EA({, ¢) O~ 0¢ 

= EA(,, ¢ )w( , , t ) l ' i lw (¢ , t ) ]~ i  2 

- O~ w(~, t) t)d¢ 

~ O E A ( ( ,  ~) 1 ;=L - O~ w(~,t) ¢=oW((,t)d( 

-'fi-' 02EA(~ ¢) + O~O~ w(~, t)w(¢, t)dCd~. 

Since the end points are fixed, w(0, t) = w(L, t) = 0, the 
Lagrangian becomes 

1 fo=Yo= I Ow({ , t )  Ow(~, t)  
£ = ~ pA(~, ¢) Ot Ot 

OZEA((, ¢) 
o~0¢ 

w(L t) w(¢, t) ld~d¢. 

The generalized momentum p(~, t) is given as follows: 

p(~, t) - 0£ 
0 Ow(~, t) 

Ot 

fo=PA(~, ¢) Ow(~'t)d~; 
Ot 

the inverse relation is introduced, 

Ow(L t) fo: Ot m,(~, ¢)p(¢, t)d~ 

where 

fo :PA(~, ~7) m,(rh ~)dr] = ~(~ - ~) 

and the Hamiltonian H is then given by 

H = p(~, t) d (  - £ 

= ~ mi(~, ~)p(~, t) p(~, t) 

+ OZEA(~, ~) 
w(L t) w(¢, t)]d~d¢. 

The Hamilton-Jacobi equation 

- H(  os  OS + 
Ot \Ow(~, t) 

- - ,  w(L t), t) = 0 

thus becomes 

0-'7 2 mi((, ¢) bw(~, t) Ow(¢, t) 

+ OZEA(~, ~) 
0~0~ 

w(L t) w(¢, t) )cl~d¢ = O. 

Using the nonseparable form for the Hamilton principal func- 
tion 

lfo fo s = ~ a(L ¢, t) w(~, t) w(L t)d~d¢ 

y0 + b(~, t) w(~, t)d~ + c(t) 

in the Hamilton-Jacobi equation and considering the resulting 
integral, the integrand is grouped by into terms that are 
multiplied by w(~, t) w(~, t), by w((, t), and those independent 
of w(~, t). These groups are isolated and the coefficient multi- 
pliers are then put to zero yielding the following integro-differ- 
ential equations: 

Oa(~, ~, t) + mi(#, u) a(#, ~, t) a(u, ~, t)dud# 
Ot 

and 

Ob(L t) 
Ot 

and finally 

Oc(t) 
Ot 

02EA 
+ - 0  

+ mi (#, u) a(#,  ~, t) b(u, t)d#du = 0 

- -  + ~ m~(~, ~) b(~, t) b(~, t)d,~d~ = O. 

For scleronomic systems, the system coefficients pA and EA 
are time independent, and the first of the above equations has 
a solution of the form a(~, ~, t) = ao(~, ~), where 

fo=fo= 02EA m,(#, u) ao(#, ~) ao(u, ~)dud# + 0~0---~ = O. 

This solution can be employed since any solution to the Hamil- 
ton-Jacobi will suffice. 

Basis Functions (Lighthill, 1964; Friedman, 1956) 
In order to solve the above equations for a, b and c, linear- 

independent (and complete) basis functions are introduced; this 
is just one of the solution procedures available and is chosen 
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since the solution obtained is readily compared with the classic 
solution. These basis functions q~,. (4) must be complete and 
independent functions so that any function q~(4) can be written 
as a linear combination of the basis functions 

~0(4) : Z f ,¢ , (4) .  
i = l  

If the functions are orthonormal then 

f [  4,,(4) Cj(4)d~ = 5,j 

where 6~j is the Kroneker delta, that is 

6ij = 1 if i = j a n d  

= 0  if i * j .  

The above function ~0(4 ) can be expressed as a projection on 
this basis where the projections f are 

f = 0(4)  ~b,(4)d4 for i = 1, 2 . . .  m. 

The basis functions must span the space so that only a null 
function, that is ~0(4) = 0 for all 4, 0 < 4 < L has zero 
projections (at} = 0 for all i) on the basis functions. 

The Dirac delta function 5(4 - ~), which will be used in 
the following section, is similarly represented: 

i = ~  

6 ( 4  - 4) = Z ~i(~) ~,(~) 
i I 

so that 

L ~b,(4) = 6(4 - ~) qS,(~)d~. 

These orthonormal functions will be used extensively through- 
out the remainder of this paper to generate the solution for the 
generating function S and the final equation of motion. 

Two orthonormal basis functions that will be used in this 
paper are 

and 

~ s i n ( ~  f )  . . . .  ~ L s i n ( ~ - ~ )  . . . .  

Mater ia l  D i s tr ibut ion  

The functions EA(4, ~) and pA(4, ~) have been introduced 
through the Lagrangian; these functions are the distributions of 
stiffness and inertia through the system; they show the possibil- 
ity of the motion of material at one location ~ having a quantifi- 
able effect on the energy at another point. 

Consider first the stiffness disposition EA(~, 4); this could 
be represented by the linear independent orthonormal basis 
ftmctions above by 

i = ~  j = ~  

EA(4, 4) = ~ ~ [EA]o ok,(4) ~bj(~) 
i=l j = l  

where 

[EA I~j = EA(4, 4) b , (4 )  ckj(~)d4d~. 

At this point the form ofEA (4, 4) is examined by recalling the 
Principle of Local Action (Truesdell, 1965, 1977) which states 
that the motion of body points at a finite distance from X of  
some shape B may be disregarded in calculating the stress at 
X; this restricts EA (~, ~) to the following: 

EA(4, 4) = EA(4) 5(4 - 4) 
i=~  j = ~  

= E Z [EA],~b,(4)&j(4)&j(~). 
i=1 j = l  

Finally for a uniform distribution, tile stiffness distribution be- 
comes 

EA(4, ~) = EA(4) 6(4 - 4) 
i=~  

= EA Y~ ~ ( 4 ) 4 ~ ( ~ ) .  
i=1  

The other material disposition pA(4, 4) is not apparently 
restricted by the Principle of Local Action; however, it would 
seem that this principle ought to be applied as say a principle 
of localized inertia. For the purpose of this, the following is 
assumed: 

pA(4, ~) = p A ( ( )  6(4 - 4) 
i=~ j = ~  

= Z Z [pA] fro (4)~j(4)qSj(~) 
i = l  j = l  

and for a uniform structure, the mass distribution becomes 

pa(4, 4) = pA 6(4 - 4) 

= pa Z ~bi(4)¢,(~).  

It is noted here that Principle of Local Action does not apply 
to discrete systems, it being very common for nondiagonal stiff- 
hess and mass matrices to exist. 

Select ion  of  Basis  Funct ions  

The solution for the principle function S in the Hamilton- 
Jacobi equation is not unique; any solution (Greenwood, 1977) 
to this equation can be used as a primary generating function. 
Using the above cosine functions as linear independent basis 
functions, EA6(4 - ~) can be expanded as an infinite summa- 
tion 

EA6(~ - 4) = EA + _ _  cos cos 
L L i=l 

then 

OZEA(4, 4) _ 2EA 

040~ r 
- -  ~ ( - ~ ) 2  sin ({~-~)s in  ( J - ~ )  . 

Similarly the mass distribution pAS(~ - 4) can be represented 
by the basis functions, but in this case the sine functions are 
used, 

pA(~, ~) = - ~ -  ~ sin sin ; 
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the inverse is 

2 
m~(~, ~) = p ~  ~ sin (~-~)  sin ( @ )  

integrating with respect to/z and v, and noting the orthogonality 
of the sines results in 

(X~ + a~ ~b~eV sin iTr-Z- = O. 
i=l pA/  L 

Determination of ao (/x, ~) 
An expansion of the following form 

ao(#, 4) = ~ a~ sin sin 
i=1 

will satisfy the Hamilton-Jacobi equation; substituting this 
expansion in the equation to solve for ao(p,, u) gives 

2 f~  f~ ,~ sin ( J ~ ) s i n  ( ~ )  
pAL 

4 ~ ( ~__~ ) ( _ ~ f )  
L-- 5 am sin sin 

m = l  

× ~a,,sin(ff-~) Sin(@-)dud# 
n = l  

2EA ~ ( L ) 2  ( - ~ )  ( - ~ )  sin sin . 
Z = 

Performing the integrations and noting the orthogonality of the 
sine functions, that is 

sin sin d# = 1 i f i = j  

then 

= 0 i f i  e:j, 

E L~+ EA =0. 
i=1 

Since any solution (Greenwood, 1977) is required, then the 
solution 

iTr j A I-E-tip where J 
a i = L 

will suffice. 

Determination of b (g, t) 
Recalling the expression for b(~, t) 

fo fo Ob(~, t_____) + m,(#, u) a(#, ~) b(u, t )d#dv = 0 
Ot 

and assuming the following 

b(~, t) = 2 bee ×,' sin iTr__~ 
L ' 

then substituting in the equation above 

s:i0 2 )kibi ex,t sin iTr~ + 2 iTr# i~ru 
i=t L p ~  sin T sin L 

2 ~ jTr# sin jTr~ ~ 2  ~.b~eX,, sin kTru d#du = O, 
X L j = i  aj sin --~--- L ~L,=i  L 

Thus 

ai _ j iTr . /E 
i - -  

~ki -- pA "L "V p " 

Determination of c (t) 
Using the above series representations of m~ (~, ~) and b (~, t) 

and substituting in the equation for c (t) leads to the following: 

oc(,_  fj.f) Ot 2 m,(~, ~)b((, t)b(~, t)d~d~ 

- 2 1 ~  b-~e2x'tpA 

and finally 

l ~ / ~ i  ~ b/2 e2V.. c(t)  = - ~ pAX, 

The General Solution 
The above has yielded expressions for a (the kernel func- 

tion), b (the primary system function), and c (the secondary 
system function); the last two are the result of an integration 
process and include constants of integration b~. 

The constants of motion 45i result from the differentiation of 
the principal function S with respect to the ignorable constants, 
the above constants of integration; recalling the expression 
for S 

S = ~ a(~, ~, t) w(~, t) w(~, t)d~d~ 

+ b((,  t) w(( ,  t)d~ + c(t)  

and noting that the constants of integration occur within 
b(~, t) and c(t), then 

OS ~i = ~ / ,  i = 1, 2 . . .  c~. 

Thus 

OS 
~ i -  Obi 

= 2 eV sin ~-~w(~, t)d~ - ~ pAk, 

Finally solving for w(~, t) gives the following equation: 

fo ~ iTr~ ~/~ -L b--~-- eV' sin ---£- w(~, t)d~ = tI)ie-kit + 4 pAhi  

that is 

= eX; sin - - .  
i=l 2pAki L 

This is the general solution for the dynamms of the axial 
motion and the constants of motion associated with the initial 
conditions are the constants bl and ~bi in the equation above. 
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Conc lus ions  
The Hamilton-Jacobi partial differential equation has been 

applied to continuum systems; the application has necessitated 
the formulation of the Lagrangian, generalized momentum, and 
Hamiltonian, and ultimately the Hamilton principal function. A 
solution procedure for quadratic energy functionals is proposed 
and the theory is applied to a one-dimensional continuum, ex- 
tracting the classical solution for the axial motion of an elastic 
rod. 

The use of the Hamilton-Jacobi partial differential equation 
and the Hamilton principal function may lead to alternative 
considerations in continuum mechanics although this work re- 
ally represents a cautious step in this direction. 
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Finite Element Method for 
Stochastic Beams Based on 
Variational Principles 
This paper proposes a new version (fimdamentally different from the existing ones) 
of  finite element method for  the mean and covariance functions of  the displacement 
for bending beams with spatially random stiffness. Apart from the conventional finite 
element method for  stochastic problems, which utilizes either perturbation or series 
expansion technique or the Monte Carlo simulation, the present method is based on 
the newly established variational principles. The finite element scheme is formulated 
directly with respect to the mean function and covariance function, rather than 
perturbed components of  the displacement. It takes into account an information on 
joint probability distribution function of the random stiffness to obtain the covariance 
function qf the displacement. Therefore, the accurate solution can be obtained even if 
the coefficient of  variation of the random stir[hess is large, in contrast to conventional 
technique. Several examples are given to illustrate the advantage of  the proposed 
method, compared with the conventional ones. 

Introduction 
Structures involving spatially random material and/or geo- 

metrical parameters are dubbed as stochastic structures. The 
analysis of stochastic structures has attracted significant interest 
of many researchers in the recent decade. However, difficulties 
arise in obtaining exact solutions for these structures since their 
governing equations constitute random differential equations 
with random coefficient functions, and possibly with random 
boundary conditions. Therefore, several approximate analytical 
and numerical methods have been developed to address this 
problem. Among these methods, the finite element method de- 
veloped recently for stochastic problems is one example of 
perturbation-based numerical methods (Nakagiri and Hisada, 
1985; Ghanem and Spanos, 1991; Kleiber and Hien, 1993). 

Actually, the existing finite element method for stochastic 
structures is basically a combination of deterministic finite ele- 
ment method and perturbation technique. It obtains zeroth, first, 
and/or second perturbed components of displacements by recur- 
sively solving the finite element equilibrium equation. Due to 
computational cost, and the fact that higher-order probabilistic 
information of spatially random parameters is generally not 
available for practical problems, only first-order (and second 
or third-order in some cases) conventional finite element 
method for stochastic structures were suggested in the existing 
literature. 

For the beam bending, both spatially random material param- 
eter (Young's modulus) or geometrical parameters (dimension 
of the cross section) can be combined into a single random 
parameter-- the bending stiffness. In this paper, we formulate a 
new kind of finite element method for the statically determinate 
bending of beams with spatially random stiffness, based on 
the newly established variational principles for the mean and 
covariance function of the displacement. The variational princi- 
ples, for the mean and covariance functions of the displacement, 
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respectively, are derived from the governing equations them- 
selves. The new finite element method is fundamentally differ- 
ent from the finite element method for stochastic structures 
based on conventional variational approaches. The latters were 
obtained just by perturbing the deterministic variational princi- 
ples with respect to deviations of the random parameters and 
therefore basically constitute a perturbation method; one should 
stress that the use of variational principles was a definitive 
contribution to the subject (Hien and Kleiber, 1990; Kleiber 
and Hien, 1993; Liu, Besterfield, and Belytschko, 1988). 

In this study the new finite element method for stochastic 
beams is directly established for the mean and covariance func- 
tions of the displacement. Moreover, the perturbation technique 
is no longer adopted. The new method can be applied to any 
probabilisfic distribution of the random stiffness, especially for 
the large correlation coefficients where the perturbation-based 
finite element method fails. Some examples are illustrated to 
show the accuracy and effectiveness of the proposed method. 
A detailed comparison of the results obtained by the present 
method with the conventional first-order finite element method 
and analytical solution is performed. 

Basic Equations and Variational Principles 

1 Basic Equations. The beam-bending problem with spa- 
tially stochastic stiffness D(x)  = E ( x ) l ( x )  subjected to deter- 
ministic loads is governed by 

d2[ d2w] 
dx 2 O(x)  clx2 j = q(x)  (1) 

where w(x)  = displacement, q(x)  = transverse distributed 
force, D(x)  = the bending stiffness which is assumed to be a 
spatially random field, E(X) = Young's modulus, and l ( x )  = 
moment of inertia. For statically determinate beams, it has been 
shown that the mean displacement ~ (x )  = E [ w (x) ] is governed 
by the following equation (Elishakoff, Ren, and Shinozuka, 
1995) 

d2[ d2 ] 
dx 2 Do(x) dx 2 j = q(x)  (2) 

with the attendant boundary conditions 
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d~  
~ 7 = 0  or ~ = 0  

dx 

J- Do(x) = ~j o r  Do = 
dx 2P 

(3 )  

where &¢ and Q are prescribed moment and shear force, respec- 
tively, and 

¢; (x)  1 
Do(x) D~x) ' (4) 

The governing Eq. (2) and boundary conditions in Eq. (3) are 
identical in its form with those of a bending beam with equiva- 
lent deterministic stiffness Do(x) or equivalent deterministic 
flexibility fo (x). The covariance function C (x, y) = E { [ w (x) 
- ~(x)][w(y) - ~ ( y ) ]  } for the displacement w(x) is gov- 
erned by 

04C(x, y) = m(x)m(y) 
fl(x, y)m(x)m(y) (5) 

Ox20y 2 Dr(x, y) 

where m(x) is the moment distribution in the beam, and 
i 

f~(x, y) = D,(x, y------~ EI(x) ' EI(y) (6) 

is the covariance function of the beam flexibility. By partially 
differentiating Eq. (5) twice with respect to x and twice with 
respect to y, an alternative form of the governing equation for 
covariance function C(x, y) can be obtained as 

04 [ 04C(x' y) ] 
Ox~Oy 2 Dl(x,y) Ox20y2 j =q(x)q(y). (7) 

The boundary conditions for the covariance function C(x, y) 
are as follows: 
A t x =  0 a n d x = L ,  

OC 
- - = 0  or C = O  
Ox 

OxZOy OxC9 [ °x-ay"jt04C ] D, ~ m ( y )  or 7 -  D , - = - ~ - ~ .  = Ore(y). (8) 

Aty = 0 a n d y  = L, 

OC 
- - = 0  or C = O  
Oy 

D, 04C - ~ m ( x )  or 0 [ 04C ] 
OxZOy----- ~ ~y D, Ox~y2 j = (jm(x). (9) 

2 Variational Principles. The variational principle for 
the mean displacement ~7(x) corresponding to the governing 
Eq. (2) and boundary conditions in Eq. (3) requires the min- 
imizing of the following functional: 

L ( d2W~ 2 q(x)~]dx 

- [ M d ~ - Q v T ]  i ' d x  (10) 

The above functional is identical to that of a deterministic beam 
(Hu, 1981), which has an equivalent deterministic stiffness 
Do(x). The variational principle for the covariance function 
C(x, y) corresponding to the governing Eq. (7) and boundary 

conditions in Eqs. (8),  (9) requires the minimizing of the fol- 
lowing functional: 

f j  fi[" [ ½ \ox-oy-/  [104C~2 ] 7r2 : Dr(x, Y)/2-5-~-~/  - q(x)q(y)C dxdy 

- [ f ]~(A4OC-QC)q(y)dy]  i~ Ox 

- [ f~ ( l l 4OC-QC)q(x )dx] l l ]  S \  ~Y 

-- [1~!~ o2C - - l ~ a  Of  OC ] y=L x=L 

(1 l )  

The proof of this variational principle has been given in the 
study by Elishakoff, Ren, and Shinozuka (1996). The func- 
tional 7h was derived by first guessing the double integration 
term in the right side of the Eq. (11), from the Eq. (7),  and 
then carrying out the variation of the term with respect to C(x, 
y) to construct appropriate boundary terms. The physical impli- 
cation of 7r2 is not addressed here. The proof that the functional 
7r2 reaches its minimum value when the covariance function 
C(x, y) is the exact one has been given in Appendix A. 

It is seen that the function to be integrated in the first integral 
in the functional 7r2 consists of mixed fourth-order derivative 
of correlation function C(x, y) with respect to x and y. Hence, 
at least Cl-continuous interpolating functions are required to 
guarantee the convergence of the finite element formulation 
based on the variational principle in Eq. ( 11 ). Furthermore, the 
very fact that only terms with at least x 2 and y2 in interpolating 
polynomials contribute the stiffness matrix, implies that higher- 
order interpolating functions are required. Due to these two 
shortcomings, we propose an alternative form of the variational 
principle for the covariance function C(x, y), which corre- 
sponds to the governing Eq. (5) and geometry boundary condi- 
tions in Eqs. (8),  (9).  The functional to be minimized reads 

L ~. ( 02C,~2 
~3 = f l  2 [ ~ , O - ~ y ;  - f j (x ,y)m(x)m(y)C]dxdy 

+ m(x)H,(x)Cly=rdx 

+ m(y)H2(y)CIx=,.dy - GCIx=L,y=L (12) 

where 

2 f2 g,(x) = f~(x, y)m(y)dy, H2(y) = f (x ,  y)m(x)dx 

££ G = fj(x, y)m(x)m(y)dxdy. (13) 

The variational principle in Eq. (12) is applicable to the beams 
simply supported at both ends x = 0 and x = L or clamped at 
left end x = 0, namely either w = dw/dx = 0 at x = 0 or w = 
0 at x = 0, L. The functional 7r3 requires C°-continuous only 
and comparatively lower interpolating functions. Its proof is 
given in Appendix B. 

Finite Element  Formulat ion  

1 Formulation for the Mean Displacement. The mean 
displacement ~ (x )  is actually the response of a bending beam 
with varying bending stiffness Do(x), as we have mentioned 
in previous section, Therefore, the conventional finite element 
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formulas for deterministic beams can be used. In this paper, the 
two-node cubic Hermitian beam element (Hinton and Owenl 
1972) is adopted. The interpolation of the mean displacement 
in the element Xl -< x -< x2 is given by 

4 

= ~ N~d~ = Nd (14) 
i - l '  

where 

[ (d~) (d~ I r (15) 
d = [d, ,  d2, d3, d4] "r = w i ,  Z 1 ' w 2 ,  \ d x / 2 J  

is the nodal displacement vector, and 

N = [N~, N2, N3, N41 r 

N~ = (2 + ~) , /~2 = a ( ~  -4.- 1) 

A 7 ~ = ( 2 - ~ )  , N a = a ( { -  1) (16) 

are shape functions, ~ = (x  - & ) l ( x 2  - x l )  - (x2 - x ) l ( x 2  - 
&) is the local coordinate, a = (x2 - xt)/2.  

Discretizing the beam into n elements, substituting Eq. (14) 
into Eq. (10) and then minimizing the potential re1, we get 

K{d = F ;  (17) 
e~I e=l 

where the element stiffness matrix K{ and the element equiva- 
lent nodal force vector F{ are given, respectively, as follows: 

f / 2  d 2 ~ r d Z ~ d  x (18) 
K~ = Do(x )  dx  2 dx  2 

I 

2 Formulation for the Covariance Function. To con- 
struct finite element formulas for the covariance function, we 
can apply either the variational principle in Eq. (11) or the 
variational principle in Eq. (12).  Since the functional 7r2 con- 
tains mixed fourth-order derivative of the covariance function 
with respect to x and y, Cl-continuous interpolating functions 
should be used to guarantee the convergence of the solution 
and higher-order interpolating polymonials must be assumed to 
contribute the stiffness matrix. On the other hand, the functional 
7r3 consists of only mixed second-order derivative of the covari- 
ance function C ( x ,  y )  with respect to x and y, C°-continuous 
interpolating functions can be used to reach the convergence 
requirement and lower-order interpolating polynomials can be 
adopted to satisfy the accuracy. Therefore, the functional 7r3 
is utilized hereby to construct the finite element equilibrium 
equations for the covariance function C ( x ,  y ) .  

Due to the fact that the functional 7r3 possesses symmetry in 
x and y, a four-node rectangular element, which is commonly 
used in plate-bending problems, is adopted here. The covariance 
function C ( x ,  y )  in the element x~ -< x -~ x2 and y~ <- y -< Y2 
is interpolated as follows: 

4 

C = ~.~ Ni t i  = N 6  (20) 
i=1 

where 6 is the vector of nodal degrees-of-freedom 

6 = [ 6 / ,  62, 63,  64]  T 

, ,r°q 1 ,  oy (21) 

and N is vector of shape functions 

N = [Ni, N2, N3], Ni = [Nil, N,2, Ni~] 

7~ia 
N,2 = 7 ( ~  2 - 1)({ + ~,)(r/ + rli) 

b 

Ni3 = (72 -- 1)(~ + ~,)(r/ + rli) (22) 

where ~ = (x  - x , ) / ( &  - x l )  - (x2 - x ) l ( x 2  -- x,) and r/ = 
(Y - Y l ) / (Y2  - Yi)  - (3'2 - Y) / (Y2  - Yt )  are local coordinates, 
a = (x2 - x O I 2  and b = (Y2 - y l )12  are side lengths of the 
rectangular element. Discretizing the domain into n × n ele- 
ments, then substituting Eq. (20) into Eq. (12) and minimizing 
7r3, we get 

nXn n X n  

K g6 = ~ Vg (23) 
e- I  e=l 

where the element stiffness matrix K~ and the equivalent nodal 
force vector F~ are given, respectively, as follows: 

f [ 2 ~ . ~ [ O 2 N r O 2 N d x d y  (24) 
K ~ = , Ox Oy Ox Oy 

F~ = f j ( x ,  y ) m ( x ) m ( y ) N r  dvdy .  (25) 
I I 

Numerical Example 

Consider a simply supported beam with length L and sub- 
jected to uniform load q. The stiffness D ( x )  of the beam is 
assumed to be a spacially homogeneous random field D ( x )  = 
D0[1 + ka(x)] ,  where k = constant and a (x)  is a normalized 
random field. It is assumed that ,~(x) possesses a uniform two- 
dimensional Pearson Type II probability distribution (Johnson, 
1987) 

~r,/l - p 2 ( x ,  y )  ' 

pa(x),~(y)(U,l)).=- for ( u , v ) @ ~ : u Z - 2 p u v + v 2 " <  l - - p  2 

0, elsewhere 

(26) 

where p ( x ,  y )  is the function characterizing the correlation be- 
tween a (x )  and a (y ) ,  and is assumed to be exponential, namely 

p ( x , y ) = e x p  ~ , I x - y l  _<L (27) 

where d = scale of fluctuation. The normalized random field 
c~(x) has zero mean and correlation function of p(x ,  y ) / 4 .  Its 
one-dimensional marginal distribution reads 

p,(x~(u) = 2 ~ 1  - u2 ) ,  u E [ - 1 ,  1]. (28) 
71- 

T h e r e f o r e ,  the mean and correlation function of the flexibility 
f ( x )  = 1 / D ( x )  can be obtained, respectively, as 

f, 1 fo = E [ f  ] = i D0(l  + ku)  p~,¢,)(u)du 

2 I ~ ~1 - u 2 

'71"0 0 L 1 1 ~- k~ du (29) 
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Fig. 1 The mean displacement at the middle of the simply supported 
beam versus coefficient of variation of random stiffness r 
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Fig. 3 The variances of the displacement along the beam's axis (coeffi-  
cient of variation of random stiffness r = 0.15) 

and 

R ( x ,  y) = C o v  [ f ( x ) , f ( y ) ]  

__ff D~(1 + ku)(l  + kv) Pa(x)a(Y)(U' v )dudv  

1 ~ 1 Ci + C2~1 - u 2 

7rDo 2 J - i  CiC2 In CL - C2~1 - u 2 du 
l 

where 

(30) 

k~/1 + p  
Cj = l + - - u  

2 

c 2 -  k41 + p  u. (31) 
2 

The covariance function between the ftexibilities f ( x )  and f ( y )  
is Coy [ f ( x ) , f ( y ) ]  = R [ f ( x ) , f ( y ) ]  - E [ f ( x ) ] E [ f ( y ) ] .  

To illustrate the accuracy and efficiency of the variational 
principle based finite element method presented in this study, 
we calculate the mean and covariance functions of the displace- 
ment of the simply supported beam by both the first-order per- 
turbation finite element method and the present finite element 
method. The scale of fluctuation in Eq. (27) is taken to be d 
= 0.5. The results are depicted in Figs. 1-4. Figure 1 portrays 
the mean displacements at midspan of the simply supported 
beam for different values of the coefficient of variation of the 
stochastic bending stiffness. The results have been normalized 
by the perturbation solution wc = 0.01302/Do. The exact solu- 
tion of the mid-displacement of the simply supported beam is 
obtainable to be 

~ ( x  = L / 2 )  - 5 q L 4 f  (32) 
384 

The variation of the exact mid-displacement with respect to 
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Fig. 2 The variance of the mid-displacement of simply supported beam 
versus coefficient of variation of random stiffness r 

the coefficient of variation r of the random stiffness can be 
plotted in Fig. 1 and coincides with that of the new finite element 
result. Thus we reach a remarkable conclusion that the present 
solution coincides with the exact solution for any value of coef- 
ficient of variation of the stiffness. For small values of coeffi- 
cient of variation of the bending stiffness, the solution obtained 
by the first-order perturbation method also agrees with the exact 
solution or the new finite element solution. However, the differ- 
ence between two solutions increases when the coefficient of 
variation of the bending stiffness increases, as expected. This 
observation clearly demonstrates the superiority of the proposed 
method. 

Figure 2 portrays the variances of the mid-displacement, ob- 
tained by the present finite element method and the first-order 
perturbative finite element method, for different values of coef- 
ficient of variation of the stochastic bending stiffness. Again, it 
is seen that the result obtained by the present method agrees 
with the results obtained by the first-order perturbative finite 
element method for small values of coefficient of variation of 
the stiffness. However, for larger values of the coefficient of 
variation of the stiffness, the difference between the perturbation 
solution and the new variational principle based solution in- 
creases. For example, the differences are about four percent, 
eight percent, and 35 percent, respectively, for the coefficient 
of variation r = 0.1, 0.15, and 0.3. 

Figures 3 and 4 compare more illustratively the results ob- 
tained by the first-order perturbation method and the present 
variational principle based finite element method. Figure 3 
shows the changes of the variance of tl~,e displacement along 
the beam cross section for the coefficient of variation of the 
stiffness r = 0.15. Figure 4 shows the changes of the variance of 
the displacement for the coefficient of variation of the stiffness r 
= 0.3. It is seen that in the case of the small value of the 
coefficient of variation of the stiffness (r = 0.15), two solutions 
are close to each other. For the case of r = 0.3, however, 
the first-order perturbation solution is much less those by the 
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> 4e-06 
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Fig. 4 The variances of the displacement along the beam's axis (coeffi- 
cient of variation of random stiffness r = 0.3) 
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variational principle based finite e lement  method. This confirms 
the conclusion that the perturbation-based solutions are accept- 
able only for the small values of the coefficient of variation. 
This conclusion is well  known and understandable;  yet the pres- 
ent work appears to be the first one which develops a simulation- 
free finite e lement  method for arbitrary value of the coefficient 
of variation. 

Note that in this study the finite element method based on 
the variational principles has been developed only for statically 
determinate beams. The generalization of the principles to more 
general systems of high dimension is under study. 
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A P P E N D I X  A 

Proof of Minimum Property of Functional ~r2 in Eq. 
( 1 1 )  

Assume that Co is the exact solution of  Eq. (7 )  pert inent  to 
boundary conditions in Eqs. (8 ) ,  (9 ) .  Denoting C = Co + Ct 
and substituting it into Eq. (1 1 ), we have 

Try(C) = 7r2(Co + C,) 

: ~2 J,;" {~D,(x,y)[04(C°+ C')l 2 
J 

- q(x)q(y)(Co + C,)~dxdy 

k 00X O ( C °  + C1) q(y)dy x:o 

{f:r ] _ ~O(Co.+ C,) O~(Co + C,) q(x)dx 
L Oy y=O 

- [ '~/~ O 2 ( C°Ox Oy + C1) leO O(C°ox + CI)  

- aTO O(Co + C,)  

Oy 

--- ] y=L x=L 
+ QQ(Co + c~) y=o ~=0 

= 7rz(Co) + 7r2(C~) 

c L 004C° 04C1 dxd 
+ f l  f o D ' ( x ' Y )  ox~Oy~Ox--~y ~ y" (33)  

Let  us consider the integral term: 

I = Dl(x, y) 004C° 04C1 
• o 00x20y 2 igx~Oy 2 dxdy 

do 00xOy -----~ [D,(x, y) Ox Oy J l~=0 

004Co ] o3c~ 
- fo f~ ~ [Dl(X'Y) Ox~y2J O~y2 dxdy 

[ O Co ]l- l ,=,* -- 02C1 Dr(x, y) 
00x00y J Ix=o ly=o 

04Co 1 02C1 dy x=L 

f : ~ x [  004C°102CIdxY=L 
- Di(x, y) Ox2Oyaj o-O~y I~=o 

fo'~ fo* 02 I , 04C01  02C1 + ~ Ol(x,Y) o x ~ y 2 j o ~ y d x d y .  (34)  

Note that Co satisfies the Eq. (7 )  and boundary conditions in 
Eqs. (8), (9), therefore 

02C1 ~=L y=c 
I = ~ 1 ~  OxOy x-o y=0 

- f l  O [D,(x ,Y)  ox~y2 j  ] o2C' " Ix=L 

_ LO_ D~(x,y) dx 
OX Ox2Oy2J 

fi2fO ~ 02 I 04C0102C1 
+ O~y D,(x, y) Ox2Oy2j ~ dxdy 

= [ 1~1~ 'o2Cl -- 1~ 0 OCl _ 1~ 0 Of I ]x~Ly=L 
OxOy ON ~ Y  J a'~0 y=O 

f]" 02 [ 04Co ] OC' dy~=C + - -  Dl(x, y) 
OY a Ox2Oy2J -~" ~=o 

+ Ox"-- 7 Di(x, y) Ox2Oy2j ~ dx 

L L 002 
+Yofo [o   y axay 

= Ii~M002C1 _]~QOC1 l~_OCl ] x=Ly=L 
OxOy -~-  Oy J [x=O ly=0 

+ ll~q(y) ~X dy ~=o + 1Oq(x) Oy y=o 

+ ~ D,(x, y) 00x20yZj 

_ J f J o  L 093 004Co ]00C, dxdy 
Ox~y [D,(x, y) Ox200y2j ay 
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[ o2c, I 
= ~ O - ~ y  - vO  7-2 5 7  + 0 0 <  ~=o 

] - -  q(y)dy ~:0 + iff Ox QG 

+fo I 1 T - QC, q(x)dx 
J i),=0 

+ f, ~ O~(x"Y)~7~TJ c'axay 

ffl / OC, ~dxd 
= D , ( x , y ) k o x ~ y 2 )  y -  zr2(C,). (35) 

Substituting it back into Eq. (33),  we obtain 

7r2(Co + C1) = ~2(Co) + ~ D,(x, Y )kox~y2)  dxdy 

>- rr2(C0). (36) 

Q.E.D. 

A P P E N D I X  B 

P r o o f  o f  V a r i a t i o n a l  P r i n c i p l e  in E q .  ( 1 2 )  

The variation of the first integral in the functional 7r3 of Eq. 
(12) reads 

6j=f£'f/~ o~c 026Cdxdy 
OxdO OxOy 

£o~o6c "='. fo-f2O~cO~Cdxdy 
= OxOy Oy .,.=0 d y -  Ox20y 0-- 7- 

= f ]  02C 06C *=L d c 
OxOy ~7~ .~=0 y - fo 03C ~CIY=""  

a V 5 ; :  ; ' >° ~* 

L fL 04C 
~- f£ ~0 ON 2 Oy------~ 6Cdxdy 

02C 6C .,-=L,y=L_ fL 03C 
= ~9x0---7 ,x=o~=o Jo ~ 6CI;2~dy 

f j  o~c f f f  L o4c 
--  l y = O &  H- ~0 Ox20y 2 ) ~ y  (5C y=L - -  6Cdxdy. 

The variation of the tunctional 7r3 is then 

(37) 

f~f~r 04C ] &r3 : L Ox2Oy 2 f ,(x, y)m(x)m(y)6C dxdy 

f L 03C fo" - , O~Oy 6ClY2~ "dx + m(x)H,(x)6Cl~':Ldx 

fo, O3c fL - ~ 6Cl~2~dy + ~ m(y)Hdy)6Cl*=Cdy 

02C 
6C x = L . y = l  a6Cl,=L,y=L if- - -  x=0,y=0 OxOy 

The stationarity condition of  lr3 leads to 
( i)  the governing equation 

04C 
i~20y 2 = f l ( x , y ) m ( x ) m ( y ) ,  Vx, y, 

(ii)  boundary conditions at sides 

OxOy 2 m(y)H2(y) bC= 0, Vy at x =  L 

(38) 

(39) 

03C 
dxdy 26C = O, Vy at x =  0 

Eo3  1 Ox20y m(x)H~(x) 6C = 0, Vx at y = L 

03C 
- - 6 C =  O, Vx at y = O, Ox 20y 

(iii) and boundary conditions at corners 

I 02C - G ] 6 C = O ,  at x = L ;  y = L  
OxOy 

(40) 

02C 
- - 6 C = 0 ,  at x = O ;  y =  O,L or 
&Oy 

x = L; y = 0. (41) 

It can be shown that it is sufficient that the function C(x, y) 
satisfy the following conditions in order for the above boundary 
conditions to be specified, in some specific cases: 

C =  0, at x = 0, L; or y = 0, L (42)  

OC OC 
C -  - 0 at x =  0; C -  - 0 at y = 0. (43)  Ox Oy 

The boundary conditions in Eq. (42) are referred to simply 
supported beams, whereas the boundary conditions in Eq. (43) 
are referred to as the left-side clamped beams. 
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Stochastic Vibration of a Mobile 
Manipulator 
The stochastic vibration of a flexible, articulated, and mobile manipulator is studied. 
The manipulator is mounted on a vehicle which is supported by a suspension system. 
Stochastic excitation of the manipulator is induced by the uniform horizontal motion 
of the vehicle on a traction surface. The power spectral density representation and 
the state-space representation are used to derive expressions for the covariance 
matrices of the manipulator tip motions. Sensitivity of the variance of the tip motion 
to the manipulator configuration, length, vehicle velocity, surface roughness coeffi- 
cient, and structural damping and stiffness are explored. Suggestions for mobile 
manipulator design to minimize the influence of the stochastic base vibration on the 
manipulator tip motion are proposed. 

1 Introduction 

In many future applications such as space explorations, toxic 
waste clean up, fire fighting, logging, and plant ing-- in unstruc- 
tured environments outside the factories--mobile manipulators 
will be required instead of the conventional industrial manipula- 
tors which are mounted on fixed bases. The motion of the vehi- 
cle on a rough terrain will induce stochastic vibration in the 
manipulator structure. An understanding of the stochastic vibra- 
tion of a mobile manipulator and its sensitivity to the system 
parameters is important for the structural design and control 
strategy development. 

Most studies on mobile manipulators treat them as simple 
vehicles without dynamics. These reports focus on the map 
building of the unknown environments (Yun-Hui and Suguru, 
1991) and on the motion planning algorithm (Jacobs and 
Canny, 1989). The limited studies on the dynamics of mobile 
manipulators treat the manipulator as chains of rigid links 
mounted on a vehicle (Hootsman and Dubowsky, 1991). In 
addition, the reported studies do not consider the base excitation 
as stochastic. Since in practical application, the motion of the 
tip of a manipulator is very important the study is concerned 
with the stochastic vibration of the tip of a mobile manipulator. 

To study the tip vibration two representations are used: the 
state-space representation and the power spectral density repre- 
sentation. Figure 1 shows a model of a planar manipulator 
mounted on a vehicle which is supported by a suspension. The 
suspension is connected to the vehicle body by a linear joint. 

It is assumed that the flexibility of the manipulator and the 
suspension is concentrated at the joints; the kinematic configu- 
ration of the links of the mobile manipulator can be represented 
using Denavit Hartenberg homogenous transformation matrix 
(Spong and Vidyasagar, 1989) and is assumed invariant when 
the stochastic vibration is studied; the motion vector r = [r~, r:, 
. . . .  r,, ] r represents the small elastic motion about a kinematic 
configuration; the vehicle suspension motion vector ro = [s, 
r0] r is known; the total motion of the system can be expressed 
as r + ro; the system damping is viscous, below critical value, 
concentrated at the joints, and invm'iant with respect to changes 
of the kinematic configuration; Kelvin-Voigt spring damping 
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system is used; the random excitation--due to the uniform 
motion of the vehicle on a traction surface is small and produces 
small responses; the vehicle suspension maintains constant con- 
tact with the ground and there is no deformation of the surface 
during motion; the effect of gravity is neglected. 

2 Mathematical Formulation 

2.1 Surface Profile. A mobile manipulator can move on 
diverse surfaces. For a large class of problems, the excitation 
produced by the surface ro(t) can be modeled as output of a 
shaping filter to a white noise expressed by (Narayanan and 
Raju, 1990) 

¢0(t) = F,(t)r0(t)  + s'(t)B,.(t)w(t) for g(t) ~ 0 (1) 

where w(s(t))  is a vector of white noise consider as a function 
of the space coordinate s (which in turn is a function of time) 
with covariance matrix 

E{w(s ( t l ) )wr ( s ( t2 ) ) }  = Q6(s (h)  - s(t2)). (2) 

Equation ( 1 ) gives the state space representation of the excita- 
tion ro(t) and is also the time domain description. Since the 
vehicle velocity g(t) is constant, the system excitation ro(t) is 
stationary and has power spectral density 

S,0, o = S(w, g). (3) 

Equation (3) is the frequency domain representation of the 
excitation. 

2.2 System Equation of Motion. Application of the La- 
grangiau principle leads to the equation of motion 

Di~(t) + Ci'(t) + Kr( t )  = Flro(t) + Fz&(t) (4) 

where D, C, K, Fi, and F2 are the inertia matrix, damping 
matrix, stiffness matrix, coefficient vector involving the excita- 
tion ro(t) and coefficient vector involving the excitation to(t), 
respectively. Two representations--the power spectral density 
representation and the state-space representation--are used to 
solve Eq. (4) for the joint vibration. 

2.3 Power Spectral Density Representation. The vector 
r can be expressed in terms of the mass normalized modal 
matrix U and the normal coordinate e as 

r ( t )  = Ue(t). (5) 
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Fig. 1 Definition of the manipulator coordinates: O2 , . .  O. - -system 
configuration coordinates, s--vehicle horizontal motion, r0--forced mo- 
tion of the suspension, r~--vehicle vertical motion, r ~ , . . . ,  r. joint elastic 
motion, xl  = [ x l ,  y l ] r ~ v e h i c l e  f rame, x .  - [ X n ,  y . ] r - - t i p  frame, xl = [xl ,  
y~] r - - iner t ia  frame 

Equation (4) can be expressed in the decoupled form 

G(t)  + 2~w~G(t)  + w~G(t)  = u~(F,r0 + F2t~o(t)), 

v = 1, 2 . . . . .  n (6) 

where u~' represents the transpose of the vth column of U, w~ 
is the natural frequency of mode v and (~, is the damping factor. 
Using the Duhamel integral the displacement response of mode 
v is obtained as 

G(t)  = ; ~  h~(t - T)ui~,(F~r0 + Fzfo(t))d~- (7) 

h~(t) = u( t)  ~ e ~'%' sin (wad), w,lo = ~vJl - ~2, (8) 
Od dv 

"r is the time lag, ho(t) is the impulse response function of mode 
v, and u(t)  is the unit step function. The crosscorrelation of the 
displacements of joint v and joint-m R,.~,,,(,-) is obtained as 

R~,,,.,,(r) = E{r~(t)rm(t + 7-)} 

= ~, UjJ,, ,kE{es(t)ek(t + 7-)}. (9) 
j = l  k-]  

The power spectral density of r~ and r,,, can be obtained by 
the Wiener Khinchine relation (Yang, 1986) using Eqs. (3) ,  
(6) ,  (7) ,  and (8) as 

S,~.,. (w) = (U~F,S,.o,. (w)Ui',iF, 

.j=l k - ]  

where Hi = (w~ - 0.) 2 + 2iGwws) ~ 1, i = ~/'~-1. The covariance 
matrix of the joint displacements can be obtained as 

R~r(0) = E { r r  r } = f ~  Srr(w)dw. ( 11 ) 

The residue theorem can be used to solve Eq. ( 1 l ) .  

2.4 State -Space  Representat ion .  The joint motion va r i  
ables r ,  P and the excitation vector ro can be transformed to a 
state variable y define as 

y = [r  ~', i "T, ro] "r. (12) 

Application of Eq. (12) to Eqs. (1) and (4) transform them 
t o  

y = Ay + ~' ( t )Bw(s( t ) )  

A =  [oZ D ' (F~+F2F, ( t ) ) ]F ,  ' 

I 0 ' ]  Fo. 1 
A ~ =  - D  tK - D  IC , B = L B, ( 1 3 )  

The covariance naatrix P of the state vector y can be define 
a s  

P = E{yy  T} (14) 

where E { • } is the expectation operator. Since the vehicle hori- 
zontal velocity Y(t) is constant, it can be shown (Akpan, 1996) 
that for a stochastic dynamic system modeled by Eq. (3) ,  the 
covariance matrix P satisfies the Liapunov matrix algebraic 
equation 

A P  + PA r = - ~ ( t ) B Q B  T. (15) 

The components of the state covafiance matrix P can be 
reassembled into the displacement vector r ,  and the velocity 
vector/" covariance matrices defined as Rrr(0) = E{ r r  ~} and 
R i d 0 )  - E { / ' U } ,  respectively. 

2.5 Tip Covarianee .  The covariance matrix of the tip mo- 
tion can be computed in any moving coordinate frame attached 
either to the vehicle or any of the links. A Jacobian J relating the 
joint motion r (obtained using any of the two representations) to 
the tip motion vector x can be applied to compute the later, i.e., 

x = J r .  (16) 

Using for example x~ frame which is attached to the vehicle 
then the covariance matrix of the tip motion is 

R~,~(0) = E{x,x]'} = E { J ~ r ( J t r )  r} 

= J i E { r r T } J ~  = JtRr,.(0)J~' (17) 

where Jl is the Jacobian associated with the frame. A rotated 
flame x .  in which the covariance matrix of the tip motion is 
diagonal can be used to compute the covariance matrix of the 
tip response. This frame will be referred to as the principal 
variance frame. The principal Jacobian J .  can be defined as the 
Jacobian associated with the principal variance frame, i.e., 

R . . . .  (0) = J . R ~ d 0 ) J ~ .  (18) 

To compute the principal variance matrix R . . . .  (0) singular 
value decomposition of the tip motion covariance matrix in a 

Table  1 P a r a m e t e r  values  used for  s imulat ion  

Parameter Value Unit 

ml l0 kg 
m 2 2 kg 
m~ 2 kg 
kj 4000 N/m 
k2 4000 N/rad 
k3 4000 N/rad 
cj 10 Ns/m 
c2 10 N s/rad 
c3 10 Ns/rad 
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Fig. 2 Comparison of results from state-space representation (SS) and power spectral density 
representation (PSDI for O~ = 0 deg, ~'(t] = 5. a = .45: (a) displacement variance R**..(0), (b) 
velocity variance R~o~.(0) 

known frame, for example R,,~ (0) ,  is employed and this pro- 
cess leads to 

Rx,x,(0) = Ux, Ex,U[,  ( 1 9 )  

where U~, is an orthornomal matrix. The diagonal matrix Z~, 
contains the eigenvalues of R~ m (0) and its elements represents 
the principal variance of the tip displacements Rx.x,(0), i.e., 

R~,~,(0) = Z, , (0) .  (20) 

Similar representation can be made for the tip velocity. 

3 E x a m p l e s  
To illustrate the principles discussed in the preceding sec- 

tions, two examples are considered. A zero-mean homogenous 
surface model with spatial autocorrelation function in the vehi- 
cle motion coordinate s of the form R~o~o(S~ - s~) = 
ffZe -"lq-hl where the term s~ - s2 stands for the spatial lag 
s ( h )  - s ( t ~ )  is employed. This model employed by Hac (1985) 
represents the surface of a road. The parameter a = .15/m 
represents an asphalt road and a = .45/m represents a paved 
road (Hac, 1985), a is the variance of the surface irregularity. 
The first-order autoregressive model of the autocorrelation func- 
tion is represented in the time domain t as 

Co(t)  = - g ( t ) a r o ( t )  + . ~ ( t ) a  2 ~ a w ( s ( t ) ) .  (21) 

Equation (21 ) is the state-space representation of the excitation 
that is used in the examples. The double-sided power spectral 
density of the excitation r0 is 

O" 2OAt 
-- . S,. .... 7r(~ 2 + a:~2 ) (22) 

To generalize the results, a dimensionless time t-defined as 

t =  D~. y, d KEN d d 2 Ku  d 2 

~ : VD l l  dF' d t  2 Diid~' "V K,, 
where Dll and Kit are the (1, 1) elements of the inertia and 
stiffness matrices, respectively, can be introduced. Further, all 
responses are normalized by the standard deviation of the sur- 
face profile or. In this study, the Smith algorithm (1971) was 
used to solve Eq. (15).  

Example 1: Single Link Manipulator on a Vehicle. The 
Lagrangian L and the Rayleigh dissipation function R for the 
system are 

1 .2 ( O i )  L = ½b~(f~ + gz)  + :b2r  2 + b3rt¢2 cos 

1 1 2 + 7ki(r: - f 0 )  2 + :k2r2 

1 1 .2  
R = ~ c ~ ( f ~  - f 0 )  2 + ~c2r2 

bi = m~ + m2, b2 = I2 + m2(lcz) 2, b3 = m2lc2. 

The elements of the resulting system matrices can be obtained. 
Using the representations discussed in Section 2.3 the variance 
of the vehicle displacement, manipulator joint displacement, 
and the covariance of the vehicle/manipulator joint displace- 
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ment can be obtained as Rqq (0),  R,.~,~(0) and R , . , r : ( O ) ,  respec- 
tively. It can be shown that the covariance matrix of the tip 
response in the vehicle frame x~ is given as 

R i i  R i 2 ]  

R,,,,,,(0) = LRzt R :2 ] '  

RH = R~2~2(0)l 2 sin 2 (®1), 

R21 = R i 2  

= - R ~ ( O ) l  2 cos (®t) sin (®~) - R , v ~ ( O ) l  sin (19~), 

R ~  = R,.~,.~(O)l z cos z (®~) + 2Rq~:(0)/cos (®~) + R~m(0 ). 

Further, using the principles developed in Section 2.4, it can be 
shown that the maximum variance of the tip response occurs at 
the configuration ®~ = 0 deg + 180 deg and has the value 

R . . . .  (0)  

=(R,=,~(O)/Z+R,m(O)+ 2R,v~ (0 ) l ) [ ;  0]1 ' (23) 

Example  2: T w o  Links Manipulator  on a Vehicle.  The 
Lagrangian L of the two-link flexible manipulator with the vehi- 
cle motion and the elements of the resulting system matrices 
are given in the Appendix. 

4 S i m u l a t i o n  R e s u l t s  a n d  D i s c u s s i o n s  

Numerical simulations to determine the principal variance of 
the tip motion were performed, The main focus of the discussion 

are the results for the two-link mobile manipulator. Table 1 
gives the values of the parameters used for simulation. In the 
following discussion the term displacement refers to the major 
principal variance of the tip displacement, while the term veloc- 
ity refers to the major principal variance of the tip velocity. 

Figures 2 and 3 are made for the specified values of ®2, and 
for _+180 deg range of ®3; a = .45; Y = 5. Figure 2 shows the 
displacements and velocities obtained using the power spectral 
density and the state-space representations. Both representations 
yield the same displacements and velocities. The state-space 
representation, however, has some advantages over the power 
spectral density representation since it can accommodate non- 
proportional damping. Also, unlike the power spectral density, 
the state-space representation yields the displacements and the 
velocities simultaneously (see Eq. (15)).  Further~ it avoids the 
contour integrals required for the power spectral density repre- 
sentation (Eq. (11 )) and it can be used for very large degree- 
of-freedom systems. 

Figure 3 shows the sensitivities of the displacements and 
velocities to changes in the manipulator configuration ®2. It is 
observed that the more perpendicular the manipulator structure 
to the excitation, the higher the response. Thus, the highest 
responses occur at ®2 = ®3 = 0 deg. At this configuration the 
links of the manipulator are perpendicular to the stochastic base 
excitations r'0(t) and ro ( t ) .  The displacement and velocity at 
192 = 90 deg and for 193 = 0 deg are that of the vehicle since 
the dynamic coupling terms between the vehicle and the links 
are zero (D12 = D21 = Di3 = D31 = 0) therefore the vehicle 
moves with the link as a rigid body. 

The influence of the manipulator damping on displacement 
and velocity is shown in Fig. 4. The displacement and the 
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velocity responses can be reduced with the presence of damping. 
But if only the upper link (link 2) and the suspension are 
damped, the responses have low sensitivity to damping. On the 
other hand, if only the lower link (link 1) and the suspension 
are damped are damped the responses are very sensitive to 
damping. 

Figure 5 shows the effect of the surface roughness coefficient 
on the responses for the configuration 1~2 = O3 = 0. The 

surface with high roughness coefficient a = .9 results in quick 
rise and very high responses. The influence of the relative 
lengths of the lower link (link 1 ) to the upper link (link 2) on 
the displacements and velocities is shown in Fig. 6. It is noted 
that the longer the terminal link (link 2) compared to link 1, 
the higher the responses. Figure 7 shows the computed orienta- 
tions and the scaled values of the principal variances of the tip 
motion for six configurations [®2, ®3] : [ 0°, 0 e l ,  [ 0°, 90°], 
[45 °, 0°], [45 °, 90°], [90 °, 90°], [90 °, 0°]. The principal vari- 
ances are illustrated by the crossed line segments located at the 
manipulator tip. The major variance is very high compared to 
the minor variance, i.e., the stochastic motion of the manipulator 
tip is almost unidirectional though the direction is different for 
different configurations. 

5 Conclusions 
The stochastic vibration of a mobile manipulator subjected 

to a random base excitation has been studied. The manipulator 
was mounted on a vehicle with wheels. Uniform motion of the 
vehicle on a rough traction surface induces stochastic excitation 
on the manipulator. Two representations--the Power Spectral 
Density and the State-Space--have been used to develop ex- 
pressions for the covariance matrices of the manipulator joint 
and tip responses. Further, by using the singular value decompo- 
sition technique expressions for the direction and magnitude of 
the principal variance of the tip motion have been derived. 

A singleqink and a two-link flexible mobile manipulators 
have been used to illustrate the ideas. Numerical studies of the 
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Fig. 7 Major and minor principal variances of the tip motion illustrated 
by the line segments located at the manipulator tip ( s ( t l  = 5, ~ = .45): 
(a)  d sp acement variance Rx.x.(O), (b) velocity variance R~.~.(0) 

principal variance show that the responses obtained from the 
power spectral density and the state-space representations are 
the same. The state-space representation is, however, recom- 
mended for practical applications, because it gives the velocity 
and the displacement covariance simultaneously. Also, the state- 
space representation can accommodate nonproportional damp- 
ing without computational complications and it avoids complex 
contour integration. The direction and the magnitude of the 
principal variance has been found to vary significantly for differ- 
ent configurations and to be almost unidirectional along the 
major principal variance axis. From the sensitivity analysis it 
can be concluded that to minimize the stochastic vibration of 
the manipulator tip: in addition to the suspension damping the 
damping efforts should be concentrated in the lower links and 
joints; the lower links should be stiffer than the upper links; the 
lower links should be longer than the upper links. Therefore, it 
is suggested that for minimal tip vibration most of the design 
and control efforts should be focused on the vehicle suspension 
and the manipulator lower links and joints. 
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A P P E N D I X  

Derivation of Equation of Motion 
The Lagrangian L for a two-link flexible manipulator struc- 

ture with revolute joints including the vehicle motion and the 
Rayleigh dissipation function R are given as 

l . 2  1 , 2  1 , . 2 L = ~aL(r, + a '2) + ~a2r2 + ~Ta3(r2 + r3) + a4¢~(r3 + r2) 

X c o s  (®3 + r3) + as¢lr2 c o s  (®2  + r2) 
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÷ a6Pl (P2 q- P3 ) Cos ((92 + /'2 + (93 + /'3 ) 

- a5~2 s in  ((92 + r2) - a6~(¢z + r3) s in  ((92 + r2 

I 2 I 2 
+ 193 + r3) ÷ ½kt(rl - ro) 2 + ~k2r2 + 7k3r3 

1 1 .2 1 .2 
R = gct(f~ - fo) 2 + ~c2r2 + ~c3r3, 

T h e  e l e m e n t s  o f  the  s y s t e m  ma t r i ce s  are g i ven  be low.  

Inertia Matrix D 

Di i  = a l  

(A1) 

(A2) 

D,2 = D21 = a5 cos  ((92) + a6 cos  ((92 -1- (93) 

Dl3 = D3! = a6 cos  ( 0 2  -4- (93) 

D22 = a2 + a3 + 2.0a4 cos  (®3)  

D23 = D32 = a3 + a4 cos  ((93) D33 = a3 

al = mj + m2 + m3, a2 = I2 + m2(lc2) 2 + m3(12) 2, 

a3 = I~ + m3(Ic3) 2 

a4 = m31e312, as  = m21c2 + m312, 

Stiffness Matrix K 

Kii = kl ,  Ka2 = k2, K33 = k3, 

Damping Matrix C 

Ctl = c l ,  C22 = c2, C33 = c3, 

• Excitation Vectors F1, and F2 

Ft = , F2 = 0 
0 

F,.(t) = - ~ ' ( t ) a  B.~ = c r , ~  

Jaeobian Matrix J1 

J11 = 0  Jiz = - l z  sin (192) - 1 3  s in  (192 + (93) 

JJ3 = -13 s in  (192 + 193) 

J22 : 12 cos  ((92) -']- 13 c o s  (@)2 + (93) 

J23 = 13 c o s  ((92 + (93) 

J 2 1 = l  

a6 = m3lc3 

K.,,, = 0 for  n ~: m 

C,,m = 0 fo r  n ~ rrt 
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Vibrations of Ballooning 
Elastic Strings 
This paper investigates the nonlinear dynamic response of a linearly elastic string 
fixed at one boundary and undergoing constant speed circular motion at the other 
boundary. The response divides into nonlinear steady-state ballooning that is .fixed 
relative to a rotating coordinate system and linearized vibration about the steady 
state. Single-loop balloons have high tension and purely imaginary eigenvalues. The 
single-loop vibration frequencies generally decrease with increasing balloon length. 
Highly extensible strings whirl in first and higher modes with forward whirling modes 
having lower frequencies. Axially st~ff strings exhibit whirling only in higher modes. 
If  the nondimensional string stiffness is larger than 1000, then the inextensible steady- 
state solutions and the lowest six vibration frequencies match the extensible results 
to within three percent. One-and-a-half loop balloons are divergently unstable. Long 
and~or sufficiently extensible strings form low-tension double-loop balloons. Inexten- 
sible double balloons are coupled mode flutter unstable. The steady-state balloons, 
steady-state eyelet tension, and balloon stability are experimentally verified. 

1 Introduction 
Manufacture and transport of fibers, filaments, wire, and yarn 

often requires material rotation. Low tension and/or highly ex- 
tensible material undergoes a variety of complex motions during 
rotation. Motion that appears fixed relative to a rotating coordi- 
nate frame is called ballooning (Ames et al., 1968). Buckling 
instability can cause a rapid change in the balloon shape com- 
monly called "balloon collapse" in the textile industry. Flutter 
instability can induce material oscillation about the nominal 
balloon shape (Stump and Fraser, 1996). These dynamic behav- 
iors cause tension variations that can lead to material failure 
and reduced productivity of the associated process. 

Textile applications such as high-speed spinning and unwind- 
ing motivated early research on the formation and behavior of 
ballooning strings (De Barr and Catling, 1965). Batra et al. 
( 1989a, 1989b) summarized early contributions and introduced 
numerical predictions of the balloon shapes and tension in tex- 
tile processes. Fraser et al. (1992) developed and solved the 
yarn path on the package and in the balloon for over-end un- 
winding. Fraser (1993) formulated the ring spinning balloon 
equations of motion and boundary conditions. The effects of 
traveller mass on the guide eye tension and shape of free and 
controlled balloons were investigated. Stump and Fraser (1996) 
numerically simulated the dynamics of the ring spinning balloon 
for inextensible yarns. 

Kolodner (1955) initiated mathematical research on rotating 
strings. He discussed the effect of rotating speed on the steady 
motions of a fixed-free inelastic string. Stuart (1975) applied a 
global bifurcation theory to extend Kolodner's work to different 
boundary conditions. Ames et al. (1968) analytically and exper- 
imentally investigated the ballooning motion of an axially mov- 
ing string under a periodic planar boundary excitation. Shih 
( 1975 ) further analyzed the elliptic ballooning of these systems. 
Soedel and Soedel (1989) investigated the dynamics of a 
straight string rotating about a parallel axis. Antman (1995) 
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developed general equations of motion for elastic strings includ- 
ing both whirling and drawing effects. O'Reilly (1996) studied 
the steady motion of a drawn string. 

In related work, Healey (1990a) investigated the stability of 
rotating elastic and inextensible closed loops. Yang and Hutton 
(1995) included the interaction between the rotating string and 
stationary constraints. Healey (1990b) used group theoretic 
methods to study the large-amplitude, steadily rotating solutions 
of a conducting elastic wire stretched between fixed supports 
in a magnetic field. 

This paper extends and complements the cited prior research 
by studying the dynamics of the linearly elastic balloon that 
forms between a fixed eyelet and a rotating eyelet. The equa- 
tions of motion derive from Antman (1995) with a rotating 
boundary condition similar to Ames et al. (1968). Unlike previ- 
ous researchers, however, the equations are solved in a two- 
step process. First, following Fraser (1993), shooting tech- 
niques solve the nonlinear equations governing the steady-state 
balloons. Second, modal analysis of the linearized equations of 
motion determines balloon stability, vibration frequencies, and 
mode shapes. The balloon shapes, steady-state tension, and bal- 
loon stability are experimentally verified. 

2 Equations of Motion 

Figure 1 shows a schematic diagram of the ballooning string 
system. The string is modeled as a perfectly flexible one-dimen- 
sional continuum pinned at the left boundary and attached to 
aneyelet  rotating with constant angular velocity Q at the right 
boundary. The unstressed, ~0, steady state, K ~, and final, K 2, 
configurations of the string are shown. The coordinate system 
axes el, e2, and e3 rotate about e3 with speed ~. In this coordi- 
nate system, the steady-state K ~ is stationary. 

In the absence of air drag and gravity forces, the steady-state 
configu.ration lies in the el-e3 plane. The vector Ri(So, T) = 
X (S0) el + Z(So) e3 locates ~c 1 where So is the arc length coordi- 
nate measured along K ° and 7" is time. The final configuration 
K 2 is located by R2(So, T).  The relative displacement of the 
string between x l and K 2 is 

U(So, T) = R2 "- R, = Ulel + U2e2 + U3e3. (1) 

From Antman (1995), the balance of linear momentum in the 
absence of surface tractions and body forces is 
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Fig. 1 Schematic diagram of a ballooning string 

0P2 02R2 
OSo - pAo OT-----5- , (2) 

where p and Ao are the constant mass density and cross-sectional 
area of the unstressed string, respectively. The string tension 
vectors are defined by 

Pi = P; OSo / OSo ' 
(3) 

where i = 1 and 2 for the steady-state and final configurations, 
respectively. For a linearly elastic material 

Pi = EAoe;, (4)  

where E is Young's  modulus. The strains of  the string are 

OS; 
ei - 1, (5) 

0& 

where S~ and $2 are the arc length coordinates measured along 
K I and K 2, respectively. For small strains, Eq. (5) approximates 
to 

1 (0R,  ORi 1) (6) 
e; = ~ \ OSo OSo 

Substitution of Eqs. (4) and (5) into Eq. (3) gives 

Pie2 0R2 
P2 - (7) 

el (1 + e2) 0S 0 

Substitution of  Eqs. (1) and (7) into Eq. (2) with OR~/OT = 
0 yields 

OSo \ e l ( 1  + e2) \ 0 S 0  -~o = pao [~2e3 × (e3 × Rt)  

o,J o2 / 
+ ~Ze3 × (e3 × U)  + 2f~e3 × 0--T + OTZJ ' (8) 

or, nondimensionalized, 

Os \ e , ( 1  + e2) ~ s  + 

0U 02U 
= e3 x (e3 X r )  + e3 x (e3 x u)  + 2e3 x - ~  + ~ 5 - ,  (9) 

where 

Rt So U 
• r = xe, + ze 3 = - - ,  S = - - ,  U = - - ,  (10) 

a a a 

Pl E 
t = fiT, ~ = ~ (11) p - pAoa2~22, Y pa2~12 , y ' 

and a is the length of  the rotating eyelet. From Eq. (6) 

Or 0u 1 0u 0u 
e2 = el + - - ' - -  + (12) 

Os Os 2 0 s  Os 

The corresponding boundary conditions are 

r ( 0 )  = 0, r( /o) = el + he3, (13) 

u(0, t) = u(/0, t) = 0, (14) 

where l0 = Lo/a and h = H / a  are the nondimensional un- 
stretched string length and balloon height, respectively. 

3 Steady-State Balloon Shapes 
Substitution of u = 0 into Eq. (9) yields 

ds 1 + P I T  = e3 X (e3 x r ) ,  (15) 

or, in scalar form, 

d( ;, 
d--7 1 + p l y  d s )  - x  (16) 

ds 1 + p / y  

Dot multiplication of  Eq. (15) by d r / d s  and use of Eq. (5) 
gives 

d 1 
• 

Integration of Eq. (18) yields 

p = y~/(1 + p, , /y)2 _ x 2 / y  _ y,  (19) 

where Pe = p ( 0 )  is the nondimensional left eyelet tension. 
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Fig, 2 Nondimensional eyelet tension versus string length: h = 10, ,y = 100 (solid), 3" = 
1000 (dashed), and inextensibie (dash-dotted). Subplots of balloon shapes correspond to 
the nearest marked points on the solid curve. 

For an inextensible string, Eqs. (15) and (19) simplify to 

c~s P = e3 × (e3 × r) (20) 

and 
I 2 

P = Pe - b~x • (21) 

These equations can be solved analytically via Jacobi's elliptic 
sine functions (Hall et al., 1995). 

Equations (16), (17), and (19) are solved using a shooting 
technique for the unknown functions x ( s ) ,  z ( s ) ,  and p ( s ) .  

Following Fraser (1993), the equations are integrated from s 
= 0 to z ( l o )  = h for given p~ using a Runge-Kutta fourth-order 
integrator. The initial conditions for the integration are 

x(0) = z(0) = d~=  0, --a~ 
ds  ds  = X~, 

The initial values x; that provide x ( l o )  z = 1 are determined 
using an optimization algorithm in MATLAB. 

The numerical results for Pe versus the steady-state length 
parameter A1  = (l~ - h ) / l l  are shown in Fig. 2 for y = 100 
(solid curve), y = 1000 (dashed curve), and inextensible 
(dash-dotted curve). The balloon shapes corresponding to the 
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Fig. 3 Theoretical (thick smooth curves) and experimental (thin jagged curves) nondimen- 
sional eyelet tension versus string length: h = 10, 3' = 100 (main plot), and inextensible 
(inset plot). Solid circles (e)  correspond to the balloons in Fig. 8. 
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Fig. 4 Frequencies versus string stiffness of a single loop balloon based on the extensi- 
ble (solid) and inextensible (dashed) steady-state solutions atpe = 17.5 (left solution). 
Inset plots show the first four modes at 1' = 102 and 1" = 105. The modal displacements 
are: tangential ( -  - ) ,  binormal ( ), normal ( -  • - } .  

marked points on the 3' = 100 curve are also shown. The height 
of the balloon is fixed at h = 10, so increasing A~ indicates 
increasing 1~ or increasing balloon length. All balloons start at 
the left eyelet with x = z = 0 and end at the right, rotating 
eyelet with I xl = 1 and z = h. The top curves in Fig. 2 
correspond to single-loop balloons. Taut balloons with small 
Al have high tension. With increasing A~, the eyelet tension 
reduces to a minimum near A~ = 0.06 and then increases. 

As the tension decreases, the balloons acquire more loops. 
The balloons corresponding to the next lower curves change 
shape from one-and-a-half loop to double loop at the turning 
point near p,. = 5.5. The tension increases with increasing A~ 
for these balloons except for a small region near the turning 
point. The balloons on the bottom curves have two-and-a-half 
loops and triple loops. 

For all balloons, the tension decreases with decreasing 3, for 
the same A~. The difference is largest in single-loop balloons. 
The maximum difference between the 3, = 1000 and inextensi- 
ble cases, however, is less than 0.5 percent, so the inextensible 
assumption appears reasonable for strings with y > 1000. 

The smooth, thick curves in Fig. 3 show p.. versus the un- 
stressed length parameter Ao = (lo - h) / lo  for 3, = 100 and 
inextensible cases. The top curves in the main plot and the 
curves in the inset plot correspond to single loop balloons. The 
curves from A to B, and B to E correspond to one-and-a-half 
loop and double loop balloons, respectively. The curves for 3, 
= 100, especially the top curves, shift left relative to Fig. 2 due 
to string stretch. 

4 Linearized Equation of Vibration 
Substitution of Eq. (12) into Eq. (9) ,  elimination of the 

nonlinear u ( s ,  t) terms, and cancellation of the steady-state 
terms from Eq. ( 15 ) produce the linearized equation of motion 

0 [_[ Or 0u ~ Or 0u 1 
J 

0u 02u 
= e 3 ×  ( e l × u )  +2e3  × 0--7 + ~  (22) 

with boundary conditions (14) and 

f f -  ~ ~ Y (23) 1 + p / y '  (1 +p/y)2" 

Equation (22) in operator form is 

u" + Gu + Ku = 0 ,  (24) 

where the displacement vector u ( s ,  t) = [u~, u2, u3] r and 
( : ) = 0 ( .  ) /Ot .  The gyroscopic and stiffness operators are 

[ I o l 0 - 2  0 Kll 0 
G = 2 0 , K = 0 K22 , (25) 

0 0 K13 0 K33J 

respectively, with 

K11 = - 1  - - ( f f  + ~7x2,,)0 a - (ff, s + 2~Tx,,x,.,,.)O 

K I 3  = - ~ ( Z , s X , s O  2 + [Z,sX,s],sO) 

K22 = - 1  - /Y02  - if , ,0 

K33 = - ( f f  + Yz ,~)  02 - (i f , ,  + 2yz,.~z,.,~)O, 

where ( . ) , ,  and 0 indicate partial differentiation with respect 
to s. The in-plane vibrations u] and u3 are coupled through the 
stiffness operator. The out-of-plane vibration u2 is coupled to 
in-plane vibration Ul through the gyroscopic operator. With the 
inner product 

f0" ( u ,  v)  = u r v d s  (26) 

the gyroscopic operator is skew symmetric and the stiffness 
operator is symmetric, i.e., 

(Gu ,  v) = - ( u ,  Gv) 

(Ku,  v) = (u,  Kv) .  (27) 

Thus the eigenvalues of the system are real and stable if the 
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Fig. 5 Frequencies versus string length for single loop balloons with 1' = 100 
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stiffness operator is positive definite. The stiffness operator is 
posit ive definite if  

fo(U,rsQu,s - - > 0, (28)  bt 2 hiE)Ks 

where 

_2  ] t 7+ yX,s 0 ~Tx z,, 
Q ( s )  = 0 /7 (~ ' 

~/x.z,.~ 0 - - a p +  yz,., d 
(29)  

is a symmetric positive definite matrix. Equation (28)  is difficult 
to verify because the integral includes both positive and nega- 
tive terms. In addition, the system may be gyroscopically stabi- 

lized if  the stiffness operator is negative definite (Wicker t  and 
Mote, 1990).  Therefore, a Galerkin method is used for numeri-  
cal balloon stability analysis. 

The displacement  field is represented by an N-term separable 
series of  the form 

N 3 

u(s, t) = Z Z ~Tjk(t)Ots)ek, (30)  
j = l  k = l  

where el = [1, 0, 0] T, e2 = [0, 1, 0] v, e3 = [0, 0, 1] T, and the 
comparison functions 

Oj(s) = ~ sin (jTrs/lo) (31)  

satisfy the pinned boundary conditions. Substitution of Eq. (30)  

0 . 4  I , ' ' ' 

0.2 

o 

-0.2 

• ' ,  wA 

a , m ,  ~ m , m , l , ~ ,  , 

A A 

E 

~ i ~ 0 .~2 -0.4 0 0.05 0 t 0.15 0.25 
Ao 

1 

0.8 

~,o.6 
I "  

~0.4 " t  D ], 

O.2 

% i 0.11 ~ • A 0 0 0.05 0.15 0.2 0.25 
Ao 

Fig. 6 Root-locus for one-and-a-half loop (A to B) and double loop (B to E) balloons 
corresponding to Fig. 2 (,y = 100): first eigenvalues (solid) and second eigenvalues (dash- 
dotted). Complex conjugate eigenvalues are not shown. 
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into Eq. (24) and application of Galerkin's method provides 
the discretized equations of motion 

a~ + G ~  + Kr/ = 0, (32) 

where r/ = [~hl, ~t2, ~13, ~721 . . . . .  T1N3] 7'. 

5 Natural Frequencies, Modes, and Stability 
The eigenvalues k,, of the state matrix associated with Eq. 

(32) 

[ 0  I ] (33) 
A = - K  - G  

are determined using MATLAB. The imaginary parts of the 
eigenvalues correspond to the nondimensional natural vibration 
frequencies of the ballooning string. The lowest ten natural 
frequencies converge to within 0.5 percent of their final values 
at N = 10, so this value is used for all calculations. Stable 
balloons have eigenvalues with nonpositive real parts. Eigenval- 
ues with positive real parts and nonzero imaginary parts corre- 
spond to flutter instability. A single, real, positive eigenvalue 
signifies divergence instability. This analysis bases on the linear 
Eq. (22) so only linear stability results are obtained. 

The numerical results show that all single-loop balloons are 
stable with purely imaginary eigenvalues ~, = + j w .  The single- 
loop balloon natural frequencies ~,, withp~ = 17.5 (left solution) 
versus the string stiffness are shown as solid lines in Fig. 4. 
The range 102 -< y -< 105 maintains small strains (c~ < 0.2). 
The dashed lines indicate frequencies calculated using the inex- 
tensible steady state solution. For small y, the dashed lines 

differ significantly from the corresponding solid lines. For y > 
1000, however, the first six frequencies obtained from the two 
approaches match to within three percent. 

The lowest four normalized modes at y = 1 0  2 and y = 105 
are shown on the left and right of Fig. 4, respectively. The 
dashed, solid, and dash-dotted curves represent displacements 
from the steady-state balloon shape in the tangential vl, bi- 
normal vz, and normal v3 directions, respectively. These dis- 
placements are calculated as follows: 

vl = u~ sin 0 + u3 cos 0, 2)2 = u2, v3 = Ul cos 0 - u3 sin 0, 

where 0 is the angle between the balloon tangent and the z- 
axis. The modes show very little tangential displacement, even 
at small 3'. The lowest mode contains half-sine out-of-plane and 
in-plane normal displacements for small values of y. As 7 
increases, the in-plane amplitude decreases until only out-of- 
plane displacement remains. At y = 100, the first mode whirls 
in the same direction as fL The third mode whirls in the opposite 
direction with almost the same mode shape. Soedel and Soedel 
(1989) observed this phenomena in an eccentrically rotating 
string. As 3/increases, however, first mode whirling disappears 
and third mode whirling veers upward in frequency. Second 
and fourth whirling modes veer downward in frequency and 
exist at y = 105 . The first four modes involve little string stretch 
for y = 105. 

Figure 5 shows the effect of balloon length on the natural 
frequencies of single-loop balloons with y = 100. The frequen- 
cies generally decrease with increasing A0. Taut (small A0) 
balloons have modes similar to the y = 100 modes in Fig. 4, 
while the long-length balloons have more complicated mode 
shapes. 
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Figure 6 plots the one-and-a-half loop and double-loop bal- 
loon eigenvalue loci versus 2x0 using dash-dotted and solid lines 
for pairs of eigenvalues. Capital letters A to E correlate to the 
circled positions in Fig. 3. The top and bottom plots show the 
real and imaginary parts of the eigenvalues, respectively. The 
loci are symmetric with respect to the real axis, as expected 
from the symmetry properties of G and K. 

From A to B, the one-and-a-half loop balloons are divergent 
unstable with two real eigenvalues with opposite sign (solid 
lines) and two purely imaginary eigenvalues (dash-dotted 
lines). At the turning point B, the two real eigenvalues merge 
at the origin and the other two remain purely imaginary. Be- 
tween B and C the eigenvalues have zero real part with nonzero 
imaginary part, indicating stable double-loop balloons. At C, 
two pairs of repeated imaginary eigenvalues form. From C to 
D, the system is coupled mode flutter unstable with two pairs 
of complex poles with opposite sign real parts. At D the eigen- 
values coalesce and from D to E double loop balloons are stable. 
The eigenvalues of two-and-a-half loop and triple-loop balloons 
behave similarly to those of the one-and-a-half loop and double- 
loop balloons except that B and C merge together and the stable 
region D-E does not exist. Hence, stable triple loop balloons 
do not exist in the length range of Fig. 3. 

As string stiffness increases, the B-C and D-E regions de- 
crease. Thus, the coupled mode flutter region increases and 
fewer stable double-loop balloons exist. For inextensible strings, 
no stable double-loop balloons exist for ~x < 0.25. 

6 Experimental Results 
The balloon test system (BTS) shown in Fig. 7 experimen- 

tally verifies the steady-state solutions and stability. The BTS 
has four components: the test stand, signal interface box, PC, 
and power amplifier. A four-bar linkage driven by a DC motor 
rotates the string between the lower eyelet and the upper eyelet. 
The lower eyelet, which is attached to the rotating link, under- 
goes circular motion at a constant speed set by the PC based 
data acquisition and control system. A balloon forms between 
the rotating eyelet and the fixed eyelet. The string terminates 
at the tension sensor above the fixed eyelet. Vertical motion of 
the tension sensor on a motorized lead screw feeds string into 
the system at a negligibly slow speed ( 1 cm/s).  The data acqui- 

sition system records the speed of the rotating link, the tension 
signal produced by the tension sensor, and the string length. 
Heavy, approximately cylindrical strings ale used in the experi- 
ments to reduce the effect of air drag. The balloon height and 
rotating eyelet length are fixed at 25.4 cm and 2.54 cm, respec- 
tively. 

The first set of experiments verifies the theoretical curves 
corresponding to stable single and double-loop balloons. The 
eyelet tension is measured for 2x0 ranging from -0 .2  to 0.25 
with the spinning speed set at 1220 rpm. An approximately 
linearly elastic rubber string with EAt - 1.702 N and pAt = 
1.54 gms/m gives y = 100. The tension and length data are 
collected, nondimensionalized, and plotted in Fig. 3. The thick 
smooth curves correspond to theoretical data and the thin jagged 
curves correspond to experimental data. 

The experimental data for a single loop balloon matches the 
theoretical results to within four percent. The tension decreases 
with increasing ~0, reaching a minimum at A0 = -0.025. As 
~0 increases from this minimum value, the tension increases. 
As predicted by the theory, no stable one-and-a-half loop bal- 
loons are observed. In the region C-D, the experimental balloon 
flutters or jumps up to a stable single loop balloon. Double loop 
balloons can be formed in the region B-C but they are extremely 
sensitive to external disturbances. Consequently, the balloon 
stays stable only for a very short time and then jumps to a 
single-loop balloon. The experimentally stable double-loop bal- 
loon region is slightly smaller than the D-E theoretical region. 
The experimentally measured tension for stable double loop 
balloons deviates from the theoretical curve by about eight per- 
cent. No stable triple loop balloons are observed. 

The inset plot in Fig. 3 shows the theoretical and experimental 
Pe versus A0 curves for inextensible single loop balloons. A 
nylon string with pAt = 1.63 gms/m, ~2 = 1070 rpm, and 
immeasurably small extension is used for the experiment. The 
smooth curve corresponds to the theoretical data and the jagged 
curve corresponds to the experimental data. The experimental 
curve matches the theoretical curve to within three percent. As 
predicted by the theory, no stable double or triple loop balloons 
are observed for A0 < 0.25. 

The second set of experiments compares theoretical and ex- 
perimental balloon shapes for 3/ = 100. A strobe and a video 
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Fig. 8 Exper imenta l  (sol id)  and  Theore t ica l  ( d a s h e d )  bal loon s h a p e s  cor respond ing  
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camera acquire digitized balloon images. Two orthogonal pic- 
tures generate the three-dimensional balloon shapes. The string 
path is computer traced and converted to numerical coordinates. 
Figure 8 shows the theoretical and experimental balloon shapes 
corresponding to the three marked points in Fig. 3. The dashed- 
dotted and solid lines represent the theoretical and the experi- 
mental balloon shapes, respectively. Air drag causes negligible 
out-of-plane displacement (y, in the e2 direction) in the experi- 
mental balloons. The experimental in-plane balloon shapes 
match the theory to within three percent. 

7 Conclusions 
Single-loop balloons have high tension and stable, purely 

imaginary eigenvalues that generally decrease with increasing 
balloon length. Highly extensible strings whiff about these 
steady-state balloons in first and higher modes with forward 
whirling modes having lower frequencies. Axially stiff strings 
exhibit single loop balloon whirling only in higher modes. One- 
and-a-half loop and two-and-a-half loop balloons are divergent 
unstable. Short length and high stiffness double loop balloons 
are coupled mode flutter unstable. With long string length, sta- 
ble double loop balloons exist for y = 100. If 3' > 1000 then 
the inextensible steady-state solutions and lowest six frequen- 
cies match the extensible results to within three percent. Experi- 
mental data closely matches the theoretical steady state tension 
(eight percent), balloon shapes (three percent), and balloon 
stability. 
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Closed-Form Solutions and the 
Eigenvalue Problem for Vibration 
of Discrete Viscoelastic Systems 
A procedure for obtaining closed-form homogeneous solutions .for the problem of  
vibration of  a discrete viscoelastic system is developed for  the case where the relax- 
ation kernel characterizing the constitutive relation of the material is expressible as 
a sum of  exponentials. The developed procedure involves the formulation of  an 
eigenvalue problem and avoids difficulties encountered with the application of  the 
Laplace transform approach to multi-degree-of-freedom viscoelastic systems. Analyti- 
cal results computed by using the developed method are demonstrated on an example 
of  a viscoelastic beam. 

1 In troduct ion  

In this study the equation of motion will include an integral 
term in which the history of strain is required for its formulation. 
Materials yielding such a constitutive relation (requiring his- 
tory) are called as viscoelastic, but the term "hereditary mate- 
rial" will be used in this study as well. Hereditary properties 
are present, e.g., in elastomeric materials such as chloroprene 
rubber, acrylonitrile-butadiene rubber and many others. 

Isotropic homogeneous hereditary materials are considered 
and it is assumed that material is in isothermal state. The visco- 
elastic system (or structure), which is under consideration, is 
also assumed homogeneous. The case when different isotropic 
materials are involved is a straightforward extension of all for- 
mulae presented in this paper and for the sake of brevity is 
omitted here. 

The principal equations to be used are (i)  the constitutive 
relation between stress and strain tensors of the deformable 
body, and (ii) the equation of motion. 

In the theory of linear viscoelasticity, one of hereditary mod- 
els (Rabotnov, 1969, 1980; Flugge, 1967) is a constitutive law 
of the form (a one-dimensional element is taken as an illustra- 
tion): 

( f :  ) c = E e - F( t  - ~-)e(T)dT (1) 

where the scalar function F( t  - ~-) is called the relaxation 
kernel and E is the instantaneous Young's modulus. An alterna- 
tive form of representing ( 1 ), which was used by Christensen, 
(1982), Carini and Donato (1992), Ferry (1970), and Creus, 
(1986) is as follows: 

cr = G(t  - 7)O(~-)dT (2) 

which can be reduced to (1) by integration by parts. G(t  - r )  
is called the relaxation function. Note that G ' ( t  - ~') = EF(t  
- 7-). Thus the forms (1) and (2) are equivalent. In this study 
form (1) will be used. 

Note that this model of the hereditary material has a so-called 
difference type relaxation kernel, i.e., 

F(t ,  7-) = F( t  - T), 

which is an appropriate assumption for many elastomeric mate- 
rials. 

Application of the finite element method to elastic systems 
allows the formulation of dynamic problems in terms of mass 
and stiffness matrices; and vector of displacement (response) 
and force (excitation). For viscoelastic systems E (Young's 
modulus) and u (Poisson's ratio) should be replaced by their 
hereditary analogs (operators). In the case of the finite element 
method this implies the replacement of material constants E, u 
in the stiffness matrix by their viscoelastic analogs (operators) 
/~,~. 

Finite element method applications for dynamic viscoelastic 
systems are usually described in the literature in the context of 
step-by-step numerical integration (in time) schemes ( "ABA-  
QUS," 1993; Day and Minster, 1984), or based on numerical 
inversion algorithms of the Laplace transformed solution. De- 
scription of these numerical methods can be found, e.g., in 
Brunner et al. (1986) and Linz (1985). It may be noted that 
the use of numerical integration for the boundary value problem 
(when conditions are prescribed at different points in time) is 
much more complicated than for the initial value problem. 

In practice one of the widely used models of the constitutive 
viscoelastic law is when the relaxation kernel is represented 
by the sum of exponentials. The existence of homogeneous 
analytical solutions to the free vibration problem for this case 
has been shown (Muravyov, 1996) using the Laplace transform 
method. In this paper a different approach is developed to deter- 
mine the unknown parameters which are involved in the analyti- 
cal solution. This approach also yields the formulation of an 
eigenvalue problem. 

It is also shown that a closed-form solution can be determined 
not only for initial conditions, but also for the boundary value 
problem. This is a distinct advantage in having the solution in 
analytical form. 
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2 T h e  Init ia l  Va lu e  P r o b l e m  for Discrete  Viscoe last ic  
Sys tems  

2.1 Single-Degree-of-Freedom System. Consider a mass 
m connected to the base by a one-dimensional massless element 
which combines the properties of hereditary and viscosity in 
parallel. The equation of unforced motion is as follows: 
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mY(t )  + c 2 +  k x ( t )  - F ( t - ~ - ) x ( r ) d T  = 0 (3) mpj2 + cps + k 1 - ~ ai = 0  j =  1, n + 2  (7) 
i=1 

where the relaxation kernel is assumed to be of the form 

F(t - T) = ~ aie ~"~'-~.  
i=1 

The initial conditions are 

x ( O ) = x o  ~ ( 0 ) = ~ o .  

The presence of the term c.~ arises from placing a viscous dash- 
pot in parallel with a viscoelastic element. It should be noted 
that for some elastomeric materials the term cx" can be intro- 
duced into the constitutive law of the material. Here the integral 
term plus the instantaneous part k x ( t )  will be referred as a 
viscoelastic element, and term c2 as a viscous element. 

2.1.1 Application o f  the Laplace Transform. Applying the 
Laplace transform to (3), one obtains 

m ( p 2 ~ -  2 ( 0 )  - px (O))  + c ( p ~ -  x(0))  + kY- 

- k.g ~ al O. 
i=t P + oli 

Thus 

m(2(0) + px(O))  + cx(O) R ( p )  

( " ) p2m + p c  + k 1 - Y~ ai T (p )  
i~l p + oli 

Knowing the roots Pi (in general complex) of denominator 
T(p ) ,  and assuming they are simple (multiplicity of 1), one 
can obtain a solution in the form (see the theorem in Bugrov, 
1989) 

n+ 2 
x ( t )  ~ R ( p i )  ep , = ,.  (4) 

i=1 T ' ( P  i )  

Thus the free vibration solution in complex form is given by 
(4). If the initial conditions x0 and 2o are assumed real, then 
the solution (4) will be real, because the roots p~ are either 
complex conjugate or real. In  general one can assume that x0 
and 20 are complex, then the real part of the complex solution 
(4) will be a solution for the real parts ofxo, 2o, and imaginary 
part of (4) will be a solution for the imaginary parts of xo, 20. 

2.1.2 The Substitution Method. The solution of (3) will 
be sought in the following form (Muravyov and Hutton, 1996): 

n+2 

x ( t )  = ~ cje"/  (5) 
j=] 

where c i, pj are complex. It may be noted that the number of 
terms comprising the solution is dependent upon n, which is 
the number of terms in the relaxation kernel. Substituting (5) 
in (3) one obtains 

,,+2 [ " ai ] 

n F~_~j__~n+2 ] 
+ k y . L  - a ~  e .... i=1 PJ + ai cs , = 0. (6) 

In this equation there is a sum of exponential functions. To 
satisfy this equation one can set all the coefficients of these 
functions to zero, namely 

and 

n+2 

j=l Pj + Cei 
- - ~ = 0  i = 1, n. (8) 

The initial conditions 

n+ 2 n+ 2 

c j =  xo Z cjPs= Xo 
.i=1 j=l 

(9) 

provide two more equations. 
Equation (7) can be called as the characteristic equation 

with respect to n + 2 complex (in general) roots Ps. They 
can be determined, for example, by using Newton's method, 
or by reduction to an eigenvalue problem (see the REMARK 
below). 

Equations (8), (9) yield a linear system of n + 2 equations 
with n + 2 unknown complex constants cj. In matrix form one 
obtains 

a l a! a I 

p~ + c e i  P2 ~- eel Pn+2 + oq 

an an an 

p~ + c~,, P2 + oG P,.~2 + oG 

1 1 "" 1 

Pl P2 "" P,i+2 

[Cll[ 
X0 

-~o 

(10) 

Note that ai :~ 0 for i = 1, n, otherwise it does not make 
sense to introduce a term in the constitutive law which is a 
priori 0. It is interesting to note that the requirement that roots 
pj are simple (multiplicity of 1 ) is necessary here to provide 
the nonsingularity of the matrix in (10). It may be noted that 
if there is a repeated root then the corresponding columns in 
(10) will be identical and the determinant of the matrix van- 
ishes. This simple roots requirement is not a restriction imposed 
on a system, it is just an indicator which can be used to deter- 
mine if a given viscoelastic system (3) assumes a solution in 
the form (5), or not. If it assumes, then according to the theorem 
of uniqueness (Linz, 1985) this solution is unique. The satisfac- 
tion of this requirement is expected for most viscoelastic sys- 
tems, although if this requirement is not satisfied, then the ana- 
lytical homogeneous solution may differ from (5), and this 
requires additional investigation. 

REMARK. The reduction of characteristic Eq. (7) to an ei- 
genvalue problem is as follows. Equation (7) can be rewritten 
as 

p'*+Zb,,+2 + p"+~b,,+~ + . . . + pbl + bo 

I-if1 (p + a/) 
= 0  

or 

pn+2b,,+2 + p"+ 1b~+1 + . • • + pbl  + bo = 0 (11)  

where coefficient b,+2 = m and the other coefficients can be 
readily evaluated (expressions for them are omitted here). 

Introducing the state-space vector Q = qo[ 1 p p 2 . . .  p,,+ ~ ] T, 
the following eigenproblem will correspond to the characteristic 
Eq. (11): 
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(Eib2 3 n210 1 0 0 . . . 0  
1 0 ' "  

P 0 1 " 0 

0 ... 1 

0 - 1  ~ 1  "" 

+i i !!! 
or in abbreviated form 

(pA + B)Q = 0. (12) 

The eigenvalues of (12) will be the characteristic roots of (7). 
Equation (12) can be interpreted as a generalization of the state- 
space form eigenvalue problem for a nonclassically damped 

For the purpose of illustration, consider the 
system. 

E X A M P L E .  

equation 

f0 ½ Yc" + x - e-(t-')x(~-)d'c = 0 

with initial conditions: x(0) = 1 + i0, .¢(0) = 0 + i0. The 
complex solutions obtained by application of the Laplace trans- 
form (4) and by using the substitution method (12), (10), (5) 
are identical: 

x(t)  = (0.6184 - i0.03739)e p~' + (0.6184 + i0.03739)e pJ 

- 0.2368ePY 

where the roots of the characteristic equation are 

p~ = -0.1761 + i0.86071 P2 = -0.1761 - i0.86071 

P3 = -0.64779. 

In this example the free vibration response comprises a combi- 
nation of a decaying oscillatory mode and one overdamped 
mode. 

2.2 Multi-Degree-of-Freedom System. Application of 
the finite element method to an elastic system yields the mass 
matrix M and the stiffness matrix K. Represent the stiffness 
matrix as 

K = EKo. (13) 

For viscoelastic systems it is necessary to replace Young's mod- 
ulus by the viscoelastic operator/~. Although the assumption 
that Poisson's ratio is constant for viscoelastic material is not 
supported by experiment, for the sake of brevity it is assumed 
here that the Poisson operator is elastic (i.e., constant) ~ = u 
= const. The approach when the Poisson operator is not constant 
will be presented in a subsequent paper. 

The hereditary Young's modulus operator E has form 

~ ( . ) = E [ I ( . ) - J l F ( t - T ) ( . ) d ' r  I (14) 

where the relaxation kernel is assumed as a sum of exponentials 

F(t  - ~-) = ~ ale-e, (~-~1, (15) 
i=1 

The equation of free motion can be written as 

MX + CX + E, KoX = 0 (16) 

where X is a vector of displacements. 

The term CJ(, as was mentioned before, takes into 'account 
the presence of viscous damping arbitrary distributed over the 
system. 

2.2.1 Laplace Transform Method. Applying the Laplace 
transform to (16) and taking into account (14), ( 13 ), ( 15 ) one 
obtains 

E ( a)] p Z M + p C + K  1 - - ~ - ~  ig 
i=1 

= M(X(0)  + pX(O)) + CX(O). 

In abbreviated form, denoting the matrix coefficient of X" as S, 

S(p )X  = M(X(0)  + pX(O)) + CX(O), (17) 

where the matrix S(p) can be written as 

1 
S(p) D(p) .  

l-]~'=j (p + aj ) 

The elements of matrix D(p) are polynomials of degree n + 
2. Inverting the matrix S (p) 

S l(p) = (-I (P + a¢)D-I(P) 
i : 1  

and introducing the adjoint matrix A (p ) = D -~ (p ) det ( D(p ) ) , 
Eq. (17) can be written as follows: 

A(p)  
X" = H L i  (p + c~ ) 

det (D(p))  

x [M(2(0)  + pX(O)) + CX(0)].  

Denoting the roots of the polynomial det (D(p))  as Pk, the 
determinant of D(p) will be 

N 

det (D(p))  = g 1-I (P - Pk) 
k = l  

where N = m(n + 2), m is the number of degrees-of-freedom 
and g = constant complex coefficient. Now one can express 
the solution of the free vibration problem in a form analogous 
to (4): 

x ( t )  = ( I  (p, + 
A(pi)  

N 
~=1 ;=~ g IL=1,k~, (Pi - P~) 

x [ M ( 2 ( O )  + p ,X(O) )  + CX(O)]e",'. (18) 

This is the extension of the theorem from Bugrov (1989) (the 
scalar case was considered there) to the matrix case. It should 
be noted that a formula similar to (18), but for the case of an 
elastic undamped system, is mentioned in Meirovitch (1967). 

REMARK, Note that in the use of formula (18), it is not an 
easy task to derive the analytical expressions for D --~ (p), and 
consequently for A (p). Also the computation ofA (Pi) by A (pi) 
= D ~(Pi ) det (D(p~)) requires the calculation of the limit 

A(p,) = lim [D l(p) det (D(p))]  
p~p~ 

where limp~p, det (D(p))  = 0, and limp~p, lID -1 (P)I[ = ~. There- 
fore the numerical calculation of A (p~) is not well-posed. 

The substitution method described below yields a better way 
to obtain the closed-form solution, and moreover it provides 
the formulation of the eigenvalue problem. 

2.2.2 The Substitution Method. The solution of (16) is 
sought in the form (Muravyov and Hutton, 1996): 

m( n + 2 ) 

X ( t ) =  Z csXj ep/ (19) 
j = l  

where Xj = a complex vector (m × 1 ), c j, Ps are complex, m 
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- number of degrees-of-freedom (size of matrices, M, C, K), 
and n is the number of terms in the relaxation kernel. 

Substituting (19) into (16) and taking into account (14), 
(13), (15), one obtains 

2 a i  p j M  + piC + K 1 - ~ cjXjeP/ 
j = l  i=1 

+ K ~ j=~l ai e-~,' i=l u PJ + Cq cj = 0 .  

In this equation there is a sum of exponential functions. To 
satisfy this equation one can set all the coefficients of these 
functions to zero, namely 

p } M  + pjC + K 1 - a, Xj = 0 
i=1 

.j = 1, m(n  + 2) (20) 

and (with nonsingular matrix K) 

re(n+2) 

Z a-----z---' cjXj = 0 i = 1, n. (21) 
j=l PJ + oei 

Equation (20) can be called as the characteristic equation, 
which can be reduced to the eigenvalue problem (see the Re- 
MARK below) and the characteristic roots (eigenvalues) p~ along 
with vectors Xj can be determined. 

The initial conditions of the problem are 

re(n+ 2) re(n+ 2) 

£ cjXj = X 0 £ c)pjXj = Xo. (22) 
j = l  j = l  

Note that initial conditions (22) could be replaced by other 
conditions, for example, 

re(n+2) re(n+2) 

Y, c'jXj = Xo ~ cjXjePf = X ( T ) ,  (23) 
/= I  j = l  

where T represents some given instant of time (T > 0). Thus 
instead of the initial value problem, the boundary value problem 
(23) (or its modifications) can be posed, and it will only require 
the change in the two last matrix rows in the system (24). 

We will proceed with conditions (22). Relations (21), (22) 
constitute a system of linear m(n  + 2) equations with respect 
to m(n  + 2) unknowns cj. In matrix form this system can be 
written as 

a, Xi a.___L.__l X2 a, Xm(,,+2) 
Pl + OZl P2 + 0~1 Pro(,,+2) + if, 

a, t a,, a n 
X, - -  X2 "" X,°(,,+2) 

Pl + ozn p2 + OLn Pm(n+2) + O/n 

X l  X2 "'" Xm (n+2) 

plXt  pzX2 "" pm(n+z)Xm(n+2) 

icl × . . . .  (24) 
Cm (n + 2 ) Xo 

2o 

REMARK. Introducing a common denominator for all terms, 
Eq. (20) can be rewritten as follows: 

I (p} M + pjC + K)  f i  (pj + as) 
i=1 

- K ~ ai (p j  + ak = O. 
i=1 k= l ,k qq 

Collecting the matrix coefficients of pj,+2, p]+ 1 . . . . .  p~? and 
denoting them as B,+2, B~+, . . . . .  B0, respectively, Eq. (20) is 
equivalent to 

it ( 0 ::: o° 
L 0  0 ... I 

° :' i l)[21 0 - I  ... 0 

+ 0 . . . .  0 = . . (25) 

o o iii "2 

or, in abbreviated form, 

(pA + / ~ ) 0  = 0, (26) 

where the j th eigenvector will be 

p i e  
0J = | P } ~ i  J= 1, m(n+2).  

| | " ' '  

[_p}'+ IXj.] 

The matrix coefficient B,+2 = M, and other coefficients can be 
readily evaluated (the expressions for them are omitted here). 
In the next section the expressions for matrices Bk will be shown 
for one example of a viscoelastic system. 

The eigenvalues of (26) will be the characteristic roots of 
(20). The basic part Xj of eigenvector 0j is used in (24), (19). 

As far as the eigenvalues pj are concerned, they are allowed 
to be multiple (for the multi-degree-of-freedom system case). 
However, they must have linearly independent corresponding 
eigenvectors, to provide nonsingularity of the matrix in (24). 
It is easy to note that if there is a root, for example of multiplicity 
2, which has only one eigenvector (the second one is linear 
dependent), then the two COlresponding columns in (24) will 
be linearly dependent and the determinant of the matrix van- 
ishes. In other words, in order to have a solution of (16) in the 
form (19), it is required that the eigenproblem (25) yields N 
= m(n + 2) linearly independent eigenvectors. This requirement 
is not a restriction imposed on a system, it is just an indicator 
which can be used to determine if a given viscoelastic system 
( 1 4 ) - ( 1 6 )  assumes a solution in the form (19) or not. If it 
assumes, then according to the theorem of uniqueness (Linz, 
1985), this solution is unique. The satisfaction of this require- 
ment is expected for most viscoelastic systems, although if this 
requirement is not satisfied, then the analytical homogeneous 
solution may differ from (19). 

It should be noted that the size of eigenvalue problem (25) 
can be quite large, so it is necessary to have an effective eigen- 
solver for matrices of the type in (25). 

2.2.3 Periodic Loading Case. Application of  the Substitu- 
tion Method. The general case of periodic loading with a pe- 
riod T = 2~r/w is treated by using a complex Fourier series. 
The forcing function is represented as 

L 

F( t )  = Y~ Fke%' wk = kw 
k=0 

where Fk are vectors of size m. 
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The equation of motion is written as follows: 
L 

MJ( + CX + I~KoX = ~ Fke '~; 
k=O 

with initial conditions 

x ( o ) = x o  2 ( o ) : 2 o .  

(27) 

The general solution is now sought as a sum of homogeneous 
and particular solutions, namely 

m(n+2) L 

X ( l )  = Z cjXj ep /  + Z Zk ei~°~`. ( 2 8 )  

j = l  k=O 

Substituting (28) in (27) and taking into account (14), (13), 
(15) one obtains 

p~M + p~C + K 1 - ~ ai X~eP / 
j=~ ;=~ pj + o~i / J 

+ - c ~ . M  + ico~C + K 1 - ~ a_.~_._._ Z~e~ ,. 
k=0 i=1 iOJk Jr O~ i 

+ K  - - c ) X ;  + ~ Zk e -'~'' 
i:~ j=~ t)J + oel ~=0iw~ + oe; 

L 

= Y,  Xkei~Ok t . 
k=0 

From this the characteristic Eq. (20) and subsequently the 
eigenproblem (25) follows yielding values for p2 and X2. 

The quantities Z~ are determined as follows: 

[ ( } )] a; F~ Z~ = - c ~ M  + ic~C + K 1 - . =  iw~ + a; 

k = O , L .  

The linear system of Eq. (24) with respect to unknowns cj 
in this case will have the modified right-hand side: 

a~ Xi a~ X2 a~ Xm(n+2) 
p~ + C~l P2 + °el Pm(,,+2) + OZl 

an  an  
X1 

Pl + oe, P2 + ee~ 

X1 X2 

P l XI P2 X2 

~ X ~  

[c,] 
Cm (n+2) 

an 
" ' '  Xnl (n+2) 

Pro(n+2) + O~,~ 

" '"  Xm (n+2) 

"" Pm(n+2)Xm(n+2) 

- _ ~ .  al Zf  
k=0 f ~ k  + OLl 

L 

-~=~o a-----2---Z* = i~k + a,, 
L 

Xo- Z z~ 
k=O 

L 

2 ( o -  Y, icokZ~ 
k=O 

3 Numerical  Results 
A program was written which calculates analytical solutions 

according to the substitution method and was used for the exam- 
ples below. 

Y 

J 
Z 

Fig. 1 

z a 4 5 6 %  

X 

Viscoelastic beam with fixed ends 

Numerical results are presented for a viscoelastic beam with 
fixed ends (Fig. 1 ). The parameters of the beam's cross section 
were 0.01 × 0.01 m, the length = 0.12 m, the instantaneous 
Young's modulus E was 0.15e+08 Pa, u = 0.3, p = 0.141e+ 
04 kg/m 3 . The beam was meshed by six general beam elements. 
Each node of a beam element had six degrees-of-freedom (three 
linear and three rotational). Thus the size of the problem (num- 
ber of degrees-of-freedom) was m = 30. 

The relaxation kernel in (15) was taken as 

F(t - ~-) = ale-", (' r~ (29) 

where al = 150 s -I, c~, = 200 s -I (n = 1). Thus the size of 
eigenvalue problem (25) and of linear system (24) was m(n 
+ 2) = 90. 

The matrix coefficients in (25) for this case are computed as 
follows: 

Bo = K(oet - al) Bl = Ceel + K Bz = MCel + C B3 = M. 

One can see that ifa~ is negligible (a~ ~ 0), then the characteris- 
tic matrix Eq. (20) is reduced to the usual complex eigenvalue 
problem of a viscously damped system. To investigate the effect 
of the hereditary part (term EKoX) in (16), and not it's com- 
bined effect along with the viscous damping term C.,Y, it was 
assumed that the damping matrix C = 0. 

Standard subroutine "DREIGN" (Nicol, 1982) was used for 
the eigenproblem (25) and the subroutine "CDSOLN" 
for (24). 

Consider the eigenvalue problem (25) in more detail. For 
the system in Fig. 1 the computed eigenvalues are presented in 
Fig. 2 (imaginary parts) and in Fig. 3 (real parts). Numeration 
of the eigenvalues was done on the basis of their absolute values. 

It is found that for the model (29) defined by only one 
exponential term there are 30 (note this number is equal to the 
number of degrees of freedom times number of exponential 
terms in the relaxation kernel) real eigenvatues which corre- 
spond to "overdamped" eigenvectors (also real). The other 30 
pairs of complex conjugate eigenvalues, which have a nonzero 

3E4 

2E4 

"7, 

- 1E4 g 
¢1. 

OE( 

. m  

-1 E4 

E 

-2E4 

-3E4 

' ' , i  . . . .  I . . . .  I . . . .  i . . . .  I . . . .  I . . . .  i . . . .  L . . . .  

A ~  

Z~ 

, , i I i i i i I . . . .  I . . . .  ( . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

10 20 30 40 50 60 70 80 90 

Eigenvalue number 

Fig. 2 Imaginary part of eigenvalues 
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-I(X) ' ' ' ~ .... i .... i .... i , i l . i i i i i l . . . .  I . . . .  i .... 
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Fig. 3 Real part of eigenvalues 

imaginary part, correspond to "underdamped" eigenvectors. 
Although the terms overdamped and underdamped are usually 
used in the context of viscously damped system, their use in 
the case of a viscoelastic (hereditary) system may be adopted 
as well. 

For the purpose of illustration, some of the eigenvectors are 
presented below in Figs. 4 and 5. The first of the underdamped 
eigenvectors (corresponding to eigenvalue No. 31 ) has a shape 
of vibration in plane X - Y shown in Fig. 4. For eigenvalue 
No. 29 the real eigenvector has the same shape (Fig. 5) as the 
complex eigenvector corresponding to eigenvalue No. 31. 

The numerical results in terms of displacements are presented 
in Figs. 6 and 7. The vertical displacements and velocities were 
imparted to the middle node 4 at t = 0. The following variations 
of initial conditions were considered for node 4: case ( 1 ) y(0) 
= 0.005 m, #(0) = 0; case (2) y(0) = 0, #(0) = 10 m/s. All 
the other degrees-of-freedom had zero initial conditions. The Y 
displacements of node No. 4 (Fig. 1) were chosen to illustrate 
the response. The results of free vibration response are presented 
in Fig. 6 for the case ( 1 ), Fig. 7 (case (2)). The response of the 
elastic beam (a~ = 0) is shown by a dashed line for comparison 
purposes. 

The contribution of vectors c~X~ to the solution, namely, their 
norms ncjXjl[ are presented in Figs. 8 and 9 for the initial condi- 
tions (1) and (2), respectively. As would be expected the con- 
tribution of eigenvectors to the free vibration response depends 
on initial conditions. Note that the complex conjugate eigenvec- 
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Fig. 4 The 31st complex eigenvector 
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Fig. 5 The 29th real eigenvector (analog to the 31st one) 
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Fig. 6 Free vibration response, case (1) 
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Fig. 7 Free vibration response, case (2) 

tors contribute equally, for example, pairs of eigenvectors No. 
31 and 32, 43 and 44, 59 and 60, 71 and 72, and 85 and 86 in 
Fig. 8. It is clear that relative contribution of the underdamped 
eigenvectors (with respect to each other) will not change in 
time, because the real parts of their eigenvalues are the same 
(Fig. 3). One can see that the contribution of the overdamped 
eigenvectors No. 24 and 29 is quite noticeable for the case of 
initial conditions (2) (Fig. 9). Note that their relative contribu- 
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tion with respect to the underdamped terms will increase in 
time, because real parts of their eigenvectors are greater (less 
negative) (Fig. 3).  

A boundary value problem (23) was then considered. The 
conditions shown in Fig. 10 were assumed, where for a chosen 
instant of time T = 0.02 s, all the displacements were prescribed 
to be zero. The solution (the vertical displacements of nodes 2, 

3, 4) for this case is shown in Fig. 11. Then an instant T = 
0.016 s was chosen, and the response is shown in Fig. 12. One 
can observe the difference in the initial velocities which are not 
prescribed, but computed. 

For forced vibration a vertical periodic force F(t) (Fig. 13) 
was applied at the node 4. It is supposed that F(t) = 0 for t 
C [ t , ,  T] .  
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Fig. 14 Forced response with zero initial conditions 

This case of loading has a period of T = 0.1 s and Fourier 
series (40 harmonics) was used to represent the forcing function 
F(t). The high-frequency harmonic contribution is slightly no- 
ticeable after t = t ,  due to the limited number of terms in the 
Fourier series. 

The vertical displacements of the nodes 2, 3, 4 (Fig. 1 ) were 
chosen to illustrate the response. The solution with zero initial 
conditions (for all degrees-of-freedom) is presented in Fig. 14 
f o r t C  [0, T]. 

Summary 
In this study the two methods of obtaining analytical solutions 

in the time domain for discrete viscoelastic systems (in which 
the relaxation kernel is represented as a series of exponentials) 
have been shown. 

A new method (substitution method) has been proposed that 
avoids the difficulty encountered in the use of the Laplace trans- 
form approach for multi-degree-of-freedom systems and which 
involves formulation of an eigenvalue problem. 

The analysis of eigenvalues and eigenvectors has shown that 
there will be a significant number of overdamped eigenvectors, 
which correspond to real negative eigenvalues. 

Finite element formulations for viscoelastic systems have tra- 
ditionally been described in the literature in the context of step- 

by-step numerical integration (in time) schemes. The substitu- 
tion method yields an alternative independent solution tool for 
an important class of viscoelastic systems for which the relax- 
ation kernel is represented as a series of exponentials. 

It has been shown that a closed-form solution can be deter- 
mined not only for initial conditions, but also for the boundary 
value problem. This is a distinct advantage in having the solu- 
tion in analytical form. It may be noted that the use of numerical 
integration for the boundary value problem is much more com- 
plicated than for the initial value problem. 
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The Reissner-Sagoci Problem for the 
Transversely Isotropic Half-Space 

M. T. H a n s o n  1'2 and I. W.  Puja  I 

This paper evaluates the elastic field in a transversely isotropic 
half-space caused by a circular flat bonded punch under torsion 
loading. The elastic field is found by integrating the point force 
potential functions. For the case of isotropy the present results 
agree with previous analysis. 

1 Introduction 
In isotropic elasticity a class of mixed boundary value prob- 

lems for the elastic half-space can be classified as axisymmetric 
torsion. In this case the elastic field in cylindrical components 
takes a particularly simple form consisting of only one nonzero 
displacelnent and two nonzero stress components. For this load- 
ing case Reissner and Sagoci (1944) were possibly the first to 
examine a mixed boundary value problem between the tangen- 
tial displacement and stress on the half-space surface. They 
considered the problem of a circular flat disk bonded to a half- 
space under the action of a torsional couple. Their analysis 
provided the contact shear stress under the disk and the tangen- 
tial displacement on the surface outside the disk. The elastic 
field was soon thereafter given by Sneddon (1947) illustrating 
the use of Hankel transforms in developing complete solutions 
to mixed boundary value problems. 

In the present study the Reissner-Sagoci problem is revisited 
for the transversely isotropic half-space. The reasons for this 
are twofold. The first is to display how the elastic field can be 
obtained by a direct integration of the point force potentials. 
The first reason leads directly to the second which is to put the 
elastic field in a form consistent with other mixed boundary 
value problems which have recently been solved for the trans- 

t Department of Engineering Mechanics, University of Kentucky, Lexington, 
KY 40506-0046. 

2 Mem. ASME. 
Contributed by the Applied Mechanics Division of TIlE AMERICAN SOCIETY 
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versely isotropic half-space. Fabrikant (1988) evaluated the 
elastic field caused by a rigid flat punch acted upon by a concen- 
tric force or tilting moment. Hanson (1994) included the effect 
of shear traction. Also Hanson (1992a, b; 1993) evaluated the 
elastic field for the additional cases of a spherical and conical 
punch under normal and shear loading. In all of these solutions 
the elastic fields are given in a consistent fashion in terms of 
two length parameters. The present analysis puts the elastic field 
for the Reissner-Sagoci problem in this same form. 

2 Potential Functions for Transverse Isotropy 
The transversely isotropic half-space is taken as the region z 

> 0 where the surface z = 0 is parallel to the planes of isotropy, 
Fig. 1. A potential fnnction formulation was first given by Elliot 
(1948). The notation of Fabrikant (1989) is presently adopted. 
The displacements are taken as u, v, and w in the x, y, and z 
directions. Here All, A13, A33, A44, and A66 are the five elastic 
constants. The solution of the equilibrium equations in terms 
of three potential functions Fi, F2, and F3 is given by Fabrikant 
(1989) in the form 

OF1 OF2 
uC = A(Ft + F2 + iF3), w = ml-~z + mz---~z , (1) 

with i being the complex number, i = ~/(-1),  ml and m2 are 
constants defined below, and u c is the complex displacement 

Fig. 1 Geometry and coordinate system for point loading 
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u c = u + iv. The operator A and the operator A used subse- 
quently are given as 

= _ _ _  0 ~ 0 ~ A O + i  O A = - - + - -  (2)  
Ox Oy '  Ox2 Oy2" 

The functions F~ satisfy the relations 

--0~Fj = 0, j =  1 , 2 , 3 ,  (3)  
AF; + ~ Oz ~ 

where 39 are also constants. The constant y3 is given as y~ = 
A44[A66 while y~ = nj, j = 1, 2 and nj are the two (real or 
complex conjugate) roots of the quadratic equation 

AiiA44ny + [Ai3(A13 + 2A44) - Ai iA33]nj  + A33Aga = 0. (4)  

The constants m~ are related to yj as 

AIi3/~ -- A44 (A13 -I- Ag4)'y 2 
mj : Ai3 + A44 A~3 2 , j = 1, 2. (5)  

• . - y j A ~ 4  

Using the following stress combinations in Cartesian (x, y, 
z) or cylindrical (p, 05, z) components a~ = ~r~ + cr~y = app + 
cry6 , cr~ = cr~ - g%y + 2i~-~y = e2i4~(O'pp - o'4~ 6 + 2i'r;6) and ~-~ 
= ~-~ + i%~ = e~4(r,~ + ir+~), the stress field can be written 
in the following form: 

~r, = 2A66 ~f2 {[y~ - (1 + m,)y~]F.  

+ [ Y ~ -  (1 + m2)y~]Fz},  

or: = 2A66A:[F~ + Fz + iF3], 

0 ~ 
~rz~ = A44 Oz--- 5 [ y ~ ( l  + m~)F~ + y2(1 + mz)F2], 

0 
r z = A a 4 A - ~ - [ ( 1  + m l ) F l  + ( 1  + m : ) F : + i F 3 ] .  (6)  

oz 

3 Point Shear Force Green's Functions 

The geometry and coordinate system are shown in Fig. 1. 
Using cylindrical coordinates (p, 05, z),  a point force is applied 
on the surface at Po, 050 with components T~ and Ty in the x 
and y directions, respectively. The potential functions for these 
fundamental point force solutions were put in a very convenient 
form by Fabrikant (1989) as 

H'yt Y~ (TA + T A ) x ( z , )  F ' ( P ' 0 5 ' z ; P ° ' 0 5 ° ) = ( t ~  l )  2 

HT2 Y~ (TA  + TA)x(z~)  F~(p, 05, z; po, 05o) = (m~ -- 1) 2 

F3(p, 05, z; Po, 050) = i y~- (T?t - TA)x(z3)  (7)  
47fA44 

where T = T~ + iTy, an overbar indicates complex conjugation 
and the function X(zj) is 

X(zg) : z ~ l n [ R g + z ~ ] - R j ,  j =  1 , 2 , 3 ,  (8)  

with 

R 2 = p2 + p~o- 2 p p o c o s ( 0 5 -  050) + z 2, 

Z 
Z ~ = - - ,  j =  1 , 2 , 3 ,  

and the constant H is defined as 

(9) 

BRIEF NOTES 

H = (Y~ + T2)AH (10) 
27r(AHA33 2 ' - A13) 

4 Potentials for the Reissner-Sagoci Problem 

Consider now the boundary conditions for the Reissner-Sa- 
goci problem. The physical interpretation is that of a rigid fiat 
punch of circular geometry perfectly bonded to a half-space 
under the action of a torsional couple which causes a rotation 
parallel to the surface. Using the cylindrical displacements Up, 
u6 and stress components rpz, r,~ the mixed boundary condi- 
tions on z = 0 become 

up = w = O, u~ = )~p, p < a; 

Tpz = ~ =  az~=O, p > a ,  (11) 

where X is a constant. The special case of transverse isotropy 
considered presently results in this problem being one of axi- 
symmetric torsion, analogous to the isotropic solution. Hence 
the stresses in the contact region are similar to the isotropic 
form and can be taken as (Reissner and Sagoci, 1944) 

A p  
7"p~ = ~r:~ = O, r ~ ( p )  = (a 2 _ p2)~/2 , p < a, (12) 

where A is a constant related to k above. 
The potential functions for this problem can now be found 

by direct integration. The complex force T = T~ -e iT~ in Eq. 
(7)  is replaced with -ie~o'c~(po)podpod05o and the result is 
integrated over 0 < Po < a,  0 < 05o < 27r. The potentials then 
have the form 

iAHy ~ 7 
Fj(p, ~, z) = 2(~nj ~ ~) { ~_[zj~O(p, 6,  zj) - ~ (p ,  05, zj)] 

- A[z j~(p ,  05, z j ) -  ~ ( p ,  05, zj)]},  j = 1,2,  

F3(p, 05, z) = - Ay----2-~ { A.[z3~(p, 05, z3) - '~(p, 05, z3)] 
47rA44 

+ A[z3~(p, 05, z 3 ) -  ~ ( p ,  05, z3)]}, (13)  

where the functions ~0(p, 05, zj) and ~ (p ,  05, zj) are defined as 

f f ~ f o '  P"e~*" ln[Rj+zj]podp,,d05o, ~(p,  05, zi) = 2--_-7~ 112 
(a  - po)  

f[~fo'Po e'~° • (p, 05, Zj) = (a z ~-~o)~/2 Rjpodpod05o, (14) 

and ~p(p, 05, zi), ~ (P ,  05, zj) can be obtained from above by 
replacing e ~o with e-~o.  

The above integrals can be extracted from the results in Fab- 
rikant (1988) and Hanson (1994) as 

= 7rpe"~(zi s in - '  l~j(a) [a 2 - /~j(a)] ~/2 ~0(p, 05, z j) 
t P 

3 j  J 3p2J ' 

~(p,  05, zj) = Trpei¢(~ [p2 + 4zy - 4aZ] sin -~ l~j(a)p 

- [ l Z l j ( a ) + 2 l ~ i ( a ) - ~ - l l l j ( a ) [ p [ - l - ~ j ( a ) ] Z / 2 ~ 4 p  2 j ,  (15)  
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BRIEF NOTES 

where 

1 l l (a)  = ~2{[(P + a)2 + z2]l/~ - [(P - a)~ + z2]1/2} , 

1 12(a) = ~7{[(P + a) 2 + z2]1/2 + [(P - a)  2 + Z2]'/2} , (16) 

and l lj(a ), 12j (a)  are found from the above equation by replacing 
z with z;. The functions ~ (p ,  49, zj), ~ (p ,  49, zj) can be obtained 
from above by replacing e '~ with e - 'C  

To find the potentials the following results can be used: 

AS(p,  49, zj) = Atp(p, 05, zj) 

= 27r{z, sin -I l l a ( a _ _ _ ~ ) [ a Z l } / a  ) p  ]112}, 

A t ( p ,  49, z;) = A,I>(p, 49, zj) = 2rr{~ [p2 + 2 z ~ -  2a21 

× sin_ I lu(a ) + [l{j(a) - 2a2][p 2 - l { j ( a ) ] m ~  
P 4Iv(a)  J 

o 

From these results the potentials become 

Fj(p, 49, g) = 0 ,  j =  1,2,  

F3(p, 6, z) 

(17) 

A'y3 {z3~kllt(p, ~ ,  z3) -- Xt~(J O, ~ ,  Z3)} .  ( 1 8 )  
271-A44 

5 T h e  E l a s t i c  F i e l d  

The elastic field can now be found by direct differentiation. 
In Cartesian coordinates the results are 

uc = A'y3ipe i4 ~ _  l sin 1 /13(a )  

A44 [ 2 p 

+ l~3(a)[Pz-~-l~3(a)jl/2},2p 2 (19) 

2iApei2,b 3 2 2 -if2 l l . f fa)[p - l13(a)] 
~r2 = - , (20) 

Y3 p3[1223(a) -- l ~ 3 ( a ) ]  

2 2 2 1/2 
~-z = - l A p  ei~ ll3(a)[-------~--~13(a)-----! (21) 

p2[l~3(a ) - /~23(a)] ' 

where w = cr~ = Crzz = 0. In cylindrical coordinates the nonzero 
displacement and stress components are 

_ AT3 p ~ 1_ sin i li3(a) 
u4 

A44 L 2 p 

+ ll3(a)[Pa Z l{3(a)]l/a~ (22) 

2p 2 J ' 

lj23(a)[a2 2 ,/2 - 1 ,3(a)]  
r,~ = - A  p[l~3(a) - l~3(a)] ' (23) 

A l~3(a)[p 2 - l~3(a)] I/2 
"r4'P = y:~ p2[1223(a) - l~3(a)] (24) 

Now the relation between the constants A and h can be easily 
obtained. On the surface as z ~ 0 it is easy to verify 

Lim l13(a) = min (a,  p) ,  Lira 123(a) = max (a,  p),  (25) 
Z-~0 Z-~0 

where rain is the minimum of the two values and max is the 
maximum. Thus for z = 0, p < a Eqs, (1 1), (22) provide 

ATrT3 AccT3 A 4A44K (26) 
u4' = 4~44  p' K -  4A44 ' = rrT3 

For an isotropic material 3/3 ~ 1, z:~ ~ z and I13(a), 123(a) 
become li (a) ,  12(a) as defined in Eq. (16).  Furthermore A44 -* 
# where # is the shear modulus. In this case Eq. (26) provides 
A = 4#MTr. Applying these results in Eqs. (19) - (24) provides 
the elastic field for isotropy. 

6 D i s c u s s i o n  

It is noted that Reissner and Sagoci (1944) did not give the 
elastic field. However, they did give the expression for u~ on 
the surface when p > a. The present result is found from Eqs. 
(22),  (26) above for isotropy as 

4hp { 1 a alp a - -  a2]1/2"~ 
u 4, - - - sin - i _ + . (27) 

rc 2 p ~p2 j 

Using the identity 

sin l a -=  tan i a p [p2 _ a 2] t/2 

rr tan-  l [/92 -- a 2 ]  l/2 
: - - , ( 2 8 )  

2 a 

allows the Eq. (23) in Reissner and Sagoci (1944) to be ob- 
tained apart from a misprint in their formula (the 7r/2 should 
be 2/rr).  It is also noted that this result also agrees with a 
s i m i l a r  e x p r e s s i o n  d e r i v e d  b y  S n e d d o n  ( 1 9 4 7 )  i f  o n e  c o n ' e c t s  

the misprints by replacing the symbol a with ro and adds p in 
the denominator of the last term. 

Sneddon (1947) derived the elastic field for the case of isot- 
ropy. His solution is given in terms of four parameters X, 0, R, 
and 49. The present solution is written in terms of the two 
parameters l~(a) and lz(a) defined in Eq, (16).  In fact the 
solution can be written in terms of only one parameter since 
ll (a) 12 (a) = ap. Although Sneddon' s expressions for u,~ and 
r+~ are in a quite different form, a numerical analysis showed 
them to be equivalent. In this regard one should note that in 
the expression for r ~  the term XIR should be M R  2. In making 
a numerical calculation using Sneddon's expressions, the angle 
49 should be chosen as pointed out in Eq. (70) of Hanson 
(1992b).  
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An Approximate Analysis of Notch- 
Tip Deformation Under Mixed-Mode 
Loading in Ductile Solids 

A. K. Ghosal 3's and R. Narasimhan 4'5 

Introduction 
In practical situations, the loading experienced at the tip of a 

crack or notch in a structural component could be very complex 
resulting in mixed-mode fi'acture. In recent years, several inves- 
tigators (Tohgo et al., 1988; Aoki et al., 1990; Maccagno and 
Knott, 1992; Ghosal and Narasimhan, 1994) have studied 
mixed-mode ductile fracture initiation (involving modes I and 
II) using experimental and computational methods. Ghosal and 
Narasimhan (1994) concluded, based on numerical simulations 
which modeled the micromechanics of ductile fracture, that the 
notch-tip deformation length (see definition given below) at 
fracture initiation is reasonably independent of mode-mixity 
(except for loadings very close to Mode II). This contention is 
supported by the experimental results for the notch-tip displace- 
ments at fracture initiation presented by Tohgo et al. (1988) 
for a structural steel SM41A. Thus, the notch-tip deformation 
length may be viewed as a local fracture characterizing parame- 
ter under mixed-mode loading in ductile solids. 

However, an analytical expression connecting this quantity 
with the J-integral is not available in the literature. Such an 
expression can facilitate interpretation of experimentally mea- 
sured notch-tip displacements under mixed-mode loading. Fur- 
ther, since at present there is no method for determining the 
near-tip plastic mode-mixity, experimental results (see, for ex- 
ample, Tohgo et al., 1988) are being reported using the ratio 
of the elastic stress intensity factors (KflKH). This may be 
meaningless because hlrge plastic yielding can take place prior 
to fracture initiation in low strength alloys. It is proposed here 
that a measurement of the notch-tip opening and sliding dis- 
placements (as in Tohgo et al. (1988) and Maccagno and Knott 
(1992)) can be used to deduce the near-tip plastic mode-mixity. 

Approximate Expression for Notch-Tip Deformation 
Length Under Mixed-mode Loading 

In this note, an approximate method for calculating the notch- 
tip deformation length using the asymptotic mixed-mode crack- 
tip fields in a power-law-hardening solid of Shih (1974) and 
Symington et al. (1988) wi]l be presented. For a power-law 
hardening solid obeying an uniaxial relation of the type given 
by 

~lco = ~( a l ~o)", (1) 

Shih (1974) has derived the asymptotic mixed-mode (involving 
modes I and II) displacement field as 

u~ cecor( J )"/("+~ = ~i(O, n, MP). (2) 
\ eecroCoI,,(m p) r 

Here, (r ,  0) are polar coordinates centered at the crack tip. 
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~ro X2 r 

Fig. 1 Schematic illustration of a semi-circular notch tip in the unde- 
formed configuration 

Also, or0 is the initial yield stress of the material, Co = ao/E is 
the initial yield strain, n is the power-hardening exponent, c~ is 
a material constant, and J is the J-integral. Further, M ~' is a 
near-tip plastic mode-mixity parameter which is defined by Shih 
(1974) as 

m p =  2 tan i lim croo(r, 0)l  
,'r ,~ cr,.o( r , O) 1 

(3) 

and /,, is a dimensionless constant which is dependent on M p 
and n. The value of/,, for different M r' and n have been tabulated 
by Symington et al. (1988) for the case of plane strain. The 
dimensionless angular functions a~ are also given in tabular 
form by Symington et al. (1988) for different n and M r'. 

Under conditions of small-scale yielding, Shih (1974) has 
obtained (through full-field finite element analyses) the rela- 
tionship between the near-tip plastic mode-mixity M p and the 
far-field (remote) elastic mode-mixity M e which is given by 

M" = (2/7r) tan '(Ks/KH) = (2/Tr)~p. (4) 

For example, from his results for the plane-strain case, it is 
found that for g, = rr/3 and 7r/6 and con'esponding to n = 10, 
the values of M r' are approximately 0.8 and 0.5, respectively. 

Now, consider a semi-circular notch of radius r0 (see Fig. 1 ) 
and assume that the asymptotic mixed-mode displacement field 
(Eq. (2))  can be applied to obtain the displacements of points 
P and Q on the notch flanks which are above and below the 
center of curvature O of the notch in the undeformed configura- 
tion. Thus, it is assumed that 

u~'lro -~ A(Jl(~roro))"/("+l)l~'i(Tr, n, Ml'),  (5) 

and 

u~lro ~- A(Jl(~yoro) )';/°'+L)ta;(-Tr, n, MP). (6) 

Here, the factor A is given by 

A = oze0(1/(o~c0/,~)) "/°'+l). (7) 

It must be noted that Eqs. (5) and (6) apply strictly for a sharp 
crack (under the assumption of small geometry changes and 
validity of the deformation theory of plasticity) in the limit as 
pb ~ 0. However, it will be seen to hold reasonably well for a 
notch taking into account finite deformations, when compari- 
sons are made later with finite element results. 

Now, the notch-tip deformation length d is defined as the 
linear distance between points P and Q after deformation under 
mixed-m0de loading. On determining the location of points P 
and Q in the deformed configuration using the displacements 
given by Eq. (5) and (6),  and computing the distance between 
them, the normalized notch tip deformation length is found to 
be 
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d 1 

b0 2 

× A Aft, + 2 + AL~obo) At/zJ . 

(8) 

Here, b0 = 2r0 is the initial notch diameter and At/i = ai (Tr, n, 
M I') - l~i(-Tq" , n ,  M P ) .  

In order to check the validity of the above equation, the 
notch-tip deformation length as a function of J/((robo), com- 
puted from Eq. (8),  is compared in Fig. 2 with the finite element 
results of Ghosal and Narasimhan (1994). This finite element 
analysis was based on a finite deformation formulation under 
small-scale yielding and the values of Co, n, and ce were taken 
as 1/500, 10, and 1, respectively. The values of M p, In, A ,  and 
Aae for different far-field elastic mode-mixities ~b were obtained 
from Shih (1974) and Symington et al. (1988) corresponding 
to the above material constants and used in Eq. (8) to generate 
the approximate analytical variations. It can be seen from Fig. 
2 that the approximate analytical variations match quite well 
with the numerical (finite element) results. 

The near-tip plastic mode-mixity M p can also be deduced 
from measurements of the notch-tip opening displacement 61 
and sliding displacement 6,  (as in Tohgo et al. (1988) and 
Maccagno and Knott (1992)).  Indeed, from the tables of Sym- 
ington et al. (1988), it is possible to obtain the ratio of 2xl7~/ 

At/2 for a given M p. Thus, the value of M p corresponding to a 
particular mixed-mode specimen (and load)can be determined 
by matching the ratio of (the experimentally measured) 6,/61 
with a corresponding ratio At/~/At/2 from the tables of Syming- 
ton et al. (1988). 

On making use of the above approach, it will be possible to 
obtain the values of both J and M p from experimental measure- 
ments of crack-tip opening and sliding displacements at fracture 
initiation. This will enable organization of experimental data 
on mixed-mode fracture toughness in low strength alloys using 
a physically acceptable Jc versus M p locus rather than the pres- 
ently used K/-KH locus. 
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An Axisymmetric Inclusion in One of 
Two Perfectly Bonded Dissimilar 
Elastic Half-Spaces 

A. M. Korsunsky 6 

This paper introduces an effective method ]br the solution of 
axisymmetric elastic inclusions in bonded dissimilar half- 
spaces. The method leads to new concise expressions for the 
elastic fields in terms of' only two scalar Papkovich potential 
.functions. A host of earlier solutions, which were obtained using 
a range of alternative techniques, involving surface stress relax- 
ation and Hankel transforms, are shown to be subsumed in the 
present result. 

1 In trod u c t ion  

Ellipsoidal inclusions and inhomogeneities play an important 
role in elastostatics. Eshelby (1957, 1959) was the first to dem- 
onstrate that any inhomogeneity of ellipsoidal shape may be 
modeled by an inclusion of the same shape with uniform stress- 
free strains (eigenstrains) (Mura, 1982). Earlier findings, such 
as Goodier's solution for ellipsoidal inclusions with thermal 
expansion eigenstrains (Goodier, 1937) represent specific cases 
of the general Eshelby result. 

Elastic solutions such as Eshelby inclusions are closely re- 
lated to the family of fundamental singular solutions in the 
theory elasticity, such as point forces, force doublets, centers 
of dilatation, infinitesimal dislocation loops, etc., which Mindlin 
and Cheng (1950) termed nuclei of strain. Specific relationships 
exist between various strain nuclei. For example, force doublet 
solutions are derived from the Kelvin's solution for a concen- 
trated force in an infinite space by differentiation with respect 
to the coordinate of the point of application. If now Fkl denotes 
some set of functions describing the elastic field of a force 
doublet, and D,j denotes the corresponding set of functions for 
an infinitesimal dislocation loop, then lbr an isotropic solid 

I ( 3 -  K____~)6~iFkk I ( l )  Dij = lU Fij + l~i i + ( K --  1) ' 

where/_t is the modulus of rigidity, and the Kolosov's constant 
K = 3 - 4u, where u is the Poisson's ratio. 

Distributions of the strain nuclei may be used to model other 
objects, which give rise to singular or regular elastic fields. For 
example, it is easy to show that the solution for an Eshelby 
inclusion with purely dilatational (thermal expansion) eigen- 
strain can be obtained by the supelrposition of centers of dilata- 
tion uniformly distributed over the inclusion volume. Uniform 
surface distributions of infinitesimal displacement discontinu- 
ities produce finite Volterra dislocation loops (Dundurs and 
Salamon, 1972; Salamon and Dundurs, 1971), while distribu- 
tions of unknown density may be used to obtain integral equa- 
tion formulations of crack problems. 

Mindlin ( 1936) was the first to address the problem of finding 
the analog of Kelvin's point force solution for the case of an 
elastic half space. Mindlin presented his solution in terms of 
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B R I E F  N O T E S  

the Galerkin vector, and later extended his results to include 
other strain nuclei (Mindlin and Cheng, 1958), such as force 
doublets, centers of dilatation and rotation, etc. Rongved ( 1955 ) 
developed the solutions for a concentrated force in one of two 
perfectly bonded dissimilar elastic half-spaces. 

From the above discussion, two patterns emerge which are 
used in the derivation. On the one hand, the solutions are devel- 
oped for progressively complex strain nuclei in an infinite elastic 
medium. This is generally done using the method of superposit- 
ion, which may lead to integral or differential relationships, 
e.g., such as Eq. ( 1 ). On the other hand, fundamental solutions 
for strain nuclei such as the point force are found for progres- 
sively complex problem geometries, such as an elastic half- 
space or two perfectly bonded dissimilar elastic half-spaces. 

The interrelationship between various solutions is illustrated 
in Fig. 1. Taking the solution A for a point force in an infinite 
space as the starting point, the step can be made to solution B 
for a general strain nucleus. Also, solution C for a point force 
in a complex problem geometry can be found. In order to obtain 
solution D for a general strain nucleus in a complex problem 
geometry, two rontes, ABD or ACD, can be taken. Both involve 
the transformation of an infinite space solution into that for a 
complex geometry. If this transformation can be formalized into 
a recipe for an arbitrary strain nucleus, solution D can be readily 
obtained using any of the two routes. 

For the particular case of an axisymmetric Eshelby inclusion 
in an elastic half-space, the derivation of the solution (which 
corresponds to a specific case of solution D in the above 
scheme) was given by Yu and Sanday (1990). In the derivation, 
the relaxation of surface stresses and the method of Hankel 
transforms were used. However, the final solution does not 
contain any integrals of Bessel functions, which suggests that 
greater economy could be achieved in the derivation if more 
effective techniques were to be applied. A general transforma- 
tion recipe allowing the solutions for complex problem geome- 
tries to be obtained by formal application of specific rules pro- 
vides such a technique. 

An example of such recipe for the case of problem geometry 
given by two perfectly bonded dissimilar elastic half-spaces was 
given by Aderogba (1977). In his paper, Aderogba formulated a 
theorem which relates the Papkovich potentials for an arbitrary 
strain nucleus in the two geometries. 

2 A x i s y m m e t r i c  Strain Nucle i  

The set of Papkovich potentials (Papkovich, 1932) consists 
of a harmonic scalar potential ~I' and a harmonic vector potential 
¢ .  Displacements and stresses due to these potentials are given 
by 

2p.u, = (K + 1)~, - (x],:I~ + q¢).~ (2) 

1 
a0 = ~( K - l ) ( q~i.~ + ~ij)  + ½( 3 - K ) '-I'k,k,5,j 

- &-~k,o' -- ~IJ~;, ( 3 )  

where a comma preceding an index denotes differentiation with 
respect to the relevant Cartesian coordinate. 

In this paper we will focus our attention on the axisymmetric 
strain nuclei. In this particular case the number of Papkovich 
potentials required to describe the elastic fields can be reduced 
to two, namely, the scalar potential • and the axial component 
of the vector potential ~. Of course, these two functions are 

A: Point force solution C: Point force solution 
in an infinite space in a complex problem geometry 

B: General strain nucleus D: General strain nucleus solution 
solution in an infinite space in a complex problem geometry 

Fig. 1 Derivation ofelasticity solutions 
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not independent. In fact, the solution may be described using a 
single biharmonic function, such as the Love's stress function. 
However, the Papkovich potential formulation is more conve- 
nient for the present analysis. 

For an arbitrary axisymmetric nucleus of strain, the stresses 
are given in terms of the pair of axisymmetric Papkovich poten- 
tials by (Korsunsky, 1995) 

1 zd# 1 ~.~, 
c r , , : = ~ ( 3 -  ~ ) ~  + ZqS.zz +-r * + ~,z~ +- r  (4) 

1 z 1 
~r00 = ~ (3 - x)~b.~ - -r ~5 - -r I'I/ 'r '  (5) 

1 a~ = 7(x + 1 ) ~  - z~ .~  - • .... (6) 

1 
a~ = g(K -- 1)~.~ - z(l)r z -- I,IIr z. (7) 

We now quote Aderogba's result for the particular case of 
axisymmetric strain nuclei. 

Let us call the half-space containing the inclusion half-space 
1, and the half-space free from inclusions half-space 2, and 
introduce the following parameters: 

F = if_2, (8) 
#L 

( F -  1) a - f i  
(I"Ki + 1 )  1 + /3 ' 

B = ( F K t -  K 2 ) _ a  + fl (10) 
( F +  K2) 1 - / 3 '  

where K~ = 3 - 4u~, u~ is the Poisson's ratio in half space i, 
~ is the shear modulus in half space i, and a and /3 are the 
Dundurs bimaterial parameters. 

According to Aderogba's theorem (Aderogba, 1977) for the 
strain nuclei which in an infinite space give rise to elastic fields 
described by only two functions, the scalar potential ~I' and the 
axial component of the vector potential ~, the potentials for 
two bonded dissimilar half-spaces are given by 

~I ~(') = go(r,  Z) - A~t~0(r, - z )  

(a,d - B) f ~- _ ~ o ( r , - z ) d z ,  (11) 

0 
• ( ~ ) = ~ o ( r , z ) - A t q ~ o ( r , - z ) - 2 A ~ o ( r , - z ) ,  (12) 

• (~) = (A + 1)Go(r, - y )  

(A~ ,  ~ B) 
F f D o ( r , - y ) d y ,  (13) 

i 

2 d 

~(2) = - ( B  + 1)/bo(r, - y ) ,  (14) 

where q~ ~o, ,~, (o are potentials in material i, and y = - z .  
An example of the application of this corollary of Aderogba's 

theorem to the case of an axisymmetfic Eshelby inclusion is 
given below. 

(9) 

3 Infinite Space  So lut ions  

Consider eigenstrain 

f ~  = ~ij( e "-~ ~13),  i , j  = 1, 2, 3, (15) 

being defined within a spheroidal domain f2 which is symmetric 
with respect to the axis x3, with semi-axes a~ = a2 and a3, 
centered at the origin. Using the cylindrical coordinates ( r ,  0, 
z), the stresses due to this inclusion are given by (Yu and 
Sanday, 1990) 

O'rr - -  

7r(~ + 1) 4 . = +  7r(~:+ 1) 4 , . = ~ + z , b  .... 

+ - -  ( K -2r 1) qS " + -Z cP'rz + f ( 2qb'~ + -l r 

-']-r(]~ .... -']-Z~ .... -]---Z~'rz) l ' r  (16) 

0"00 

O'zz = 
#e(K + 1) #fl 

~(K + 1) ~(K + 1) 

- f(3qS,zz + Zqb .... + r~,~z)] ,  (18) 

#e(K + 1) #fl 
~rz = -- ~,rz + - - [ Z ~ , r z z  

~(K + 1) ~(K + 1) 

+f(2~b.,.~ + z 6  ..... - rdAz=)], (19) 

~,.0 = a~0 = 0, (20) 

where K = 3 - 4u, u is the Poisson's ratio, # is the shear 
modulus, of = aZ/(aZ~ - a~) ,  and q5 denotes the harmonic gravi- 
tational potential of matter of unit density filling the volume fL 

The form of the stresses around an axisymmetric inclusion 
can be matched to the Papkovich potentials by the suitable 
choice of functions ~ and ~. 

Consider the following cases: 

- fl = 0. It may be verified by substitution that the required 
Papkovich potentials are 

#e (K - 1)if, (21) 
~(K + 1) 

= 0. (22) 

For an infinitesimal inclusion, these potentials give a center of 
dilatation (Korsunsky, 1994). 

- e  = 0, f = 0. The required Papkovich potentials are 

= _ #fl ( K ~ l m ~ , -  (23) 
~(K + 1) 2 

- - ~ . z .  (24) 
~(~ + 1) 

For an infinitesimal inclusion, these potentials give an infinites- 
imal prismatic dislocation loop. 

- e  = 0, ¢1 = 0, but flf -~ 0. The required Papkovich 
potentials are 

gPf 
= - -  [4,  + z4 , z  + r 4 , , ] ,  (25) 

7r(K + 1) 

= 0. (26) 

By combining the above results the complete Papkovich po- 
tentials for an axisymmetric inclusion in an infinite space are 
found in the form 
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and also 

f f ~(K,aft+ • o(r, - y ) d y  = - ~odz = 1 ~ 0 5 '  (36) 
] 

(27) 
As a result, the potentials are given by 

(28) ~(K, + 1) 

An obvious advantage achieved by recording the solution in 
terms of the Papkovich potentials over the form given by Yu 
and Sanday (1990) is a great reduction in the complexity of 
expression. However, the benefits of recasting the solution are 
not confined to shorter lengths of expressions. A straightforward 
application of a well-established theorem will now provide gen- 
eral results for dissimilar bonded half-spaces. 

4 B o n d e d  H a l f - S p a c e s  S o l u t i o n s  

The first step in the solution involves the derivation of the 
Papkovich potentials for the spheroidal inclusion f~ centred at 
(0, 0, c) from the potentials found in the previous section for 
the inclusion centred at the origin. This is done by applying the 
lemma about translation of the origin (Korsunsky, 1996). In 
the present case, the lemma states that the new Papkovich poten- 
tials ~0, ~0 are related to the old potentials ~, • according to 

g/o = 'It - cO, (29) 

~o = ~. (30) 

Therefore, ~do and gSo for an inclusion f~ in an infinite space are 
given by 

,a e(K - 1)05 - ,6' -----~---- 05 
% 7r(K + 1) 

+ f ( 0 5 + ( Z - C ) 0 5 . z +  r05,~)]}, (31) 

• o ,a { -fl05,~}. (32) 
7r(K + 1) 

The next step now requires the application of the corollary 
to Aderogba's theorem which is applicable to axisymmetric 
strain nuclei. This result has been introduced in the preceding 
sections. 

Note that the transformation formulae involve differentiation 
and integration of the infinite space potentials ~o and ~o. The 
fact that integration of the potential ~0 may not be carried out 
explicitly in all cases restricts the number of problems for which 
fully analytical treatment is possible using this method. 

In the present case, however, the integration may be carried 
out in full, since ~0 is given by the derivative of the gravitational 
potential 05. Let us use an overbar, 3, to denote the "conjugate" 
function, which is obtained from 05 by substituting - z  instead 
of z, ~ = 05(r, - z ) .  It is important to distinguish the order of 
differentiation (integration) and conjugation, since, for example 

(05,z) = -(¢) ,~.  (33) 

Therefore 

f f - -  f ,aft ~, (34) d2o(r, - z ) d z  ~odz = - Oodz 7r(K + 1-----------) 

q%(r, - z )  = (~---~).z = - ( ~ 0 ) . z ,  (35)  
Oz 

+ - -  AK, - B ~ + f(05 + (Z - c)05,~ + r05.r 
2 

- A x . d ~ - A K l ( Z + c ) ~ . z - - A K i r ~ . , . ) ) } ,  (37) 

{ ( , ) =  #t { - 2 c A ( K , -  1)~.z 
7r(K~ + 1) 

-fl[05.~ + A ¢ , , -  2 A f ( ~  + (z + c)¢.z + re.,.)] }, 

~(2)  = ,at [ e ( A  + 1)(Ki - 1)05 
7r(Kt -I- l )  t 

(38) 

_ fl[(A + 1)(K, -- l )  + (AK~ -- B ) F  
2 05 

+ f ( A + l ) ( 0 5 + ( z - c ) 0 5 , z  + r05.r)] } (39) 

(2) = #l (B + 1)fl05.~. (40) 
7r(•1 + 1) 

In the particular case of the second half-space being void, 
the parameters assume the values A = B = -1 ,  F = 0. The 
potentials • (2) and • (2) vanish, while the potentials for half- 
space 1 assume the form 

~e(tq - 1)(05 + Kl¢) #1 I~J (1) _-~ 
"Ti'(Ki-1- 1) t 

- - f l I ~ - ~ ( 0 5 -  ~ ) + f ( 0 5  + (Z -- c) 05.z 

+ r05.r + K,~)+ K,(Z + C)~O,z + K,r~. r ) ]}  , (41) 

~ o ) =  #l { 2 e ( K l -  1)~.~ 
7r(Kl + 1) 

-fl[05,~ - $,z + 2 f ( ~  + (z + c)~,z  + r~,,.)] }. (42)  

The stresses and displacements associated with these poten- 
tial functions may be written down using Eqs. ( 4 ) - ( 7 ) ,  and 
show agreement with the results of Yu and Sanday (1990). 
The separation of the elastic fields into the infinite space terms 
and " image" terms is apparent in the form of the Papkovich 
potentials. 

5 S u m m a r y  

An effective and concise method of derivation for the elastic 
fields of an axisymmetric ellipsoidal inclusion in one of two 
dissimilar perfectly bonded elastic half-spaces has been pre- 
sented. The method which has been effectively used previously 
for dislocation loops (Korsunsky, 1996) and ring dislocation 
dipoles (Korsunsky, 1995) was applied here to Eshelby inclu- 
sions, which shows its wide range of applicability. No direct 
application of Hankel transform or cancelling of surface stresses 
(Yu and Sanday, 1990) was required. The final results apply 
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to arbitrary pairs of elastic materials occupying the two bonded 
half-spaces, including the case when the second material has 
vanishing elastic moduli, i.e., inclusion in a half-space. The 
results obtained in the paper by Yu and Sanday (1990) form a 
subset of the present solution. 

The advantage of the Papkovich potential notation fbr the 
representation of elastic fields is not confined to the ease of 
derivation of new solutions. The final results for axisymmetric 
inclusions in one of two dissimilar elastic half-spaces were kept 
in this form in the previous section quite deliberately. From the 
practical viewpoint, the application of the solutions presented 
in this paper is likely to involve computer coding of the formu- 
lae. The concise potential form of the solutions allows the final 
stress and displacement formulae to be rederived and verified 
as many times as necessary using well established recipes, 
which in this case are given by Eqs. ( 4 ) - ( 7 ) .  
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are subjected to severe aerothermal loads due to kinetic heating. 
Component plates may be supported by an elastic medium and 
have significant and unavoidable initial geometrical imperfec- 
tions. Moreover, because of the boundary constraints the ther- 
mal loads induce compressive stresses which may cause buck- 
ling, particularly for thin-walled members. Therefore, there is 
a need to understand the thermal buckling and post-buckling 
behavior of imperfect composite laminated plates resting on 
elastic foundations. Such solutions have important potential ap- 
plications in analyzing the face behavior of certain types of 
foam-filled sandwich panels. The simplest model for elastic 
foundations is the Winkler one, but for many practical founda- 
tions it is not sufficiently accurate. This has led to the develop- 
ment of more accurate foundation models, including the so- 
called two-parameter, i.e., Pasternak-typc, model. 

Raju and Rao (1988) calculated the thermal post-buckling 
response of isotropic square plates resting on Winkler elastic 
foundations by the finite element method. In contrast, Dumir 
(1988) used the Galerkin method to analyze the thermal post- 
buckling of isotropic rectangular plates resting on Pasternak- 
type elastic foundations, but he only gave numerical results for 
the Winkler elastic foundation case. Also recently, Shen ( 1995a, 
1995b) analyzed the post-buckling of uniaxially compressed, 
perfect and imperfect, isotropic and anisotropic plates resting 
on two-parameter elastic foundations, from which results for 
Winkler elastic foundations follow as a limiting case. However, 
the authors are not aware of any published information on the 
thermal post-buckling behavior of imperfect composite lami- 
nated plates resting on two-parameter elastic foundations. 

Therefore, this study deals with simply supported, perfect 
and imperfect, composite laminated plates subjected to uniform 
or parabolically nonuniform thermal loading and resting on two- 
parameter elastic foundations. The analysis uses a mixed Galer- 
kin-perturbation technique to determine the required thermal 
buckling loads and the post-buckling equilibrium paths, with 
the material properties assumed to be independent of tempera- 
ture. The initial geometrical imperfection of the plate is taken 
into account but, for simplicity, its form is taken as the buckling 
mode of the plate. The theory presented is for plate thermal 
post-buckling response and accounts for the combined effects 
of an initial geometrical imperfection and of plate-foundation 
interaction. 

2 A n a l y s i s  

Consider a thin rectangular plate of length a, width b, and 
thickness t which consists of N plies of any kind, is subjected 
to thermal loading and rests on a two-parameter elastic founda- 
tion. This type of foundation yields the load-displacement rela- 
tion p = Kigz - ~J2V21~, where V2 is the Laplace operator in 
X and Y, p is the force per unit area, Ki is the elastic spring 
constant, and K2 is a constant showing the effect of the shear 
interactions of the vertical elements. U, V, and 1~ are the plate 
displacements parallel to a right-hand set of axes (X, Y, Z) ,  
where X is longitudinal and Z is perpendicular to the plate. 
Denoting the initial deflection by I~*(X, Y), let IN(X, Y) be 
the additional deflection and F(X,  Y) be the stress function for 
the stress resultants, so that N~ = F,yy, Ny = F,~x and Nxy = 
- -  F ~ x y  • 

The in-plane temperature variation is assumed as 

T(X, Y , Z )  = To + T t l  - ( 2 Y ~ z b )  2] (1) 

and the thermal forces and moments are defined by 

M~ (1, Z)  Ay T(X, Y, Z )dZ .  
N~,  Mx~ . . . . . .  a~ k 

(2) 
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to arbitrary pairs of elastic materials occupying the two bonded 
half-spaces, including the case when the second material has 
vanishing elastic moduli, i.e., inclusion in a half-space. The 
results obtained in the paper by Yu and Sanday (1990) form a 
subset of the present solution. 

The advantage of the Papkovich potential notation fbr the 
representation of elastic fields is not confined to the ease of 
derivation of new solutions. The final results for axisymmetric 
inclusions in one of two dissimilar elastic half-spaces were kept 
in this form in the previous section quite deliberately. From the 
practical viewpoint, the application of the solutions presented 
in this paper is likely to involve computer coding of the formu- 
lae. The concise potential form of the solutions allows the final 
stress and displacement formulae to be rederived and verified 
as many times as necessary using well established recipes, 
which in this case are given by Eqs. ( 4 ) - ( 7 ) .  
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are subjected to severe aerothermal loads due to kinetic heating. 
Component plates may be supported by an elastic medium and 
have significant and unavoidable initial geometrical imperfec- 
tions. Moreover, because of the boundary constraints the ther- 
mal loads induce compressive stresses which may cause buck- 
ling, particularly for thin-walled members. Therefore, there is 
a need to understand the thermal buckling and post-buckling 
behavior of imperfect composite laminated plates resting on 
elastic foundations. Such solutions have important potential ap- 
plications in analyzing the face behavior of certain types of 
foam-filled sandwich panels. The simplest model for elastic 
foundations is the Winkler one, but for many practical founda- 
tions it is not sufficiently accurate. This has led to the develop- 
ment of more accurate foundation models, including the so- 
called two-parameter, i.e., Pasternak-typc, model. 

Raju and Rao (1988) calculated the thermal post-buckling 
response of isotropic square plates resting on Winkler elastic 
foundations by the finite element method. In contrast, Dumir 
(1988) used the Galerkin method to analyze the thermal post- 
buckling of isotropic rectangular plates resting on Pasternak- 
type elastic foundations, but he only gave numerical results for 
the Winkler elastic foundation case. Also recently, Shen ( 1995a, 
1995b) analyzed the post-buckling of uniaxially compressed, 
perfect and imperfect, isotropic and anisotropic plates resting 
on two-parameter elastic foundations, from which results for 
Winkler elastic foundations follow as a limiting case. However, 
the authors are not aware of any published information on the 
thermal post-buckling behavior of imperfect composite lami- 
nated plates resting on two-parameter elastic foundations. 

Therefore, this study deals with simply supported, perfect 
and imperfect, composite laminated plates subjected to uniform 
or parabolically nonuniform thermal loading and resting on two- 
parameter elastic foundations. The analysis uses a mixed Galer- 
kin-perturbation technique to determine the required thermal 
buckling loads and the post-buckling equilibrium paths, with 
the material properties assumed to be independent of tempera- 
ture. The initial geometrical imperfection of the plate is taken 
into account but, for simplicity, its form is taken as the buckling 
mode of the plate. The theory presented is for plate thermal 
post-buckling response and accounts for the combined effects 
of an initial geometrical imperfection and of plate-foundation 
interaction. 

2 A n a l y s i s  

Consider a thin rectangular plate of length a, width b, and 
thickness t which consists of N plies of any kind, is subjected 
to thermal loading and rests on a two-parameter elastic founda- 
tion. This type of foundation yields the load-displacement rela- 
tion p = Kigz - ~J2V21~, where V2 is the Laplace operator in 
X and Y, p is the force per unit area, Ki is the elastic spring 
constant, and K2 is a constant showing the effect of the shear 
interactions of the vertical elements. U, V, and 1~ are the plate 
displacements parallel to a right-hand set of axes (X, Y, Z) ,  
where X is longitudinal and Z is perpendicular to the plate. 
Denoting the initial deflection by I~*(X, Y), let IN(X, Y) be 
the additional deflection and F(X,  Y) be the stress function for 
the stress resultants, so that N~ = F,yy, Ny = F,~x and Nxy = 
- -  F ~ x y  • 

The in-plane temperature variation is assumed as 

T(X, Y , Z )  = To + T t l  - ( 2 Y ~ z b )  2] (1) 

and the thermal forces and moments are defined by 

M~ (1, Z)  Ay T(X, Y, Z )dZ .  
N~,  Mx~ . . . . . .  a~ k 

(2) 
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In Eq. (1),  T~ = 0 gives unifbrm temperature fields, and To 
= 0 gives a parabolic temperature distribution. From Eqs. ( 1 ) 
and (2) it is noted that the thermal force N~7;, and thermal 
moments M~ r and M~" are zero. 

Attention is confined to the four cases of ( 1 ) isotropic plates, 
(2) orthotropic plates and symmetrically cross-ply laminated 
plates, (3) antisymmetrically angle-ply laminated plates, and 
(4) symmetrically angle-ply laminated plates with more than 
15 plies; i.e., N > 15, for which the results are only approximate. 
As mentioned in Shen (1995b), for these four cases the plate 
remains fiat up to the bifurcation point unless there is an initial 
geometrical imperfection. 

Before proceeding, it is convenient to first define the follow- 
ing dimensionless quantities for such plates, in which the alter- 
native forms k~ and k2 are not needed until the numerical exam- 
ples are considered, 

x = 7rX/a, y = TrY~b, 13 = a /b ,  

BRIEF NOTES 

1 L2(F) - ' ) / 2 4 L 3 ( W )  - Ci = - -~  ' Y 2 4 1 3 2 L ( W  + 2W*, W) (7) 

where 

0 4 (0 4 0 4 
LI( ) = Ox---- X + 2'Y1213 2 + "y~4134"~'~ Ox2 0y 2 Oy" 

L2( 
0 4 0 4 0 4 

) = Ox--~ + 2~'2~ 2 &2&-----~ + "Y~413 4 oy ~ 

0 4 0 4 
L3( ) = "Y31/~ ~ + "Y33fl 3 - -  

OxOy 3 

0 2 0 2 0 2 0 2 
L( ) =  2 - - - - +  

Ox 20y  2 OxOy OxOy 

02 f12 02 
V2( ) = 0x--- 5 + Oy--- ~ • -- 4 , , , , 

(W*,  W )  = (W*,  W ) / ~ D n D 2 2 A , A 2 2 ,  

F = F/,[D~*~D~2, Y,2 = (D~*2 + 2D&)/D~, ,  

, , .~. , * ~x -- 
Yl4 = ~ ,  722 (A*2 + A66/2) /A=,  

")/24 ~ a  * * -~- = ulA22, T5 -A~2/A~2, 

( 'Y31, 'Y33, ')/316, ')/326) 

= (2B~; - B6~, 2B~'~, - B6*z, B~*6, Bz*6)/~ID~,D2*2A *,,A=,* 

T 2 2 * * (YTt,  Yr2) = (a.  r, ay )a /O~oTr ~ ,  

~ 6  = ( 'y224~T,  - -  T S T T 2 ) / ' Y ~ 4 ,  
6y 

(K,, k,) = (a 4, b4)IKl/Tr4O~l, (K2, k2) = (a 2, b2)K2/TrZo~l, 

, . ~  , 2 .T f2D*  4 1 ~ * ~ * a *  " ,  (Mx ,  M y )  = ( l~x ,  lv ly)a I l i ~ V l - ) l l L I 2 . A l l A 2 2 ,  

(~5~, 6y) = (Ax /a ,  Ay/b)b2/4rc2~/D~*lD~2A *~A22.* (3) 

Here A~ mid Ay are the shortenings in the X and Y directions, 
M,(M~) is the bending moment per unit width (length) of the 
plate, and for convenience hr = aoT~, where i = 0 for a uniform 
temperature distribution and i = 1 otherwise. 

Also let the thermal expansion coefficients for each lamina 
be 

O/u -~ a l l o t 0 .  0122 = a22Oeo (4) 

where o~o is an arbitrary reference value, and 

A ;  = -  Z A,, ~=t t~_, ,, y = 0,  7r; 

In the above equations [A*],  [B~] and [D,~] ( i , j  = 1, 2, 6) 
are reduced stiffness matrices the details of which, along with 
A~, Ay, and Axy, can be found in Stavsky (1963). 

Note that in Eqs. (7) and (8) below, for the uniform thermal 
loading case, C1 = 0.0, (72 = 1.0, and kr = aoTo, whereas for 
the parabolic thermal loading case, G = 8y~4Y~fl2Xr/7c2, C2 = 
[To/Ti + 4(y/Tr - y 2 / 7 1 - 2 ) ]  and K.r = %Ti.  

Now by using classical laminated plate theory (i.e., transverse 
shear deformation is neglected) and including the plate-founda- 
tion interaction and thermal effects, the governing differential 
equations can be written in the dimensionless form 

L i ( W )  + Ti4L3(F) + K 1 W -  K2V2W 

= Ti4fl2L(W + W*,  F)  (6) 

The unit end-shortening relationships are 

, jo fo {[ _ 4~2f12,Y24 T~4132 02 Foy 2 

0 2 0 2 

Oy 2 0 x  2 

o:w ] 1 / ow V 
02 F 2T24T316/0  

- Y5 Ox--- 7 - &cOy .J 2 "Y24~-~) 

OW OW* ] 
- y24 Ox ~ + (y~4y,,, - ysyr2)X~C2~ dxdy (8a) 

4C13%24 t k Ox 2 - ''5132 Oy - - 7  

0 2 W  ] t 2 [ / O W  \ 2  
- 

- -  .}/24/32 O W l ~ W ~  q- (')ZT2 - -  ~ 5 , Y T i ) X T C 2 ~  dxdy . (Sb) 
Oy Oy J 

All the edges are assumed to be simply supported and to be 
restrained against expansio n in the in-plane directions, so that 
the boundary conditions are 
x = 0, 71-; 

W =  O, ~ = 0 ( 9 a )  

F m,= 0, M~ = 0 (9b) 

W = 0 ,  G = 0  (9c) 

F,xy = 0, My= 0. (9d)  

By applying Eqs. (6) - (9),  the thermal post-buckling behav- 
ior of a simply supported composite laminated plate resting on a 
two-parameter elastic foundation is now determined by a mixed 
Galerkin-perturbation technique suggested in Shen and Lin 
(1995). The essence of this procedure, in the present case, is 
to assume that 

W ( x ,  y, ~) = Y, # w A x ,  y) ,  
j = /  

F ( x , y ,  c)= ~ e i f ~ ( x , y )  (10) 
j=O 
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Fig. 1 Thermal post-buckling load-deflection curves for laminated 
square plates with and without elastic foundations 

where e is a small perturbation parameter and the first term of 
ws(x,  y) is assumed to have the form 

wl(x ,  y) = A~)sin mx sin ny. (1 i )  

The initial geometrical imperfection is assumed to have a 
similar form to w~(x, y) ,  i.e., 

W *( x, y, e) = eA *l sin mx sin n y 

= e/.zA~l ) sin mx sin ny (12) 

where # is the imperfection parameter. 
All the necessary steps of the solution methodology are de- 

scribed below, but the detailed expressions of the equations are 

not shown, for the sake of brevity, since they may be found in 
Shen (1995b) and Shen and Lin (1995). 

First, the assumed solution form of Eq. (10) is substituted 
into Eqs. (6) and (7) to obtain a system of perturbation equa- 
tions. 

Then, Eqs. ( 11 ) and (12) are used to solve these perturbation 
equations of each order step by step. At each step the anaplitudes 
of the components of ws(x,  y ) a n d  ~(x ,  y) can be determined 
by the Galerkin procedure. Hence, the asymptotic solutions 
W ( x ,  y, ~) and F(x ,  y, ~) are obtained. 

Next, substituting W ( x, y, E) and F(x ,  y, e) into the bound- 
ary conditions 6x = 0 and 6y = 0, the thermal postbuckling 
equilibrium path can be written as 

XT= k~ ?) + , , r  - m + m • • • 13) 
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Fig. 2 Thermal post-buckling load-deflection curves for laminated 
plates on two-parameter elastic foundations and subjected to uniform 
or parabolic thermal loading 
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Fig. 3 Effect of thermal load ratio To/T1 on the post-buckling of (--+452)T 
laminated plates on two-parameter elastic foundations 

in which W,,, is the dimensionless form of the maxinmm deflec- 
tion of the plate, which is assumed to be at the point (x, y) = 
(rr/2m, ~r/2n). 

It is noted that Eq. (13) has a similar form to that of Koiter 
(1963), but is an asymptotic solution for the large deflection 
thermal post-buckling response of the plate. Hence, Eq. (13) 
can be employed to obtain full-range thermal post-buckling 
load-deflection curves of composite laminated plates resting on 
two-parameter elastic foundations. 

3 Results 
Thermal post-buckling induced by uniform and nonuniform 

temperature distribution has been studied by a mixed Galerkin- 
perturbation method. A number of examples are now given to 
illustrate the application of the method presented. These cover 

5.0 

/ 1  2 
3,0 ~ ( ~  

/ /  (kt ,k, )=(5.0,2.0)" 

1/ T °/T l =o. o 

1,0 .~ . { o0 
t .05 -- -- 

I t 

0.0  0 .5  1.0 W/t 1.5 

z:0=o.5, (m,.)=(z,z) 
2:0=Z.o,(m,n):(Z,Z) 

Fig. 4 Effect of plate aspect ratio/3 on thermal post-buckling of (m452)r 
laminated plates on two-parameter elastic foundations 
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Fig. 5 Effect of total number of plies N on thermal post-buckling of 
anisymmetrically laminated plates on two-parameter elastic foundations 

the performance of perfect and imperfect, antisymmetrically 
angle-ply and symmetrically cross-ply laminated plates. Typical 
results are presented in dimensionless graphical form, in which 
X] = 12(Oelt + 1/210122)b2~.r/OgO71-2t 2. It should be remembered 
that, because of the definition of kr given beneath Eq. (3),  this 
means that for a given plate X~ is a constant times To when Ti 
= 0 but is otherwise the same constant times T,. For all of the 
laminated plate examples b/t = 100.0, all plies are of equal 
thickness and the material properties used were E~ = 130.3 
G P a ,  E22 = 9.377 GPa, G12 = 4.502 GPa, u12 = 0.33, oqt = 
0.139 X 10-6/°C,  and og22 = 9.01 × 10-6/°C,  

Figure 1 gives the thermal post-buckling load-deflection 
curves for four-ply (_+452)7 antisymmetrically angle-ply and 
(0/90),  symmetrically cross-ply laminated plates under nonuni- 
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Fig. 6 Effect of fiber orientation on thermal post-buckling of antisym- 
metrically laminated plates on two-parameter elastic foundations 
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form temperature loading and either without foundations or 
resting on either Winkler or two-parameter elastic foundations. 
The stiffnesses for these three alternative foundations are, re- 
spectively, (kl, k2) = (0.0, 0.0), (5.0, 0.0), and (5.0, 2.0). It 
can be seen that the foundation stiffness increases the buckling 
load and affects the post-buckling response of the (0/90),  plate 
more than that of the (_+452)r one. The buckling mode can also 
be seen to change as the foundation stiffness is increased for 
the (0/90)s plate, with (m, n) = (1, 1) for the foundationless 
case, whereas (m, n) -- ( 1, 2) for the Winkler and two-parame- 
ter elastic foundation cases. 

Figure 2 gives the thermal post-buckling toad-deflection 
curves of the same two laminated plates under uniform or para- 
boli c temperature loading and resting on two-parameter elastic 
foundations. It can be seen that the laminated plate under para- 
bolic thermal loading has a higher initial buckling load and a 
higher post-buckling load than for a plate under uniform thermal 
loading. 

Figures 3 and 4, show, respectively, the effects of the thermal 
load ratio To/T~ and of the plate aspect ratio/3 ( = 0.5, 1.0) on 
the thermal post-buckling response of four-ply (+452)r anti- 
symmetrically angle-ply laminated plates. Then Fig. 5 shows 
the influence of the total number of plies N (=  4, 10) on the 
thermal post-buckling response of antisymmetrically angle-ply 
laminated plates of constant thickness and resting on two-pa- 
rameter elastic foundations. Finally, Fig. 6 compares together 
the thermal post-buckling load-deflection curves of square, four- 
layer (_+302)r, (+-452)r and (+602)T antisymmetrically angle- 
ply laminated plates resting on two-parameter elastic founda- 
tions. 

In all of Figs. 2 - 6  the stiffnesses for the two-parameter elastic 
foundation are (k~, k2) = (5.0, 2.0). The results show that the 
thermal buckling load and post-buckling strength are increased 
by increasing the total number of plies N, decreasing the plate 
aspect ratio/3, or decreasing the thermal load ratio To/T1. They 
also show that N has less effect than/3 or the ply orientation. 

Thermal post-buckling load-deflection curves for imperfect 
as well as perfect plates are plotted in each of Figs. 1-6. The 
imperfect curves show that the effect of an initial geometrical 
imperfection on the thermal post-buckling response of lami- 
nated plates resting on an elastic foundation is substantial, as 
was already known to be the case (see Shen, 1995b) for lami- 
nated plates under in-plane compression both with and without 
elastic foundations. 

4 Conclusions 
A thermal post-buckling analysis has been presented for the 

previously unsolved problem of imperfect composite laminated 
plates under nonuniform temperature loading and resting on 
two-parameter elastic foundations. The numerical results show 
that the characteristics of thermal post-buckling are significantly 
influenced by foundation stiffness, plate aspect ratio, fiber orien- 
tation, thermal load ratio, and initial geometrical imperfection, 
whereas the total number of plies has rather less effect. 
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A Remarkable Tensor in Plane 
Linear Elasticity 

Q.-C.  He  9 

It is shown that any two-dimensional elastic tensor can be 
orthogonally and uniquely decomposed into a symmetric tensor 
and an antisymmetric tensor. To within a scalar multiplier, the 
latter turns out to be equal to the right-angle rotation on the 
space of two-dimensional second-order symmetric tensors. On 
the basis of these facts, several useful results are derived .for 
the traction boundary value problem of plane linear elasticity. 

Introduction 
Formulated classically in terms of Airy's function, the trac- 

tion boundary value problem of plane linear elasticity has four 
governing equations: Hooke's law, the stress field derivation 
equation, the compatibility equation, and the boundary condi- 
tion. It has been known (see, e.g., Cherkaev et al. (1992) or 
Eqs. (24), (26), and (28)) that each of the latter three ones 
involves the fourtt~-order tensor 

R = I ® I - U  ( [ )  

where ® designates the usual tensor product, 1 the identity 
tensor on the two-dimensional vector space V,  and 0 the identity 
tensor on the space Sym of two-dimensional second-order sym- 
metric tensors. The present note, inspired by a recent work of 
Cherkaev et al. (1992), has two objectives. The first one is to 
show that ~ occurs equally in Hooke's law and coincides in 
reality with the "antisymmetric" part of any elastic tensor to 
within a scalar multiplier. The second one consists in using this 
result and certain properties of R to simplify the formulation 
of the traction boundary value problem in some particular but 
important cases and thus to derive, in an algebraically meaning= 
ful way, the stress invariance conditions given in Cherkaev et 
al. (1992) and Dundurs and Markenscoff (1993). 

Right-Angle Rotation 
We begin by introducing some notations. In what follows, 

Lin denotes the space of all linear transformations on V and £ 
the space of all linear transformations on Lin. The inner inner 
products of V, Lin and £ will be symbolized by a.b for a, b 

V,  A:B for A, B ~ Lin, and A::B for A, ~ E £.  When fourth- 
order tensors are concerned, it has turned out to be fruitful to 
define, in addition to the usual tensor product A Q B of A E 
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form temperature loading and either without foundations or 
resting on either Winkler or two-parameter elastic foundations. 
The stiffnesses for these three alternative foundations are, re- 
spectively, (kl, k2) = (0.0, 0.0), (5.0, 0.0), and (5.0, 2.0). It 
can be seen that the foundation stiffness increases the buckling 
load and affects the post-buckling response of the (0/90),  plate 
more than that of the (_+452)r one. The buckling mode can also 
be seen to change as the foundation stiffness is increased for 
the (0/90)s plate, with (m, n) = (1, 1) for the foundationless 
case, whereas (m, n) -- ( 1, 2) for the Winkler and two-parame- 
ter elastic foundation cases. 

Figure 2 gives the thermal post-buckling toad-deflection 
curves of the same two laminated plates under uniform or para- 
boli c temperature loading and resting on two-parameter elastic 
foundations. It can be seen that the laminated plate under para- 
bolic thermal loading has a higher initial buckling load and a 
higher post-buckling load than for a plate under uniform thermal 
loading. 

Figures 3 and 4, show, respectively, the effects of the thermal 
load ratio To/T~ and of the plate aspect ratio/3 ( = 0.5, 1.0) on 
the thermal post-buckling response of four-ply (+452)r anti- 
symmetrically angle-ply laminated plates. Then Fig. 5 shows 
the influence of the total number of plies N (=  4, 10) on the 
thermal post-buckling response of antisymmetrically angle-ply 
laminated plates of constant thickness and resting on two-pa- 
rameter elastic foundations. Finally, Fig. 6 compares together 
the thermal post-buckling load-deflection curves of square, four- 
layer (_+302)r, (+-452)r and (+602)T antisymmetrically angle- 
ply laminated plates resting on two-parameter elastic founda- 
tions. 

In all of Figs. 2 - 6  the stiffnesses for the two-parameter elastic 
foundation are (k~, k2) = (5.0, 2.0). The results show that the 
thermal buckling load and post-buckling strength are increased 
by increasing the total number of plies N, decreasing the plate 
aspect ratio/3, or decreasing the thermal load ratio To/T1. They 
also show that N has less effect than/3 or the ply orientation. 

Thermal post-buckling load-deflection curves for imperfect 
as well as perfect plates are plotted in each of Figs. 1-6. The 
imperfect curves show that the effect of an initial geometrical 
imperfection on the thermal post-buckling response of lami- 
nated plates resting on an elastic foundation is substantial, as 
was already known to be the case (see Shen, 1995b) for lami- 
nated plates under in-plane compression both with and without 
elastic foundations. 

4 Conclusions 
A thermal post-buckling analysis has been presented for the 

previously unsolved problem of imperfect composite laminated 
plates under nonuniform temperature loading and resting on 
two-parameter elastic foundations. The numerical results show 
that the characteristics of thermal post-buckling are significantly 
influenced by foundation stiffness, plate aspect ratio, fiber orien- 
tation, thermal load ratio, and initial geometrical imperfection, 
whereas the total number of plies has rather less effect. 
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A Remarkable Tensor in Plane 
Linear Elasticity 

Q.-C.  He  9 

It is shown that any two-dimensional elastic tensor can be 
orthogonally and uniquely decomposed into a symmetric tensor 
and an antisymmetric tensor. To within a scalar multiplier, the 
latter turns out to be equal to the right-angle rotation on the 
space of two-dimensional second-order symmetric tensors. On 
the basis of these facts, several useful results are derived .for 
the traction boundary value problem of plane linear elasticity. 

Introduction 
Formulated classically in terms of Airy's function, the trac- 

tion boundary value problem of plane linear elasticity has four 
governing equations: Hooke's law, the stress field derivation 
equation, the compatibility equation, and the boundary condi- 
tion. It has been known (see, e.g., Cherkaev et al. (1992) or 
Eqs. (24), (26), and (28)) that each of the latter three ones 
involves the fourtt~-order tensor 

R = I ® I - U  ( [ )  

where ® designates the usual tensor product, 1 the identity 
tensor on the two-dimensional vector space V,  and 0 the identity 
tensor on the space Sym of two-dimensional second-order sym- 
metric tensors. The present note, inspired by a recent work of 
Cherkaev et al. (1992), has two objectives. The first one is to 
show that ~ occurs equally in Hooke's law and coincides in 
reality with the "antisymmetric" part of any elastic tensor to 
within a scalar multiplier. The second one consists in using this 
result and certain properties of R to simplify the formulation 
of the traction boundary value problem in some particular but 
important cases and thus to derive, in an algebraically meaning= 
ful way, the stress invariance conditions given in Cherkaev et 
al. (1992) and Dundurs and Markenscoff (1993). 

Right-Angle Rotation 
We begin by introducing some notations. In what follows, 

Lin denotes the space of all linear transformations on V and £ 
the space of all linear transformations on Lin. The inner inner 
products of V, Lin and £ will be symbolized by a.b for a, b 

V,  A:B for A, B ~ Lin, and A::B for A, ~ E £.  When fourth- 
order tensors are concerned, it has turned out to be fruitful to 
define, in addition to the usual tensor product A Q B of A E 
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Lin by B G Lin, the following two 
A ~ B (Curnier, 1993): 

(A _@ B)(u @ v) := ( A u ) @ ( B v ) ,  Vu, v ~ "V, (2a) 

( A @ B ) ( u ® v )  := ( A v ) ® ( B u ) ,  Vu, v ~ V. (2b) 

From these two definitions ensue the identities 

( a ®  b) @ ( e ® d )  = a ® e ® b ® d ,  (3a)  

(a  ® b) @ (e ® d)  = a ® c ® d ® b ,  (3b) 

( A @ B ) X  = A X B  r, ( A @ B ) X  = AX~B 'r, (3c)  

tensor products A @ B and 

where a,  b,  e, and d belong to 3 / a n d  the transposition X T of 
X ~ Lin is defined by X'ru.v = u.Xv for any u, v ~ V.  It is 
immediate from (3c)  that the identity tensors on Lin and Sym 
have the coordinate-free expressions 

~ ( 1 ® 1  + 1 ~ 1 ) .  (4) 1 = 1 @ 1 ,  ~ = ~  _ 

Further, if Q ~ Lin is an orthogonal transformation on "]7, i.e., 
Qu .Qv  = u.v for any u, v ~ V ,  then 

:= ½(Q @ Q + Q ~ Q )  

is an orthogonal transformation on Sym, because Q U : Q V  = 
U:V for all U,  V ~ Sym. 

Next, let us deduce two properties of ~ for later use. Suppos- 
ing that { e~, e2 } is an orthonormal basis of  "V, the right-angle 
rotation R from e~ to e~ is then represented by 

R = e ~ ® e 2 - e ~ ® e ~ .  (5) 

This tensor also corresponds to the two-dimet~sional alternator, 
for R~, = R:z = 0 and R~ = -R~t = I. Using (3a)  and the fact 
that 1 = e, ® e~ + e~ ® e:, we arrive at relating N to R: 

~ ( R ® R +  R @ R ) .  (6) ~ = I ® I - D = ~  _ 

Thus, R can be considered as the right-angle rotation on Sym. 
Such an interpretation for ~ seems to be given for the first time 
by Cherkaev et al. (1992). Another important property of N is 
that with its domain and range restricted to Sym, 

= ~ I = ~ r .  (7) 

H e r e  ~ - 1  is understood to be such that ~ ~ = ~ ] = ~, and 
Nr  is defined by NrU:V := U:NV for U,  V ~ Sym. 

Orthgonal  Decomposi t ion  of  a Two-Dimens iona l  Elas- 
tic Tensor  

Now we proceed to show that R can be drawn out from any 
two-dimensional elastic tensor. Hereafter, an elastic tensor will 
refer to an element C of the space ~ of linear self-adjoint trans- 
formations on Sym; in other words, the defining property of C 
is that its Cartesian matrix components C0,,,,~ present the symmet- 
ries 

c0,,,,. = q , , . .  = c,,,,.0. ( 8 )  

In coordinate-free notations, (8) reads as C = (1 ~ 1 )C = C r. 
In mechanics, we are familiar with the orthogonal decomposi- 

tion of  a 2nd-order tensor L C Lin into a unique symmetric 
one S = (L + L r ) / 2  and a unique antisymmetric one A = (L  
- LT)/2 .  For a clue to as how to extend this decomposition to 
a tensor of order n > 2, we shall write the symmetry, S r  = S, 
of  S and the antisymmetry, A T = - A ,  of A in an equivalent 
but less familiar form. Denoting by T(~,~...~,,/the sum of the n ! 

terms obtained by permuting a component T,~2.. 4, of a tensor 

of order n -> 2 in all possible ways (see, e.g., Spencer, 1970) 
and putting Tit,z2.. 4,1 = T(~,~...~,,Jn !, then the symmetry of S and 
the antisymmetry of  A can be expressed as Si01 = S o and Ai01 

BRIEF NOTES 

= 0. With this in mind, we associate two tensors, ~ and A, 
with a given elastic tensor C by setting 

1 
Siim,, := C~o,,,,,i = ~ C~o,,,,,), A0m,, := C o ..... S 0 ..... (9) 

The tensors S and /~ thus defined can be referred to as the 
symmetr ic  and ant isymmetric  parts of C, since S,0,,,,,l = Sore,, by 
construction and Al~jm,,l = 0 by verification. Moreover, 

g : :A = So,,,,,Au,,,,, = 0, (10) 

since, due to the fact that So,,,, is unaffected by permuting any 
pair of indices, 

SO,,,,,Aom,, = SomnA[omn I = O. 

Clearly, all symmetric and antisymmetric tensors 5 and N be- 
longing to (0 form the two respective subspaces of (!, which will 
be denoted as S and A .  At this stage, we can write 

C = 5 + A, ( l l )  

C = S @  A ,  dim(C) = dim(S) + d i m ( A ) .  (12) 

Uniqueness of this orthogonal decomposition can be proved in 
the same manner as that used for L = S + A. 

Taking the symmetry property (8) of C into account in (9) ,  
we get 

1 
So,,,,, = 5 (Co,,,,, + C~,,o,, + Ct,,,,j), (13) 

I (2Cijm, , -  Ci, , j , , -  Ct,,,,,;). (14) Ao,,,,, = 

While noting that N has the same symmetries as those of C, 
(14) can be written out as follows: 

3Allll = 2Cllll -- CiHi -- Cjljl = 0, 

3A2222 = 2C2222 - C2222 - (72222 = 0 ,  

3A1212 = 2C1212 - CI i22 --  Ci212 = C1212 - C1122, 

3 A l l z 2  = 2 C i i 2 2  - Ci212 - C1221 = 2 ( C l 1 2 2  - C1212),  

3AiH2 = 2Cltl2 -- CHt2 -- Cizjl = 0, 

3A2212 = 2C2212 - C2122 - C2212 = 0 .  

In short, 

AiEtl = A2222 = A i i i 2  = A2212 = 0 ,  15a) 

A1122 = -2Aiz l~  = 2(C1122 -- C1212)/3. 15b) 

The relation So,,,,, = Co,,,, , - Ao,,,,, gives 

Sijll = CIlll ,  $2222 = C2222, Slll2 = CItl2, t6a)  

$2212 = C2212, 81212 = - 2 8 1 1 2 2  = 2 (C1122  - C t 2 1 2 ) / 3 .  16b) 

On the other hand, writing out the components of [~, we have 

R l l l l  = R222z = R i l l 2  = R2112 = 0 ,  (17a) 

Rllz2 = -2R1212 = 1. (17b) 

Comparing (15) with (17) gives 

= ~ ,  O~ = 2 (C1122  - C1212) /3 .  ( 1 8 )  

This means that the ant isymmetrie  part  o f  any two-dimensional  
elastic tensor is identical to • to within a scalar multiplier. 
This result is surprising in the sense that the antisymmetric 
tensor of either isotropic or anisotropic elastic tensor takes the 
same form. We observe that the scalar ~ in (18) is an invariant 
of C under orthogonal transformations, since 

3oz = [~::C = (1 ® 1 - D)::C. (19) 
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So, (18) can be rewritten in the form 

= ½ (~ ® ~)C. (20) 

This indicates that ( ~ ® ~) / 3 is the linear operator representing 
the perpendicular projection of C on ~ along S, In addition, 
(18) together with (12~) implies that 

dim(A_) = 1, dim(S) = 5. (21) 

Before applying formulae (6), (10), (11), and (18) to the 
traction boundary value problem, it is interesting to remark that 

Cijm,, = Cim;, ~ a = 0 ~ A = 0, (22) 

where Co,,,,, = Cz,n,~ is the Cauchy condition (see, e.g., Novozhi- 
lov, 1961 ). Indeed, as &am,, is symmetric, this condition is equiv- 
alent to 

0 = C~,,,,, - C~mj,, = Ao,,,, - A~,,j,, 

= ce(R~,,,, - Ri,,,~,,) = 3u((50~,,, - 6~,,,6~,,)/2 

and hence to ce = 0. 

The General Two-Dimensional Traction Boundary 
Value Problem 

We come now to applying the preceding algebraic results to 
the traction boundary value problem of plane elasticity. For 
this, consider a two-dimensional linearly elastic solid, which 
occupies in its reference configuration a bounded simply con- 
nected domain f~ of R 2, with the regular boundary 0~2 subjected 
to equilibrated tractions t: 0f~ ~ V. The behavior of the solid 
is by hypothesis described by Hooke's law: 

E(x)  = C(x )T(x ) ,  x E ~ = f/ U 0~2, (23) 

where E and T are the two-dimensional (infinitesimal) strain 
and stress tensors, and the compliance tensor field C on ~ will 
be assumed to be twice continuously differentiable. Denoting 
by ~o the regular (or more precisely four times continuously 
differentiable) Airy function on ~, then the stress tensor derived 
from ~o, i.e., 

T(x)  = ~(V ® ~)~o(x), (T 0 = Rom.~,,,, .),  (24) 

automatically verifies the equilibrium equation without body 
forces: 

d i v ( T ( x ) )  = R ( V ® V ® V ) ~ o ( x )  = 0 ,  x E  ~. (25) 

On the other hand, the strain tensor E obtained from (23) and 
(24) must verify the compatibility equation 

[~E(x ) ] : (V  ® V) = [Rom,,Em,,(x)],~ = 0, X ~ ~. (26) 

In passing, let us give a new interpretation to this equation 
by using (10). First, observe that (R~a,,,,,Em~),O = R~.,.E,,,,,, o = 
Rum,,(Em,,,~ ~ + Eo,,,m)12 because of R0m,, = R.,.~; then, denoting 
by ~(x) the tensor whose matrix corresponds to the Hessian 
Em,,,0(x) of E(x) ,  (26) amounts to writing R::(~ + Er) = 0 
or (E + E r) ~ S; so, (26) can be said to require that the Hessian 
of a strain tensor field E(x) plus its transpose be symmetr i c .  

Introducing (23) and (24) into (26) and writing out the 
boundary condition, we get the classical formulation of the two- 
dimensional traction boundary value problem in terms of qo: 

" [II~C(x)~(V ® V)~o(x)]:(V ® V) = 0, x E ~. (27) 

(P) L [~(V ® V)~p(x)]n(x) = t (x) ,  x ~ 0~2. (28) 

Above n(x)  is the outward unit normal to 0~2 at x. Hereafter, 
the data ((~, C, t) will be assumed to be such that (P) has  a 
un ique  so lu t ion  to wi th in  an aff ine fun 'c t ion o f  x .  This hypothe- 
sis, implicitly made in both Cherkaev et al. (1992) and Dundurs 

and Markenscoff (1993) and essential to the subsequent devel- 
opment, should be kept in mind. 

As C(x) does not occur in the traction boundary condition 
(28), from now on we shall focus our attention on the field 
equation (27). In view of (11) and (18), C(x) can be written 
as 

C(x) = 5 (x )  + oe(x)R. (29) 

Introducing this partition into (27) while using (7), (27) be- 
CONleS 

0 = [ ~ S ( x ) ~ ( V  ® V)~o(x)]:(V ® V) 

+ [ a ( x ) R ( v  ® v)~o(x)] : (v  ® V). 

In developing the second term of the right-hand member, it is 
important to note that 

~::(V ® V ® V ® V)qo = Ro,,,,,tp,,j,,,, = 0, (30) 

~ : : [ V a  ® (V ® V ® V)gg] = Rijm,,OL,i~O,j,n,, : 0. (31) 

Here, (30) is a direct consequence of (10), since (V ® V ® 
V ® V)99 is a symmetric tensor according to the Schwartz 
theorem; (31 ) is due to the fact that R~j,,,,a,~O,jm,, = Rij~,,(ee,~qo,~ .... 
+ a , i~ , i , , , , ) /2  with (a,i~,j .... + a,Ao,i,,,) being unaltered by 
permuting indices. Finally, (27) takes the following equ iva len t  
form 

0 = [ ~ 5 ( x ) ~ ( V  ® V)~(x) ] : (V ® V) + Aa(x)A~p(x) 

- [ ( ~ ® V ) o e ( x ) ] : [ ( V ® ~ ' ) ~ o ( x ) ] ,  (27 ' )  

where x E ~ and A is the Laplacian operator. 

Some Particular Two-Dimensional Traction Bound- 
ary Value Problems 

It is immediate from (27 ' )  that, if c~(x) is an affine function 
of x, (27 ' )  reduces to 

0 = [ ~ ( x ) R ( V  Q V)qo(x)]:(V ® V), x E f2. (32) 

This implies that, if the inhomogeneity of the solid is such that 
the antisymmetric part A(x) of C(x) is affine with respect to 
x, the solution to (P) is independent of/~(x).  More generally, 
even if the inhomogeneity of the solid is arbitrary, we can let 
C(x) undergo the following aff ine shift:  

C*(x) := C(x) + (a.x + b)R (33) 

where the scalar b and vector a E "V are constant, without 
changing the solution to (P) and hence the stress tensor field 
derived from it by (24). As a matter of fact, inserting (29) into 
(33) yields C*(x) = S(x)  + [oe(x) + a.x + b i n ,  so that 

S*(x)  = N(x), A*(x) = a*(x)N, (34a) 

oe*(x) = a(x)  + a.x + b; (34b) 

then by noting that Ac~*(x) = Act(x) and (V ® V)oe*(x) = 
(V Q V)c~(x), we see that (27 ')  is invariant under (33). Cher- 
kaev et al. (1992) and Dundurs and Markenscoff (1993) were 
the first to show that the stress tensor field derived from the 
solution to (P) is unaffected by (33) with a = 0 and a :~ 0, 
respectively. This result, besides its own theoretical importance, 
has already been found to have a number of significant applica- 
tions in the mechanics of composites (Thorpe and Jasiuk, 1992; 
Moran and Gosz, 1994). The alternative proof given above 
presents the advantage of allowing us to gain a deep insight 

• into the result. 
If the solid in question is h o m o g e n e o u s ,  then both c~(x) and 
(x) are independent of x and (27 ')  can further be simplified 

into 
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( N S N ) : : ( V ® V ® V ® V ) q o ( x )  = 0, x E f L  (35) 

It is physically sound to admit that CLii~ > 0 and Cz2z2 > 0. 
Thus, dividing (35) by C ~  gives 

( R ~ ) : : ( V @ V ® V ® V ) ~ p ( x )  = 0 ,  x E  f2. (36) 

Here the dimensionless tensor ~ := 5/Cm~ involves at most 
four constants, because ~ contains at most five constants and 
Slllt = SJlii/Clttl = 1 in view of (16a). Consequently, in 
the fully anisotropic case, the stress state of a linearly elastic 
homogeneous plane solid subjected to no body forces and to 
tractions on its boundary is dependent on four dimensionless 
parameters instead of the six elastic constants of C. However, 
remark that the strain tensor obtained by (23) continues de- 
pending onthe latter. 

The relation (6) can also be employed to simplify the field 
equation (27) or (27 ' )  in several important cases. By (7) and 
the minor symmetries C = (1 @ 1)C = C(x)(1 @ 1), we have 

RCR = NCN r =  (R @ R ) C ( R  @ R) r. (37) 

As R represents the right-angle rotation, (37) means that NCN 
in (27) or (27 ' )  is nothing but C rotated through 90 deg. 
However, it has already been shown in He and Zheng (1996) 
that any two-dimensional elastic tensor C can be only either 
fully anisoovpic or orthotropic or square-symmetric or iso- 
tropic. As a result, every two-dimensional elastic tensor C, 
except the fully anisotropic one who has { 1, - 1  } as the symme- 
try group, is invariant under R, i.e., 

II~C~ = C. (38) 

Correspondingly, (27 ' )  and (36) reduce to 

0 = [5 (x ) (V ® V)~o(x)]:( V ® V) + Aa(x)A~p(x) 

- [(V ® V)a(x) ] : [ (V @ V)tp(x)], x E f~; (39) 

0 = ,~::(V ® V ® V ® V)~(x) ,  x E ~. (40) 

It is useful to write (40) in detail. According as the solid is 
isotropic, square-symmetric or orthotropic, (40) reads differ- 
ently as 

qO,lll 1 + ty9,2222 -t- 2~,llz, = O, (41a) 

(,D,llll -t- (P,2222 + 2"/qo,tlz2 = O, (41b) 

~0,lll  1 'q- ,/~qO,Z222 q- 2"y~0,1122 = O, (41c) 

with 

: C2222/Cl111,  "Y = (C1122 + 2G212) /Cl t l l .  

Among ( 4 1 a ) - ( 4 1 c ) ,  we recognize the usual biharmonic 
equation (41a). As neither (41a) nor (28) contains any material 
parameter, then the stresses associated with the solution (unique 
to within an affine function) of the traction boundary value 
problem of a plane isotropic homogeneous solid (with no body 
forces) are independent of the elastic constants. This result, 
known as Michell's theorem (see, e.g., Gurtin 1972), has re- 
cently been applied by Zheng and Hwang (1996) to the micro- 
mechanics of composite materials. As in the isotropic case, we 
can conclude from (4 lb) - (41 c) together with (28)  that the 
stresses corresponding to the solution of the traction boundary 
value problem of a plane square-symmetric ( orthotropic ) ho- 
mogeneous solid are dependent on only one ( two)dimen- 
sionless elastic constant(s). This conclusion should also have 
applications in the micromechanics of (anisotropic) elastic 
composite materials. 
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Analys i s  of  the Mot ion  of  a 
Frict ional  Elast ic  Ball  D r o p p e d  
on an Incl ined Surface  

S. V. Myagchilov 10,11 and J. T. Jenkins 10,11 

1 Introduction 
In this paper we analyze plane motions of a frictional elastic 

sphere dropped on an inclined surface. We are interested in 
how sticking and sliding collisions occur as the bouncing pro- 
ceeds. In particular, we are interested under what circumstances 
the collisions are eventually all sliding, all sticking, or exhibit 
intermittancy between sticking and sliding. 

We introduce the following notation: a is the diameter of the 
sphere, m is its mass, and I is the moment of inertia about its 
center, given for a homogeneous sphere by I = too2~ 10. Prior 
to a collision, the sphere has translational velocity v and angular 
velocity w; the corresponding post-collision quantities are de- 
noted with hats. J is the impulse exerted by the wall upon the 
ball during impact, n is the unit normal to the wall directed 
upward, and G is the gravitational acceleration. 

The velocities before and after a collision are related by 

m(¢, - v) = J, (1) 

and 

(ma2/10)(© - co) = - ( c r / 2 ) n  × J. (2) 

In order to completely determine the impulse J, we introduce 
the velocity g of the point of contact, 

g = v - (cr/2)co X n, (3) 

and note that n" g = n '  v. We assume that the normal compo- 
nents of g before and after a collision are related through 

~ . n  = - e ( g ' n ) ,  (4) 

where e is the coefficient of restitution in the normal direction. 
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( N S N ) : : ( V ® V ® V ® V ) q o ( x )  = 0, x E f L  (35) 

It is physically sound to admit that CLii~ > 0 and Cz2z2 > 0. 
Thus, dividing (35) by C ~  gives 

( R ~ ) : : ( V @ V ® V ® V ) ~ p ( x )  = 0 ,  x E  f2. (36) 

Here the dimensionless tensor ~ := 5/Cm~ involves at most 
four constants, because ~ contains at most five constants and 
Slllt = SJlii/Clttl = 1 in view of (16a). Consequently, in 
the fully anisotropic case, the stress state of a linearly elastic 
homogeneous plane solid subjected to no body forces and to 
tractions on its boundary is dependent on four dimensionless 
parameters instead of the six elastic constants of C. However, 
remark that the strain tensor obtained by (23) continues de- 
pending onthe latter. 

The relation (6) can also be employed to simplify the field 
equation (27) or (27 ' )  in several important cases. By (7) and 
the minor symmetries C = (1 @ 1)C = C(x)(1 @ 1), we have 

RCR = NCN r =  (R @ R ) C ( R  @ R) r. (37) 

As R represents the right-angle rotation, (37) means that NCN 
in (27) or (27 ' )  is nothing but C rotated through 90 deg. 
However, it has already been shown in He and Zheng (1996) 
that any two-dimensional elastic tensor C can be only either 
fully anisoovpic or orthotropic or square-symmetric or iso- 
tropic. As a result, every two-dimensional elastic tensor C, 
except the fully anisotropic one who has { 1, - 1  } as the symme- 
try group, is invariant under R, i.e., 

II~C~ = C. (38) 

Correspondingly, (27 ' )  and (36) reduce to 

0 = [5 (x ) (V ® V)~o(x)]:( V ® V) + Aa(x)A~p(x) 

- [(V ® V)a(x) ] : [ (V @ V)tp(x)], x E f~; (39) 

0 = ,~::(V ® V ® V ® V)~(x) ,  x E ~. (40) 

It is useful to write (40) in detail. According as the solid is 
isotropic, square-symmetric or orthotropic, (40) reads differ- 
ently as 

qO,lll 1 + ty9,2222 -t- 2~,llz, = O, (41a) 

(,D,llll -t- (P,2222 + 2"/qo,tlz2 = O, (41b) 

~0,lll  1 'q- ,/~qO,Z222 q- 2"y~0,1122 = O, (41c) 

with 

: C2222/Cl111,  "Y = (C1122 + 2G212) /Cl t l l .  

Among ( 4 1 a ) - ( 4 1 c ) ,  we recognize the usual biharmonic 
equation (41a). As neither (41a) nor (28) contains any material 
parameter, then the stresses associated with the solution (unique 
to within an affine function) of the traction boundary value 
problem of a plane isotropic homogeneous solid (with no body 
forces) are independent of the elastic constants. This result, 
known as Michell's theorem (see, e.g., Gurtin 1972), has re- 
cently been applied by Zheng and Hwang (1996) to the micro- 
mechanics of composite materials. As in the isotropic case, we 
can conclude from (4 lb) - (41 c) together with (28)  that the 
stresses corresponding to the solution of the traction boundary 
value problem of a plane square-symmetric ( orthotropic ) ho- 
mogeneous solid are dependent on only one ( two)dimen- 
sionless elastic constant(s). This conclusion should also have 
applications in the micromechanics of (anisotropic) elastic 
composite materials. 
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1 Introduction 
In this paper we analyze plane motions of a frictional elastic 

sphere dropped on an inclined surface. We are interested in 
how sticking and sliding collisions occur as the bouncing pro- 
ceeds. In particular, we are interested under what circumstances 
the collisions are eventually all sliding, all sticking, or exhibit 
intermittancy between sticking and sliding. 

We introduce the following notation: a is the diameter of the 
sphere, m is its mass, and I is the moment of inertia about its 
center, given for a homogeneous sphere by I = too2~ 10. Prior 
to a collision, the sphere has translational velocity v and angular 
velocity w; the corresponding post-collision quantities are de- 
noted with hats. J is the impulse exerted by the wall upon the 
ball during impact, n is the unit normal to the wall directed 
upward, and G is the gravitational acceleration. 

The velocities before and after a collision are related by 

m(¢, - v) = J, (1) 

and 

(ma2/10)(© - co) = - ( c r / 2 ) n  × J. (2) 

In order to completely determine the impulse J, we introduce 
the velocity g of the point of contact, 

g = v - (cr/2)co X n, (3) 

and note that n" g = n '  v. We assume that the normal compo- 
nents of g before and after a collision are related through 

~ . n  = - e ( g ' n ) ,  (4) 

where e is the coefficient of restitution in the normal direction. 
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B R I E F  N O T E S  

When treating the tangential component of velocity two types 
of collisions must be distinguished: a sticking collision, in which 
the point of contact 'is brought to rest during the collision; and 
a sliding collision, in which the point of contact slides thoughout 
the collision. In a sticking collision, the tangential components 
of g are assumed to be related by a constant tangential coeffi- 
cient of restitution rio: 

(n x ~) = - f l 0 (n  x g) ,  (5)  

where 0 ~/3o ~ 1. In a sliding collision, the sliding is assumed 
to be resisted by Coulomb friction and the tangential and normal 
components of the impulse are related by the coefficient of 
friction #: 

In x J[ = # ( n ' J ) ,  ( 6 )  

where # -> 0. 
The parameter that determines whether a sticking or sliding 

collision occurs is the angle 3' between g and n:  

cot 3' - ( n ' g ) / l n  x g[. (7) 

When y is greater than critical value 3/0 given by 

7#(1 + e) 
tan To = 2(1 + /3o) ' (8) 

we have sticking collision; otherwise, we have sliding collision. 
The angle Yo is between 7r/2 and 7r, so the tangent of 3'o is 
negative. 

Note that for a sliding collision, the collisional impulse is 

j(1) = - m ( 1  + e ) ( n ' g ) n  + #m(1 + e) 

× cot y [g  - ( n . g ) n ] ,  (9) 

and the change of g is 

~, = g - (1 + e ) ( n . g ) n  + ~ cot y [g  - ( n . g ) n ] ,  10) 

where 

#o ~ (7 /2 ) (1  + e)#.  11) 

In a sticking collision the impulse is 

j(2) = - m ( l  + e ) ( n ' g ) n  

- (2m/7) (1  + flo)[g - ( n . g ) n ] ,  12) 

.g 

(1+1) 

[ 

Fig. 1 Dependence v °+~) = X(~) 
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Zj(j) 

~(i+1) _ 

/ /~,(i+l)= u(=) 

I I I I 
V(4) v(3l  U(2)V(I) 

Fig. 2 Iterative mapping 

and the change of g is 

= g - ( l  + e ) ( n . g ) n  - (1 + fl0)[g - ( n . g ) n ] .  (13) 

We exploit the fact that after each bounce the normal compo- 
nent gy is diminished by the factor e < 1. More precisely, for 
the ith bounce we have ~/)  = - e g ~  ~), where superscripts in 
parantheses indicate the bounce number. But we also have that 
g~i-1) .~. __g~). Hence, g~i, = eg~,-,). Analogously g~,n = 
eg~ ~-~). We see that both g~,n and g~i) form geometric se- 
quences. Fnrther, it is convenient for us to introduce normalized 
vector f u): 

1 U)  f(O ~ ~ g  . . (14) 

If we assume that the ith collision is sticking, then ~(~) = 
_ flg[i), in this event, from the dynamics of the parabolic trajec- 
tory, gx before i + 1 collision is 

(15) 

If/_ I -.~, 

[ 

• ( N  = l / I l l  

Vo ~* •, z,.(i) 

Fig, 3 Casee <1  

T r a n s a c t i o n s  of the  A S M E  
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[ b~ (i÷1) 

, = 

Fig. 4 C a s e e = l  

where 

= °~----~---- G sin a = 2lg~.'+'~l tan ce. (16)  
G cos o~ 

From ( 1 4 ) -  (16)  we obtain the following equation: 

f~ i+ , )=  __fl f~i~ + 2 [f~i+,~ I tan ce. (17)  

Because f~i+l~ = f ~  for all i, f rom (17) ,  

f~i+,~ t3 f.~i) 
If~/+l~l e If¢~l ÷ 2 tan c~. (18)  

We introduce 

u ~'~ -~ f ~i) g~i) 
- ( 1 9 )  

i f  ~i)[ I g~i~] , 

then (17)  becomes 

u <i+l) = - ~- u ~i> + 2 tan a .  ( 2 0 )  
# 

We recall that Eq. (20)  is valid only for sticking collision, for 
which [u<~)] < u* ~ - t a n  Y0. 

When  there is a sliding, g~i+~) is a linear function of g~i> 
with slope one. It follows from this that during sliding collision, 
J~ depends only upon J~, and the collision parameters and does 
not depend on the relative velocity of  the contact surfaces. Then 
f .~+ ~ is a linear function of f.~i) with slope e-~;  and, finally, 
u/i+t) is a linear function of u ( i /with slope e-~. This, together 
with condition that the dependence between u ~ + ~  and u ~ 
should be continuous at the transition between sticking and 
sliding, permit  us to obtain the function u (~+~ = X(u ~ )  for 
- ~  < u ~ < + ~ .  The plot o f x ( u  ~°) is shown on Fig. 1. 

Because u(~! = X(u(~)), u ~:~ = X(U ~1) = X(X(Lt  (1)) ) ,  etc., 
we see that we have an iterative mapping for determining u ~+ 1~. 
This iterative mapping can be represented graphically by plot- 
ting the auxilliary curve u t~+l~ = u ~ as shown on Fig. 2. 
The resulting behavior  of  the ball depends significantly upon 
whether  e is less than one or equal to one. 

BRIEF NOTES 

We consider plots L j(i~ I) = X( / )  (i)) for case e < l as shown 
on Fig. 3 and for case e = 1 as shown on Fig. 4 and consider 
intersection of  those plots with line u ~+ ~ = u (o. We see that 
when e < 1, we have up to three intersections of the curves 
u t~+~ = X(U (~)) and u ~ ~) = u ~). When  e = 1 we have, in 
general, only one intersection. The point of intersection is a 
steady point of the iterative mapping. Physically, u (~) = ~, 
where ~ is such a steady point, then in all subsequent bounces 
the ball will strike the wall at the same angle. It also means is 
that if ~, is a sticking collision region then all subsequent  colli- 
sions will be sticking, and if ~ is within a sliding collision, then 
all subsequent  collisions are sliding. We shall consider the cases 
e < 1 and e = 1 separately. 

P e r f e c t l y  E l a s t i c  W a l l  ( e  = 1 )  

By examining the graphs on Fig. 4, we conclude that a steady 
point exists when [c~l < ~,.,, where 

1 3 + e  
tan cec,. = - t a n  Yo - -  

2e 

= 7,at1 + e)(13 + e) ~ 7p,. (21)  

4e(1 + 13) 2 

Because/3  is always less than one (i.e., 13/e -< 1 ), this steady 
point is also stable. Because this steady stable point is in a 
sticking region, it doesn ' t  matter what  u ~l~ is; after several 
collisions, which could be in sliding region, we will eventually 
end up in a sticking region. 

When  ]~1 > o~,.~, there is no steady point. It doesn ' t  matter 
where we start, we will eventually end up in a sliding mode. 
In this case u tk~ _~ ~ as k ---~ co. 

3 I n e l a s t i c  W a l l  (~  < 1 )  

This is the case for all real balls. If I c~ I < O~c,, where ac,. is 
given by (21)  with e -~ 1, we have three points of intersection, 
as it is shown on Fig. 3. We denote these points by u_~, Uo, 
and a t .  The steady points u_~ and u~ are unstable, while the 
stability of uo depends upon the magnitude of 13/e. If 13/e > I, 
then uo is unstable; if 13/e _< 1 then u0 is stable. 

If we start in the region u (~ < u- i  or u t,~ > / J l ,  our iterations 
will diverge, which physically means that we get all sliding 
collisions as k ~ oo. If  we begin in the region u_~ < u (1) < uj 
then the subsequent  behavior  depends on X(U (i~). If X(U- l )  < 
X(U*) and X ( - U * )  < X(Ul),  then we will never  get out of 
this region. For all k we will have u_~ < u (k~ < u~. The behavior  
in this case depends upon the stability of u0. If u0 is stable, 
then eventually we will obtain u (~ ~ up as k ~ ~ .  Because up 
is in a sticking region, then eventually all collisions will be 
sticking as k ~ 0% although in this case there is some possibility 
of  intermittance between sliding and sticking collisions in the 
beginning. If  u0 is unstable and if  u - i  < u t~) < ul and u ~t) 
u0, chaos will occur in this iterative mapping. In this case we 
will have a chaotic intermittance between sticking and sliding 
collisions. 
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BRIEF NOTES 

Eigenvalue and Eigenvector 
Determination for Damped 
Gyroscopic Systems 

D. P. M a l o n e  12,14,16 ~ D. L. C r o n i n  13,14,15,17 

and  T. W.  R a n d o l p h  12'14 

1 Introduction 
Cronin (1990) developed an efficient perturbation-based se- 

ries method to solve the eigenproblem for dynamic systems 
having a nonproportional damping matrix. To illustrate the gen- 
eral applicability of this method, Peres-da-Silva, Cronin, and 
Randolph (1995) applied it to determine the eigenvalues and 
eigenvectors of a damped gyroscopic system. Although the 
method was shown to work for gyroscopic systems, its use- 
fulness is limited because it requires that the gyroscopic terms 
are small. 

In the present note we derive and examine a new method 
that uses the undamped gyroscopic system as the unperturbed 
system. The accuracy and convergence of the new method are 
independent of the size of the gyroscopic terms. Furthermore, 
the method permits a numerically efficient solution of the eigen- 
problem for damped gyroscopic systems because it can use the 
approach of Meirovitch (1974) to solve the eigenproblem for 
the unperturbed system. 

2 Method 
The equation for the free vibration of an nth-order damped 

gyroscopic system is 

[M]{J(} + [D]{2} + [Kl{x} = {0} (1) 

where [M] and [K] are real and symmetric (n × n) matrices, 
and where 

[D] = [G] + [C]. • (2) and 

The (n × n) matrices [G] and [C] are real. The gyroscopic 
matrix [G] is skew symmetric, and the damping matrix [C] is 
symmetric. It is assumed here that the mass matrix [M] and 
the stiffness matrix [K] are positive definite. The (n × 1 ) vector 
{ x } represents the unknown displacements, and { ~ } and {.~ } 
are the vectors of unknown velocities and accelerations, respec- 
tively. 

When a solution to Eq. ( 1 ) is assumed to have the tbrm { x } 
= { u } e '~', the following algebraic problem arises: 

where 
(s2[M] + s[D] + [K]){u} = {0}. (3) 

The problem defined by Eq. (3) belongs to a class described 
by Lancaster (1966) as the "latent root problem." Solutions 
to Eq. (3) can be obtained by reformulating the problem as an 
eigenproblem in a space having twice the dimension of the 
space of the original problem. To distinguish between these two 
formulations, we shall use the terms "latent root" or "latent and 
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vector" when referring to the solutions to Eq. (3) in n-space, 
and the terms "eigenvalue" or "eigenvector" when referring 
to the solutions to the 2n-space formulation. 

Let [ ~] be the matrix consisting of the latent vectors of Eq. 
(3) for the case [D] = [0], and assume that it is normalized 
so that 

[ ~ ] r [ m ] [ ~ ]  = [I] (4) 

where [I] denotes the identity matrix. Using the transformation 
{ u } = [ ~] { v } and premultiplying by [ ~] r result in the new 
latent root problem 

(s2[l] + s[F] + [AI){u} = {0} (5) 

where [A] is a diagonal matrix: [A] = diag (oo~ . . . . .  cJ,2,). In 
this formulation, the matrix [F] contains the transformed gyro- 
scopic and damping terms 

[F] = [o ] r [D] [O]  = [~5]T([G] + [C])[(b]. (6) 

The matrix [ F] contains both gyroscopic and damping terms 
(see Eq. (6)) .  We write IF] as 

[F] = [F0] + e[F~] (7) 

where 

[Fo] = [ ~ ] r [ G ] [ ~ ]  and ~[Fl] = [qSlr[C][~].  

Here, [Fo] is a real and skew symmetric, e[F~] is real and 
symmetric, and c is our perturbation quantity. In this manner, 
we analyze Eq. (5) by viewing it as a perturbation of the system 

(s2[I] + s[I'0] + [AI){v} = {0}. (8) 

We wish to represent the j th  latent root and latent vector of 
Eq. (5) using power series in e 

sj = sj(e) = ~ sjie i (9) 
i=0 

{Psi  = {vs(e)) = E { v s , } e ' .  (10) 
i=0 

Substituting Eqs. (7),  (9),  and (10) into Eq. (8) and manipu- 
lating lead to the equation 

Z {ns, ie '  = {0} (11) 
i=O 

{Bs , }  = [ A j o l { v j , }  - { B , } .  

and where we have used the notation 

[Ajo] = s~o[l] + sjo[Fol + [AI 

i =  0 ,1  . . . .  (12) 

{/~j0} = {0} 

{/3j,) = -sj,(2Sjo[l] + [F0])(vj0} + (%i ) ,  i = 1, 2, 

where 

i - I  i - I  

{~ , j i )  = - 2  sj,~j.,_,{~jo} - { t o ]  Y'. s~.,_i{,~j, } 
I=1 /=1 

i i-1 

- [ r , l  Z sj.,_, Cvj . i_ l }  - Z b~.,_, Iv j ,  
I=1 I=1 
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and where the quantity b:~ is 
I 

bj, = ~ sj,,,sp .... (13) 
m - O  

If Eq. (1 1 ) holds for all e in the interval of convergence, 
then {Bji} = {0} for all i = 0, 1 . . . . .  Or, in view of Eq. (12),  

[Ajo]{Vji} = {/3ji}, for i = 0, 1 . . . . .  (14) 

For i = 0, Eq. (14) corresponds to the unperturbed equation, 
Eq. (8) ,  whose latent roots and latent vectors are given, respec- 
tively, by sj0 and { vj0 }, j = 1 . . . . .  n. This is the type of system 
for which Meirovitch proposed an efficient solution method. 
Therefore, it will be assumed that sjo and { Vjo }, j = 1 . . . . .  n, 
have been determined efficiently and at a low cost, and are 
available as needed. 

We now turn to the problem of computing sji and { v:i }, i > 
0, in Eqs. (9) and (10).  F o r j  = 1 . . . . .  n,  we note that the 
rank of [Ajo] is n - 1, and we note that { vjo} is the eigenvector 
of [A/o] corresponding to its eigenvalue k = 0: [Aj0] {v j0} = 
{0}. Since [Ajo] is hermitian, it follows that {v:0} (being in 
the null space of [Aj0]) is orthogonal to the range of [Ajo]. 
Therefore 

{Vjo}*{/32,} = {V jo I*[a jo l {v j i }  = 0. (15) 

The notation [M] * is used here and in the following to denote 
the conjugate transpose of any m x n matrix [M]. 

Using the property described in Eq. (15) with the definition 
of { flji }, along with the observation that { vj0 } * [F0] { vj0 } = 0, 
we may write the ith term in the series for si as 

{Vjo} * { y j i}  (16) 
sj, 2s2ollvjol I 

Solving Eq. (14) for { vii} is straightforward. Indeed, since 
[Aj0] is hermitian and of rank n - 1, a basis may be chosen of 
the form 73 = ({vj0}, {e:l} . . . . .  { e:0,_ u }) where ({ejl } . . . . .  
{ej<,,-l)}) forms a basis of the range of [Aj0], and {v j0}- -a  
basis for the null space of [Aj0] - - i s  orthogonal to each of these 
vectors. Since 

{ v j ( ~ ) } -  (v iol  = 5-', { v~}c  i 
i - 1  

is in the range of [Ajo], this vector can be expressed, relative 
to 73, as I°l v)(~) 

1,;(oJ 
for some scaler functions v)(c)  . . . . .  v~'(c). By uniqueness of 
the power series representation, it follows that each term in the 

series Z {vj~}c i is a vector in the range of [Aj0]. Since the 
i = l  

restriction of {A:o] to its range is invertible, Eq. (14) can be 
solved uniquely and simply for {v~i}. 

3 Convergence 
Having found explicitly the terms in the series, Eqs. (9) and 

(10),  that represent the latent roots and latent vectors for the 
system described by Eq. (5) ,  we wish to determine the condi- 
tions under which these series converge. To do this, we follow 
the technique used in Peres-da-Silva et al. and reformulate the 
system as a special eigenproblem in 2n-space. We then obtain 
a convergence condition based entirely on the properties of 
[F~], defined in and below Eq. (7) ,  and the spacing between 
the latent roots of Eq. (8) .  

Journal of Applied Mechanics 
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Mimicking steps used in Peres-da-Silva et al., we rewrite Eq. 
(3)  as 

Premultiplying Eq. (17) by 

o] 
where [f}] = diag ( tO  1 . . . . .  ~ ) n ) ,  and using the change of 
variable 

we obtain the special eigenvalue problem 

f -F -f~] (z} = s(z}. ( 1 8 )  
f~ 0 

Using the decomposition [F] = [F0] + e[Fi]  of Eq. (7) ,  we 
m a y  write 

([To] + e[Tl ] ){z}  = s { z }  (19) 

where 

[To] = f~ and [Tt] = 0 ' 

Here [ To ] is real, skew symmetric and hence normal: [ To ] * [ To ] 
= [ To] [ To ] *. It follows from Theorem 3.9 of Kato (1982) that 
the perturbation series for the j th  eigenvalue and eigenvector 
of Eq. (19) will converge provided 

,-L 
IleT,II = II~r~ll < = 

2 

where dj denotes the distance between the j th  eigenvalue of 
[To] and its closest neighbor. 

In this note, if [M] is an n × n matrix, then IIMII denotes the 
operator norm: HM]I = max {H[M] {vIll:n{vIII = 1}. 

The convergence of these series implies the convergence of 
the latent root and latent vector series given in Eqs. (9) and 
(10),  respectively, and so a radius of convergence for these 
series will be at least l e I, where e satisfies 

ic I < dj . (20) 
211F,II 

4 Example 
Meirovitch and Ryland (1979) worked with the following 

example; it was used subsequently by Peres-da-Silva et al. to 
illustrate the behavior of their series method 

+ 4 { x /  = ( o } .  
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The gyroscopic matrix is 

:] 
and the damping matrix is 

[C] = 010 
For this system, the combined damping and gyroscopic matrix 
in the transformed space employed in this note and in Peres- 
da-Silva et al. is [01 ;2] 

[F] = .2 ' 

The L~ and L~ norm of IF] are both 0.21, and the natural 
frequencies of the unperturbed system are 

COl =~U2 co2=2. 

The condition given in Eq. (20) shows that the series of Peres- 
da-Silva et al. will converge for both latent roots and latent 
vectors provided that 

I~1 < g _ 1 , ~ - 2 1 .  1.395. 
211Fdl (2)(.21) 

As noted in Peres-da-Silva et al., when the exact latent roots of 
this system are calculated and compared to the approximations 
obtained from summing the first few terms of the series they 
derived, one finds that 12 terms are needed to achieve six deci- 
mal places of accuracy. 

Reformulating the problem and using the series derived in 
this note result in a more efficient technique. Only two terms 
of these series are needed to achieve six decimal places of 
accuracy. Moreover, since [F~ ] = [C] has norm 0.01, and since 
the eigenvalues of [To] are ± 1.40054i and ±2.01953i, the series 
will converge for both latent roots and latent vectors provided 

lel < dj _ 11.40054-2.01953]_+_ 30.95. 
2[IFiII  (2)(0.01) 

The larger radius of convergence is consistent with the im- 
proved convergence of the series. 

5 Conclus ion 
Developed in this note is a series method for solving the latent 

roots/eigenproblem for generally damped gyroscopic systems. 
This method differs from that presented in Peres-da-Silva et al. 
in that the undamped gyroscopic system is the unperturbed 
system. Since both methods are furnished with a convergence 
test, it is straightforward to demonstrate that the new method 
offers the advantage of faster computation and the capability for 
the analysis of a wider range of physical systems. In particular, 
interesting gyroscopic systems--systems for which gyroscopic 
terms are not small--may be analyzed by this method. 

With the exception of the eigenanalysis of the unperturbed 
system, which must be pertbrmed in 2n-space--efficiently, 
however, thanks to Meirovitch--the method described in this 
note is worked in n-space, and it is, as a consequence, poten- 
tially low in cost. 

As was pointed out in Peres-da-Silva et al., this approach to 
eigenanalysis has the particular advantage that the convergence 
criterion may be determined a priori for each latent root and 
latent vector, and that the decision can be made, based upon its 
value, whether there is a need to proceed further with the analy- 
sis for that latent pair, or whether the unperturbed latent root 
and latent vector are of sufficient accuracy. This capability sug- 

gests the possibility for a considerable savings in the cost of 
analysis. 
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Linear Systems Excited by 
Polynomials of Filtered Poisson 
Pulses 

M. Di Paola TM 

The stochastic differential equations for quasi-linear systems 
excited by parametric non-normal Poisson white noise are de- 
rived. Then it is shown that the class of  memoryless transforma- 
tion of  filtered non-normal delta correlated process can be re- 
duced, by means of  some transformation, to quasi-linear sys- 
tems. The latter, being excited by parametric excitations, are 
f r s t  converted into lt3 stochastic differential equations, by add- 
ing the hierarchy of corrective terms which account for  the non- 
normality of  the input, then by applying the It3 differential rule, 
the moment equations have been derived. B is shown that the 
moment equations constitute a linear finite set of  differential 
equation that can be exactly solved. 

1 Introduction 
The study of mechanical and structural system under non- 

normal stochastic loads has become very popular in recent 
years. This is due to the fact that many excitations acting on 
the structures, such as moving loads on the bridges, quadratic 
drag terms in fluid mechanics, etc., show significant non-normal 
characteristics. 

Nonlinear systems loaded by both external and parametric 
normal white noise excitation can be treated by means of the 
application of the It6 stochastic calculus ( 1951 ) which provides 
an easy procedure for deriving the differential equations in 
terms of moment or in terms of the probability density function 
(Arnold, 1973; Ibrahim, 1985; Gardiner, 1985; Soong-Grigorin, 
1993). It consists in modifying the drift coefficients taking into 
account the so-called Wong-Zakai (1965) correction term. In 
this way one takes full advantage of classical differential calcu- 
lus retaining the nonanticipating function properties as well. 
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Both linear systems (Lin, 1965; Lutes, 1986, 1993; Lutes and 
Hu, 1986) and nonlinear systems (Roberts, 1972; Iwankievicz, 
1990) under external non-normal Poisson pulses have been 
widely investigated in the past. Only recently the problem of 
nonlinear systems under parametric Poisson pulses has been 
framed in the stochastic differential calculus (Di Paola and 
Falsone, 1993a, b; Di Paola, 1993; Di Paola and Falsone, 1994). 
They extended the It6 calculus to this kind of input, showing 
that, in the case of parametric excitations, it is necessary to take 
into account some new hierarchy of corrective terms in order to 
convert the physical equation into It&type stochastic differential 
equations. In this frame, apart from some additional computa- 
tional effort, the mathematical treatment remains very efficient 
and simple. 

Nonlinear systems driven by external excitation handled by 
means of perturbation theory (Grigoriu, 1995), or by a pseudo 
force principle or by means of a variational principle (Rugh, 
1981) belong to the very important class of linear systems 
excited by polynomials of filtered processes. The latter class 
has been investigated by Grigoriu and Arariatnam (1988) for 
normal white noise input and by Muscolino (1995) for non- 
normal Poisson white noise directly deriving the moment equa- 
tion by the given systems and hence by considering the whole 
system driven by external excitation. 

Here, by means of a suitable coordinate transformation, it is 
shown that linear systems excited by polynomials of filtered 
normal or non-normal white noise can be reduced to the class 
of quasi-linear systems (also called bilinear or simply linear), 
and then the moment equations can be easily derived and solved 
for both normal and non-normal white noise because they do 
not constitute an infinite hierarchy. 

Because the quasi-linear system, equivalent to the physical 
nonlinear one (driven by external excitation), is loaded by a 
parametric-type excitation, a hierarchy of new corrective terms 
(Di Paola and Falsone, 1993 a, b ) (extension of the Wong-Zakai 
correction term) are needed to obtain the corresponding It6 
stochastic differential equations. It is shown that the moments 
obtained directly on applying the modified It5 differential rule 
for external excitation (extended to account for the non-normal- 
ity of the input process) and the moment equations, obtained 
by deriving the moments from the It6 equations of the equiva- 
lent quasi-linear system, are exactly the same. 

2 Preliminary Concepts and Definitions 
In this section some preliminary concepts and definitions will 

be introduced for clarity sakes and with the aim to introduce 
appropriate symbologies. 

Let a Poisson delta correlated process be defined in the form 
N(t) 

W(t )  = ~ P k 6 ( t -  tk) (1) 
k=l 

where N(t)  is a homnogeneous counting Poisson process, giving 
the total number of spikes 6(t - tk) (Poisson distributed) in 
the interval [0, t]; Pk are identically distributed random vari- 
ables which are mutually independent and independent of the 
time instant tk. The correlations (cumulants of the process W (t) 
evaluated at different time instances) of W(t)  are given as 

R~Y)(h, h . . . . .  t~) 

= KE[P"]~5(t2 - h) '~( t3  - h) . . .  5 ( t , . -  h) (2) 

where X > 0 is the mean arrival rate of impulses in unit time. 
It is well known that when X approaches infinity and, at the 
same time XE[P 2] keeps a constant value, the Poisson white 
noise approaches the normal white noise, in the following, de- 
noted as W 0 (t). 

As a normal white noise W°(t)  can be considered as formal 
derivative of the Wiener process B(t) ,  the Poisson delta corre- 
lated process can be considered as the formal derivative of the 

BRIEF NOTES 

so-called compound Poisson process hereafter denoted as C(t) 
defined as 

N(t) 

C(t) = ~ P y ( t -  tk), (3) 

U(" ) being the unit step function. So that increments of Wiener 
processes and increments of compound Poisson processes are 
characterized by having the following moments (or cumulants), 

k2(dB) = m2(dB) = q2dt; mr(dB) = 0; Vr ~ 2 (4) 

k,(dC) = m,.(dC) = qrdt = kE[Pr]dt; 

r =  1 ,2 ,3  . . . . .  ~, (5) 

from Eq. (5) we recognize that also in the case in which i t' is 
normally distributed, increments of compound Poisson pro- 
cesses are not normal. 

Now let a physical dynamic system be given in the general 
form 

= a(X, t) + g(X,  t )W( t )  (6) 

where a(X, t) and g(X, t) are deterministic nonlinear functions 
of X and t, and W(t)  is a Poisson delta correlated process. 
Alternatively this equation can be rewritten in the differential 
form 

dX = a(X,  t)dt + g(X,  t)dC. (7) 

The corresponding It6 differential equation, hereafter denoted 
as AX (Di Paola and Falsone, 1993a, b; 1994), is given a 

A X =  dX ~ 1 + J-- j--~ gCJ)(X, t ) (dC)  j (8) 

where the summation in Eq. (8) is the Di Paola-Falsone correc- 
tive term in passing from the integrals in Stratonovich sense to 
that in It6 sense, and g(r)(X, t) can be evaluated in recursive 
form as follows: 

g(")(X, t) - Og("-~)(S' t) g(t)(X ' t); 
OX 

gCl)(X, t) = g(X, t). (9) 

It will be noted that (dC) '  is an infinitesimal of order dt so 
that the various terms in Eq. (8) cannot be neglected because 
all terms have the same order. It can be seen that if dC --, dB 
then the summation on the right-hand side of Eq. (8) contains 
only the first terms (j  = 2) and ½g(2)(X, t ) (dB)  2 coincides 
with the well-known Wong-Zakai (1965) correction term. The 
primary concern in dealing with AX is the fundamental property 
of nonanticipating function of the It6 stochastic differential Eq. 
(8), that is 

E [ f ( X ,  t ) (dC)  k] = E [ f ( X ,  t)]E[(dC)~]. (10) 

Once the physical Eq. (8) is converted into an It&type stochas- 
tic differential equation, the extended It6 differential rule for 
any scalar real-values function 49(X, t) can be used, 

d4)(X, t) 0490t dt + j~=~ 10J49 = 7 ~ ( A x ) J .  (11) 

If C(t) ~ B(t) ,  then the summation on the right-hand side of 
Eqs. (8) and ( 11 ) can be truncated at the second term and we 
exactly obtain the classical It6 differential rule. At last we note 
that in the case of external excitation, that is if g(X, t) = g(t) ,  
then A X  -= dX, because the summation in Eq. (8) disappears. 
Extension to multidegree-of-freedoln systems is shortly re- 
ported in the Appendix. 

As an example for the quasi-linear system, that i s f (X ,  t) = 
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a ( t ) X  + #( t )  and g ( X ,  t) = b ( t ) X ,  the equation of motion is 
given as 

clX = a ( t )Xd t  + #( t )d t  + b ( t )XdC.  (12) 

The corresponding It6 equation can be written as 

A X  = a ( t )Xd t  + I~(t)dt + 
bJ(t) 

J=~ - T T - X ( d C ) J .  (13) 

On applying Eq. ( 11 ) for the special case 4fiX, t) = X ~, making 
the stochastic average, and dividing by dt, we obtain the equa- 
tion of moments of every order in the form 

mk(t) = ka( t )mk( t )  + klz(t)mk-~(t) 

+ ( k - j ) ! j !  qtj(t) mk (14) 

where 

b~(t) 
~01(t) = ~ ~ q~(t); 

r = l  

~O2(t) = ~ ~ b~(t)bS(t) q~+~(t); . . . .  (15) 
r=t s=l r!s! 

From Eq. (14) we recognize that in the case of the linear system 
excited by parameters Poisson pulses the equation of moments 
of any order does not constitute an infinite hierarchy and then 
can be exactly solved. The system given in Eq. (12) is also 
called "quasi-linear" or "bilinear." 

In the case of zero-mean normal white noise input, if a( t ) ,  
#(t),  b(t)  are constant quantities and the system operates from 
t = - ~ ,  then the response attains the stationary solution and 
the moments of every order are given in the simple form 

mk = (-1)k--i. I -  k =  1,2 . . . .  (16) 

Haj 
j = l  

where 

J 2 aj = a + = b  qz. (17) 
Z 

It will be noted that also in the case of normal input the response 
X is not normal. In fact in the stationary case the higher order 
cumulants proves to be different from zero. 

3 Linear Systems to Polynomials of Filtered Poisson 
White Noise and Quasi.Linear Systems 

In this section a linear system with polynomial of filtered 
delta correlated process fs treated, showing that such a class of 
systems can be reduced to quasi-linear ones. 

Let a dynamical system be given in the form 

~ = c~(t)X~ + #( t )  + f ( Y )  (18) 

wheref(Y) is a deterministic function of a non-normal process 
obtained by filtering a delta correlated process, that is 

= p( t )Y  + 7(t)W (19) 

where p(t)  and 7 ( 0  are deterministic coefficients and W ( t )  is 
characterized by the correlations given in Eq. (4). 

Le t f (Y)  be given in the form 

f ( Y )  = i a jW.  (20) 
j=l 

We now introduce the state variables X, = dS-2f(Y)/dY s-2, s 
= 2, 3 . . . . .  n, that is 

X2 = Y"; X3 = n Y ' - i ;  . . .  ; X,,+x = n ! Y  (21) 

by using the following relationships: 

~, Xn+l PX'+------2 + 7W; XkX,,< = n ! ( n  - k + 3)X~_~; 
n! n[ 

k = 3, 4 . . . . .  n (22) 

and defining the differentials dXk, k = 2, 3 . . . . .  n + 1 as 
follows: 

dXz = n Y " - I d Y ;  dX3 = n ( n -  1 ) Y " - Z d Y ; . . . ;  

. .  dX,,+l = n ! d Y .  (23) 

Equations (18) and (19), with the aid of Eqs. (22) and (23), 
can be also rewritten in the differential form as follows: 

dX~ = c~X~ + a,,X2 + a,,_~ X3 + an-2 X4 + . . .  
n n ( n -  1) 

a l  + - - X , + i  + #dt 
n! 

dX2 = npX2dt + 7X3dC 

dX3 = (n - 1)pX3dt + 7X4dC 

dX,  = 2pX, dt + 7X,+ldC 

dXn+l = pX,,+~ + n !7dC. (24) 

From these equations we recognize that the non-linear system 
of differential equations forced by ex.ternal non-normal input 
has been transformed in a quasi-linear system forced by para- 
metric-type excitations. The first step for obtaining the moment 
differential equations consists in transforming Eqs. (24) in the 
Ito stochastic differential equations by adding the Di Paola- 
Falsone correction terms. In order to do this we rewrite Eqs. 
(24) in compact form as follows: 

dX = (AX 4- #v l )d t  + (RX + n!yv,+~)d C (25) 

where 

A = 

R = 

O~ a n 

0 np 

Q ® 

i i 

Q G 

.Q  Q 

0 
0 
Q 

G 
Q 

V k = 

an- i  2a2 al  

n n! n! 

Q ... Q @ 

( n - l ) p  ... Q Q 

: " .  ! : 

Q) ... 2p Q5 

@ ... ® p 

@ ® Q"" iJ 

@7 Q "" ~ 
Q @ y ... . 

~ i " .  

Q 0 ® ' "  
0 Q Q ' "  

*- k-th row. 
(26) 
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It can be easily seen that the vectors g(")(X ) are simply given 
in the form 

g<~(X) = RX + n['y/Yn+l; g(~)(X) = R2X + rt[T21-,,,; . . .  ; 

g<')(X) = n!y"v2; g<s/(x) = 0 s > n. (27) 

Then the It6 stochastic differential equation correspondent to 
Eq. (24) can be written in the form 

AX = (AX + #v~)dt + s! R" X 

or in extended form 

. ( d C ) , ,  
~- n! Z 7 ~/SVn+2-' (28/  

s=l 

AXj  = (aX~ + a,,X~ + al ) 
a,_~n X~ + . . .  +~-~X,+~ +l.Z dt 

n - I , ) l  k 

AX2 = npXzdt + ]L -~. Xk+z(dC) k + y"(dC)"  
k=l 

n-2 ,}/k 
AX3 = (n - 1)pX3dt + Y. -~.Xk+3(dC) k + y"- l (dC)" - I  

k=l 

AX,, = 2pX,,dt + TX,+idC + (n - l ) ! y z ( d C )  2 

AX,,+i = pX,<dt + n!ydC.  (29) 

Once the AXe, s = 1, 2 . . . . .  n + l has been calculated, 
by appropriately using the differential rule described in the 
Appendix, the differential equations governing any order mo- 
ments can be easily derived. 

The described procedure can be better explained by means 
of a simple example: we will evaluate the response of the differ- 
ential equation 

J¢l = oeXi + ,a + y2 (30) 

in which Y is the non-normal filtered Poisson process defined 
by the equation 

= pY + yW.  (31) 

By putting yz = 322 and 2Y = X3, we can transform Eqs. (30) 
and (31 ) in the set of physical differential equations as follows: 

dX~ = (aX~ + # + X2)dt 

dX2 = 2pX2dt + TX3dC 

dX3 = pX3dt + 2ydC (32) 

and in turn they can be converted into an It6-type stochastic 
differential equation, (see the Appendix), as follows: 

AXi  = (eeX1 + I* + X2)dt 

AX2 = 2pX2dt + TX3dC + y2(dC)2 

AX3 = pX3dt + 2ydC.  (33) 

By using the It6 differential rule given described in the Appen- 
dix, the moment equations up to the second-order moment can 
be easily derived in the form 

/~[X~] = aE[X~] + # + E[Xz] ' 

/~[X=] = 2pE[X2] + Tq, E[X3] + T2q= 

/~[X3] = pE[X3] + 2yq, 

/~[X~] = 2o~E[X1 z] + 2#E[X1] + E[XiX2] 

BRIEF NOTES 

.E'[X1X2] = (2p + ot)E[XiX2] + yE[X~X3]q~ 

+ y2E[X~]q2 + #E[X:] + E[X22] 

/~[X~X3] = (p + a)E[X~X3] + 2yE[X~]q, 

+ p,E[X3] + E[X2X3] (34) 

/~[X22] = 4pE[X 22] + 2TE[X2X3]q~ + 2y2E[X2]q2 

+ TzE[x~]q2 + y4q4 + 2T3E[X3]q2 

/~[X2X3] = 3pE[XzX3] + 2yE[X2]ql + y E [ S  ~]q~ 

+ 372E[X3]q2 + 2'y3q3 

/~[X~] = 2pE[X ~] + 2"yE[X3]q, + y2q2. 

From these equations we recognize that for the It6 Eq. (33) 
the moment equations up to the second order contain only the 
first and second order moments, and the same happens for higher 
order moments, that is for Eq. (33) the moment equation does 
not constitute infinite hierarchy. 

On the other hand, if we directly approach Eqs. (30) and 
(31 ) we recognize that it is a non linear system excited by 
external delta correlated process, so that the physical differential 
equations coincide with the It6 differential equations, that is 

AXt  = dXl = (o~Xi + ~ + y2)dt 

A Y  = dY = pYdt + ydC. (35) 

Using the approach proposed by Muscolino (1995) for this 
system by applying the extended It6 differential rule given in 
Eq. (15) and appropriately selecting the function ~b, we can 
write the differential equation of moments in the form 

/~[X,] = aE[X1] + ~ + E[Y 2] 

/~[Y] = pE[Y] + yq, 

£'[X ~] = 2aE[X 2] + 2#E[Xi] + E[y2xi]  

.12[X~Y] = (p + ee)E[X,Y] + #E[Y] + E[Y 3] + yE[X~]q, 

/iDlY 2] = 2pE[Y 2] + 2yE[Y]ql + y2q2. (36) 

In these equations moments of order higher than two appear, 
so we need the third-order equation for E[Y 3] and E[Y2Xi], 
these equations are 

~[y3] = 3pE[Y3] + 3yE[y3] + 3yE[y2]ql 

+ 3E[Y]T2q2 + T3q3 

.E'[Y2X~] = (2p + a)E[Y2Xt] + 2pE[YXj]yq~ 

+ p,E[Y z] + E[Y 4] + yzE[X~]q2 (37) 

and in view of the presence of the fourth order moment E[y4],  
we need the fourth order moment equation, that is 

/~[y4] = 4E[y4] + 4E[Y3]yql + 6E[Y2]y2q2 

+ 4E[y]T3q3 + y4q4. (38) 

Now the set of Eqs. ( 3 6 ) - ( 3 8 )  seems to be quite different 
from Eqs. (34). However, by accounting for these simple alge- 
braic relationships 

X2 = yz ,  X3 = 2Y, E[X1Y] = E[X1X3]/2 

E[X,Y z] = E[X, Xz], E[Y 2] = E[Xz] = E[X ~]/4 

E[Y 3] = E[X2X3]/2, ElY 4] = E[X ~1 (39) 

and putting them into Eqs. ( 3 6 ) - ( 3 8 )  we exactly obtain Eqs. 
(34). 
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Similar equations for higher order polynomials and higher 
order moment equations have been derived but are not here 
proposed for the sake of brevity. 

Finally, we can make the following remarks: (i)  the class of 
linear systems excited by nonlinear transformation of filtered 
(normal or non-normal) process can be reduced to the solution 
of quasi-linear systems-- that  is a linear system excited by para- 
metric excitations. The equation of moments for such a kind of 
system can be exactly solved obtaining the moments of every 
order, also for the class of non-normal Poisson filtered process; 
(ii) because the quasi-linear system, equivalent to the original 
nonlinear one, is loaded by parametric excitations in accordance 
with Di Paola-Falsone (1993a, b), we have to take into account 
colxection terms for deriving the It6 equations from the physical 
ones. These terms are essential in order to establish the equiva- 
lence between the original and the corresponding quasi-linear 
system. 

4 Conclusions 
The quasi-linear systems excited by non-normal Poisson 

white noise processes can be treated as linear systems, in the 
sense that the moment equations of any order are linear and 
involves moments of lower order only, although the response 
is non-normal even for normal white excitation. 

To this class belong the class of linear systems excited by 
polynomials of filtered non-normal Poisson processes. It has 
been shown that for such a class the analytic treatment for 
deriving the moment equations of any order can be obtained 
by means of two different strategies. The first one consists of 
considering the nonlinear system excited by external noise, 
while the second consists in replacing the original system in an 
equivalent quasi-linear one. The latter, since parametric excita- 
tion appears, has to be first transformed from a set of physical 
differential equations into a set of It6-type stochastic differential 
equations by adding the Di Paola-Falsone correction term to 
the physical equations. By applying the It6 differential rule, the 
moment equations for the quasi-linear system have been derived 
and compared with the equations of moments obtained by the 
original systems obtaining the coincidence of the moment equa- 
tions for the two aforementioned systems. Moreover, because 
the moment equations of any order of quasi-linear systems does 
not constitute hierarchy, the probabilistic characterization of 
linear systems excited by polynomials of filtered non-normal 
Poisson processes can be exactly found also for this class of 
input. 
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A P P E N D I X  
In this Appendix the extension of the theory outlined in the 

paper for the scalar sense is extended to multidegree-of-freedom 
systems. 

Let the equation of motion given in the form 

dX = f (X,  t)dt + g(X,  t)dC (A1) 

where f (X, t),  g(X,  t) are deterministic n-vector of the vector 
response process X (t) .  The It6 equation can be written as 

A X  = f (X,  t)dt + Y~ ~ g ° ( X ,  t)(dC) j 
j= l  

(A2) 

where 

g ° ( X ,  t) = VgCi-~)(X, t )g (X,  t); 

g ( l ) ( x ,  t) = g(X,  t) (A3) 

and where Vg~k)(X, t) is the gradient operator, that is 

[ Og~ k~ Og] k) Og]k) 1 
OX1 OX2 OX. I 

Vg ~k> = ~ ~ ... i / " (A4) 

L ox~ OX~ ox.._1 

The It6 differential rule for any scalar real-valued function 
~b(X) = ~b(Xi, X2 . . . . .  X,,), oo times differentiable on X~, X2, 
. . . .  X,,, can be written as 
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JL 04~(x ) 
d4(X)  = Z AXj 

j-I OXj 

1 2~ ~ O°-b(X) AXjAXk  + (A5) 
+ 2  .= k : l  OXJ Oxk 

Then for quasi-linear multi-degree-of-freedom systems, that is 

dX = ( A ( t ) X  + t t ( t ) )d t  + ( R ( t ) X  + ¢l(t))dC, (A6) 

the It6-type stochastic differential equation can be written as 

AX = (A( t )X  + t t ( t ) )dt  

+ ~ (dC)J-RO-~) ( t ) (R( t )X  + ~l(t)). (A7) 
j_~ J! 

The, Order of Stress Singularities in 
Orthotropic Wedges. 

A. Se lvarathinam ~9 and S. S. Pageau  2° 

A formulation for  the determination (~ the order of  the stress 
singularities at the tip of  a re-entrant corner .[or anisotropic 
wedges was given by Bogy (1972). Results for  orthotropic 
wedges were obtained as a special case, and it was concluded 
that the order of  the stress singularities at the tip of  re-entrant 
orthotropic wedges is always more severe than that of  the corm- 
sponding isotropic wedge. It is shown here that the order of  the 
stress singularities at the wedge tip can be above or below that 
of  the corresponding isotropic wedge, depending on the mate- 
rial properties. 

Introduction 
Once Williams (1952) demonstrated the singular character 

of the stresses at the apex of re-entrant corners, many other 
papers related to the singular stress field at the apex of multima- 
terial isotropic wedges followed. The work of Hein and Erdogan 
(1972) and Theocaris (1974) are good examples of such stud- 
ies. Bogy (1972) and Kuo and Bogy (1974a, 1974b) solved 
similar problems for anisotropic materials. Bogy (1972) made 
use of Mellin Transforms to solve for the order of the stress 
singularities at the apex of wedges subject to various in-plane 
loads. The results presented by Bogy (1972) and Kuo and Bogy 
( 1974a, 1974b) utilize the notation of Green and Zerna (1954) 
to condense the results in terms of reduced material properties. 
The present study concentrates on the order of the stress singu- 
larities in orthotropic wedges first examined by Bogy (1972). 
Orthotropic wedges are defined as having their symmetry line 
coincident to one of the axes of orthotropy of the material. It 
will be shown here that the results which were presented by 
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Bogy (1972) in terms of reduced material properties, although 
correct, do not cover the entire range of material properties. A 
discussion of the complete solution is presented below. The 
new results demonstrate that the order of the stress singularities 
in orthotropic wedges are not bounded below by the results 
obtained for isotropic materials. 

Analysis 
Bogy (1972) proposed a formulation to solve for the asymp- 

totic stress and displacement fields at the apex of a reentrant 
linear elastic anisotropic wedge. The wedge is shown in Fig. 1 
and is subjected to either symmetric normal and antisymmetric 
shear loading (case A) or antisymmetric normal and symmetric 
shear loading (case B). The formulation was derived using 
Mellin transforms in complex variable form. This formulation is 
considerably simplified when the principal axes of the material 
coincide with the axes of the wedge. This particular configura- 
tion was referred to by Bogy (1972) as an orthotropic wedge. 

For these orthotropic wedges, the order of stress singularities 
are given by equations ( 6 1 ) - ( 6 2 )  of Bogy (1972). They are 
repeated here for convenience as 

O z = O~ - D~, O u = D~ - Dr,  (1) 

where 

D~ =--o~xl t a n [ ( s +  1 ) a r c t a n ( ~ t a n ~ )  1 , (2) 

Df 2 A = a a D x ,  k =  1,2. (3) 

The superscripts A and B denote the two types of loading indi- 
cated in Fig. 1. The values a~ and a2 are the roots of the 
characteristic equation 

22 4 22 12 2 I 1 $22ce - 2(Sit + 2Sj2)o~ + Sn = 0, (4) 

as defined by Green and Zerna (1954), and which are directly 
obtainable from the properties of the material constituting the 
orthotropic wedge. The values oll and oe2 are condensed material 
properties. They can be real or complex. The case when these 
reduced material properties are complex adds to the difficulty 
of the formulation and will not be considered here. For a given 
wedge geometry, the order of the stress singularity, defined as 
(s + 2), (where s is the root of Eq. ( 1 )) is a function of these 
two condensed material properties only. Bogy (1972) plotted 
solutions of the root s for different values of the wedge angle 
2~ and the two reduced material properties al  and a2. The plots 
given by Bogy (1972) only consider 1/o~ and 1/c~2 to vary 
between 0 and 1 and seem to imply that the full range of material 
properties was covered. This is not true, however, and the pres- 
ent results consider cases where one or both of these parameters 
are greater than one as well as the cases already considered by 
Bogy (1972). Some interesting properties arise from extending 
Bogy's (1972) results. In order to facilitate the discussion the 
following expressions, retrievable from Green and Zema's 
(1954) formulation, are introduced: 

Normal loading 
Load case A: Symmetdc 
Normal and Antlsymmet- Shear loading 
rtc Shear Loading. 

pX,1 
Load case B: Antisym- 
metric Normal and sym- ,2: principal axis of the 
metric Shear Loading. P ~atedal 

,Y: wedge axis 

Fig. 1 Wedge of angle 2/3 under normal and shear loads 
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JL 04~(x ) 
d4(X)  = Z AXj 

j-I OXj 

1 2~ ~ O°-b(X) AXjAXk  + (A5) 
+ 2  .= k : l  OXJ Oxk 

Then for quasi-linear multi-degree-of-freedom systems, that is 

dX = ( A ( t ) X  + t t ( t ) )d t  + ( R ( t ) X  + ¢l(t))dC, (A6) 

the It6-type stochastic differential equation can be written as 

AX = (A( t )X  + t t ( t ) )dt  

+ ~ (dC)J-RO-~) ( t ) (R( t )X  + ~l(t)). (A7) 
j_~ J! 

The, Order of Stress Singularities in 
Orthotropic Wedges. 

A. Se lvarathinam ~9 and S. S. Pageau  2° 

A formulation for  the determination (~ the order of  the stress 
singularities at the tip of  a re-entrant corner .[or anisotropic 
wedges was given by Bogy (1972). Results for  orthotropic 
wedges were obtained as a special case, and it was concluded 
that the order of  the stress singularities at the tip of  re-entrant 
orthotropic wedges is always more severe than that of  the corm- 
sponding isotropic wedge. It is shown here that the order of  the 
stress singularities at the wedge tip can be above or below that 
of  the corresponding isotropic wedge, depending on the mate- 
rial properties. 

Introduction 
Once Williams (1952) demonstrated the singular character 

of the stresses at the apex of re-entrant corners, many other 
papers related to the singular stress field at the apex of multima- 
terial isotropic wedges followed. The work of Hein and Erdogan 
(1972) and Theocaris (1974) are good examples of such stud- 
ies. Bogy (1972) and Kuo and Bogy (1974a, 1974b) solved 
similar problems for anisotropic materials. Bogy (1972) made 
use of Mellin Transforms to solve for the order of the stress 
singularities at the apex of wedges subject to various in-plane 
loads. The results presented by Bogy (1972) and Kuo and Bogy 
( 1974a, 1974b) utilize the notation of Green and Zerna (1954) 
to condense the results in terms of reduced material properties. 
The present study concentrates on the order of the stress singu- 
larities in orthotropic wedges first examined by Bogy (1972). 
Orthotropic wedges are defined as having their symmetry line 
coincident to one of the axes of orthotropy of the material. It 
will be shown here that the results which were presented by 
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Bogy (1972) in terms of reduced material properties, although 
correct, do not cover the entire range of material properties. A 
discussion of the complete solution is presented below. The 
new results demonstrate that the order of the stress singularities 
in orthotropic wedges are not bounded below by the results 
obtained for isotropic materials. 

Analysis 
Bogy (1972) proposed a formulation to solve for the asymp- 

totic stress and displacement fields at the apex of a reentrant 
linear elastic anisotropic wedge. The wedge is shown in Fig. 1 
and is subjected to either symmetric normal and antisymmetric 
shear loading (case A) or antisymmetric normal and symmetric 
shear loading (case B). The formulation was derived using 
Mellin transforms in complex variable form. This formulation is 
considerably simplified when the principal axes of the material 
coincide with the axes of the wedge. This particular configura- 
tion was referred to by Bogy (1972) as an orthotropic wedge. 

For these orthotropic wedges, the order of stress singularities 
are given by equations ( 6 1 ) - ( 6 2 )  of Bogy (1972). They are 
repeated here for convenience as 

O z = O~ - D~, O u = D~ - Dr,  (1) 

where 

D~ =--o~xl t a n [ ( s +  1 ) a r c t a n ( ~ t a n ~ )  1 , (2) 

Df 2 A = a a D x ,  k =  1,2. (3) 

The superscripts A and B denote the two types of loading indi- 
cated in Fig. 1. The values a~ and a2 are the roots of the 
characteristic equation 

22 4 22 12 2 I 1 $22ce - 2(Sit + 2Sj2)o~ + Sn = 0, (4) 

as defined by Green and Zerna (1954), and which are directly 
obtainable from the properties of the material constituting the 
orthotropic wedge. The values oll and oe2 are condensed material 
properties. They can be real or complex. The case when these 
reduced material properties are complex adds to the difficulty 
of the formulation and will not be considered here. For a given 
wedge geometry, the order of the stress singularity, defined as 
(s + 2), (where s is the root of Eq. ( 1 )) is a function of these 
two condensed material properties only. Bogy (1972) plotted 
solutions of the root s for different values of the wedge angle 
2~ and the two reduced material properties al  and a2. The plots 
given by Bogy (1972) only consider 1/o~ and 1/c~2 to vary 
between 0 and 1 and seem to imply that the full range of material 
properties was covered. This is not true, however, and the pres- 
ent results consider cases where one or both of these parameters 
are greater than one as well as the cases already considered by 
Bogy (1972). Some interesting properties arise from extending 
Bogy's (1972) results. In order to facilitate the discussion the 
following expressions, retrievable from Green and Zema's 
(1954) formulation, are introduced: 

Normal loading 
Load case A: Symmetdc 
Normal and Antlsymmet- Shear loading 
rtc Shear Loading. 

pX,1 
Load case B: Antisym- 
metric Normal and sym- ,2: principal axis of the 
metric Shear Loading. P ~atedal 

,Y: wedge axis 

Fig. 1 Wedge of angle 2/3 under normal and shear loads 
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1 1 E; 
a~ + oz~ G12 2u;2, 5 ( a )  

o~ + a~ = E~_ _ 2u~,, 5(b) 
Gt2 

(i ±]2 e; 
\cq a2/ E~ 

where 

5(c) 

El = E,, E~ = E2, u;z = u,2, u~l = /,)21 for plane stress and 

E~ E2 
E; - - -  , E; - 

1 - /./31Mr3 I - -  M32/)23 ' 

u~2 - ulz + ut3u32 , r'[2 u~, for plane strain. 
1 - u31u13 E; E~ 

Results 
In order to demonstrate the singular behavior for a complete 

range of material and wedge geometry, results only need to be 
presented for the order of the stress singularity in a wedge of 
angle 2/3 = 200 deg subjected to case A loading. First, numeri- 
cal results are obtained using Eq. (1) ,  (which was correctly 
derived by Bogy (1972) though its usage was restricted to 0 < 
[1 /a l ,  l / aa ]  < 1) for diverse values of ax and a2. 

Figure 2 shows the roots, s, of Eq. ( 1 ) as a function of 1 / 
oq and 1/a2. The results match those obtained by Bogy (1972) 
for all load cases where 1/o~1 and 1/c~2 are both less than 1. 
Note, however, that only the results obtained for the load case 
A are represented here. Figure 2 extends the results to cases 
where 1/cq and/or  l / a2  are greater than 1. 

The solid lines represent curves of constant root s which are 
displayed for the range of values between -1 .55  and -1.85.  
The constant root curves are symmetric about the principal 
diagonal. Curves for roots less than -1 .85  have not been repre- 
sented for clarity of the figure. In order to explain this complex 
figure the graph is divided into four regions limited by dashed 
lines. The curve (IJA) represents the case where G~2 = 
E l / (2 (1  + u{2)), i.e., the curve obtained by setting the left- 
hand side ofEq.  (5a)  equal to 2 (i.e., 1/c~ 2 + 1/c~ = 2). The 
curve (DJF) represents the case where Gt2 = E~/(2(1 + 
u ; l ) ) ,  i.e., the curve obtained by setting the left-hand side of 
Eq. (5b) equal to 2 (i.e., c~ 2 + c~ = 2). The curve (CJG) is 

obtained by setting the left-hand side of Eq. (5c)  equal to 1, 
that is E~ = E;  for all results lying on this curve. Note that 
the shear modulus satisfies the isotropic relationship only at 
point J. 

In the region (OAJIO), Gj2 > E~/(2(1 + u~z)), and E~ > 
El .  The root s is higher (in the negative sense) than that of 
the isotropic case (s = -1 .818) ,  i.e., it leads to a more singular 
stress state at the wedge apex. When E[ and E;  are inverted, 
the order of the stress singularity is located in the region 
(DEFJD) in which G]2 > E~/(2(1 + u~l)).  The root s in this 
region is lower than that of the isotropic case, i.e., it leads to a 
less singular stress state. 

In the region (ABCJGHIJA), G~2 < E~/(2(1 + u't2)) and 
E;  > El .  The root s is greater than that of the isotropic case, 
i.e., it leads to a more singular stress state at the wedge apex. 
When E[ and E ;  are inverted, the order of the stress singularity 
is located in the region (CDJFGJC) which is also a region in 
w h i c h  Gt2 < E~/(2( 1 + u~t)). For this region there is no way 
of telling, a priori, whether the order of the stress singularity is 
lower or higher than that of the isotropic wedge. This has to be 
to be determined based on where the material lies in the region, 
once Eq. ( 1 ) is solved. When the material can be located below 
the constant root curve s = -1 . 82  (which separates the region 
(CDJFGJC) into two parts), the root s is higher than that of 
the isotropic case, lower otherwise. For materials along the 
curve (CJG) which represents cases where El = E~, the root 
s is always greater than the isotropic limit except of course at 
point J,  where it is identical. 

An interesting result for load case A and 2/3 = 200 deg is 
that the roots s lie between s = -1 . 50  (which corresponds to 
E[ <~ E~) and s = -2 . 00  (which corresponds to E~ >> E~). 
This is also true for other reentrant wedges, except for the 
special case where 2/3 = 360 deg. The latter always leads to s 
= -1 .50,  independently of the material properties. 

The above results demonstrate that the order of the stress 
singularity for an orthotropic wedge lies on either side of that 
obtained for an isotropic material, depending on the shear modu- 
lus value and the ratio E~/E[. Following the finite element 
formulation developed by Pageau, Joseph, and Biggers (1995a) 
these results were confirmed by Pageau (1995b). 

Conclusions 
The stress singularities at the apex of an orthotropic re-entrant 

wedge was investigated b y  using Bogy's (1972) formulation. 
It is shown that Bogy's (1972) conclusion, " . . . t h e  least severe 
stress singularity occurs for the isotropic limit . . . .  " is too re- 
strictive and that, for an orthotropic material whose principal 
axes of orthotropy coincide with the axes of the wedge, the 
least severe singularity does not always occur at the isotropic 
limit. 

1/% 

$=-1,85 

~=-1.82 
~=-1.80 
3 
;=-1.75 
;=-1.70 
;=-1.65 
;=-1.60 
;=-1.55 

O 0.0 0.5 1.0 A 1.5 2.0B 

Fig. 2 Results for the order of the stress singularity for 1/at from 0 to 
2 and a wedge angle 2,fl = 200 deg 
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Local Stability of Gyroscopic Systems Near 
Vanishing Eigenvalues 

A. P. Seyranian.  2 The authors proposed a conjecture for 
gyroscopic systems that predicts whether the eigenvalue locus 
is imaginary or complex (with a nonzero real part) in the neigh- 
borhood of a vanishing eigenvalue. We will show that the con- 
jecture is not true. For this purpose let us consider the simple 
gyroscopic system (see Seyranian et al., 1995) 

[: i0 1] I t ; t + G u + K u =  ti + 2p 1 0 

[ aj - p2 0 ] 
+ 0 a2 - p2 u = 0. (1) 

The characteristic equation for this system takes the form 

~4 j_ X2(a l  + a2 + 2 p  2) + (al - p 2 ) ( a 2  - p 2 )  = 0 (2) 

with solutions 

X122 = ( - ( a l  + a2 + 2p 2) + ~/D)/2, 

D = (at - az) 2 + 8(al + az)p  2. (3) 

We shall study the case 0 < a2 < a~. Then the system (1) 
is stable when 0 -< p2 < a2, unstable (divergence) when az -< 
p2 < a~, and again stable when a~ < p2. Or expressed in 
behavior of eigenvalues: with the increase ofp  z two pure imagi- 
nary eigenvalues ~. : _+ ia~ (with smallest absolute value) collide 
in )~ = 0 (double eigenvalue) at p2 = a2, and then split along 
the real axis into X = _+a, as shown in Fig. 1. (When p2 = a~, 
a "reversed" collision in X = 0 is happening.) 

There exists only one eigenvector ~1 : [0 /3I t ,  (/3 :~ 0), to 
the double eigenvalue )t = 0. According to ~, a solution to 
system ( I )  in this case is of the form u = ~2 + ~ l t  where 
K alP2 = -G(I)i such that 13~ 2 = [2 ~ /3/(a~ - az)y]  r (y  
arbitrary). Therefore we are dealing with class I in the terminol- 
ogy of ~. But the eigenvalues have no real parts for pZ < a2. 
Thus the conjecture is not true. 

Notice also that the eigenvalues of a conservative gyroscopic 
system are placed in the complex plane symmetrically with 
respect to the real as well as to the imaginary axis. Therefore 
a double zero eigenvalue should, according to the conjecture, 
change into four complex eigenvalues with nonzero real part. 

Finally, we would mention that the theory of interaction of 
eigenvalues in vibrational systems with finite degrees-of-free- 

Renshaw, A. A., and Mote, C. D., Jr., 1996, "Local Stability of Gyroscopic 
Systems Near Vanishing Eigenvalues," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 63, pp. 116-120. 
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• Im(t) 

~ae(~) [°- 
Fig. 1 Behavior of eigenvalues in the neighborhood of ~ = 0 

dom has been developed recently by Seyranian (199l ,  1993a, 
b) .  This theory is essential to reveal the mechanism of transition 
between divergence, flutter, and stability for gyroscopic sys- 
tems. 
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Author's Closure 3 

We thank Dr. Seyranian for his interest in our paper, but the 
example he gives supports the conjecture we proposed rather 
than prove it false. 

The conjecture states that when the eigenfunction of a van- 
ishing eigenvalue has a nonzero velocity (class I) ,  such as the 
eigenfunction described in his Discussion example, then the 
eigenvalue locus plotted as a function of a system parameter will 
have a nonzero real part in the neighborhood of the vanishing 
eigenvalue, indicating instability. This nonzero real part may 
occur when the system parameter is either increased or de- 
creased, as explicitly stated in the conjecture. 

In the Discussion example, the eigenvalues have no real parts 
f o r p  2 < a2, but they do have nonzero real parts for pa > a2. 
Hence, in the neighborhood of p2 = a2 the eigenvalue locus 
has a nonzero real part and is unstable, as predicted by the 
conjecture. 

Several of the examples given in the paper show the same 
eigenvalue behavior as the Discussion example, specifically, the 
first critical speeds of the axially moving beam (example 1 ), 
and the axisymmetric rotating disk with spring loading (exam- 
ple 3). In each case, the eigenvalues below the first critical 
speed must be imaginary because the operator K is positive 
definite at these speeds. In these cases, as in the Discussion 
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example, the conjecture predicts correctly whether the repeated 
eigenvalue is a simple, eigenvalue crossing or whether diver- 
gence instability is impending as the speed or p is increased. 

The Elastic Field in a Half-Space With a Cir- 
cular Cylindrical Inclusion 4 

H. Y. Yu s. This paper presents a method to obtain ana- 
lytical solutions of the elastic field due a cylindrical inclusion 
with uniform eigenstrain in a half-space. The solutions are ex- 
pressed as functions of the complete elliptic integrals of the 
first, second, and third kind that represent the harmonic and 
biharmonic potentials due to the inclusion and its mirror images. 
The method for obtaining these potentials and their derivatives 
was given by the authors in two previous papers (Wu and Du, 
1995a, 1995b) for a cylindrical inclusion in an infinite solid. 
The writer would like to point out that by using the method 
given by the authors for expressing the potentials and their 
derivatives in terms of complete elliptic integrals, the solutions 
of the elastic field due to a cylindrical inclusion in two joined 
isotropic semi-infinite solids, in an infinite transversely isotropic 
solid, and in two joined semi-infinite transversely isotropic sol- 
ids can be readily obtained after proper, simple coordinate trans- 
formations (Yu and Sanday, 1991; Yu et al., 1994, 1995). 

In addition to this, the writer has two points to discuss regard- 
ing the methodology used in all three papers by the authors. 
First, when s = - z  2, the denominator h + k 2 in Eq. (24) (Wu 
and Du, 1995a) is zero. To avoid the tedious tasks for obtaining 
the stress and strain by using Eqs. (24) and (A3) (ibid.), the 
expressions for the function 13 given by Eq. (A3) can be ob- 
tained directly from the table of integrals (Gradshteyn and Ryz- 
hik, 1980) as 

z ,  : 2 

when s = - z  2. Secondly, to simplify the expressions and to 
reduce the number of integrations (I~,  Lj . . . . .  T~j, T,jkT~k~ . . . . .  
where i, j ,  k, l = 1, 2, 3) needed for the solutions, one could 
perform the integration of the Green's  functions over the vol- 
ume of the inclusion first and then differentiate them with re- 
spect to x~, x2, and x3. For example 

02 
l~i = 16~j - - - F  

Ox~ON 

where 

F ( x i ,  X2, Z) 

= f f lx - x'ldx;dx  

4 3 = ~{(a 2 - x~ - x~)[11  + 2 z 2 I  2 + z l ( x l , x 2 ,  z ,  0)] 

+ ( I  II + 2 z Z l  I + z412) _ 27rlz31 }. 

Finally, possibly misprinted, the coordinate r, shown as equal 
to Ix - x ' l  should have been equal to [(x~ - x'~) 2 + (x2 - 

x;)2] '~ 
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Author's Closure 6 

The authors are indebted to Dr. Yu for his comment where 
two points concerning the methodology used in the papers are 
discussed. First, Dr. Yu points out that when s = - z  2, 13 
( x l ,  x2, z ,  s )  can be expressed by the complete elliptic integral 
of the second kind. In fact, this special case has been included 
in Eq. (A3) (Wu and Du, 1995a) and can be obtained by the 
relation 

E ( k )  _ F l ( _ k 2  ' k ) .  
l - -  k 2 

To avoid excessive formulations, we did not represent the de- 
generate expression of Eq. (A3) in the paper. When s = - z  2, 
if the above equation is substituted in Eq. (24) (Wu and Du, 
1995a), we find that there is no singularity. 

Secondly, it seems that a simple method is given in per- 
forming the integration of Green's  functions. However, I doubt 
that it is not easy to solve the second derivative of function F. 
Finally, Dr. Yu points out that there is a typing error in Wu 
and Du (1995a). The authors then notice a similar typing error 
in Wu and Du (1995b) where r, shown as equal to Ix - x '  ], 
should have been equal to [(xl - x'l) 2 + (x2 - x~) 2] ~J2. 
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An Integral-Equation Formulation for Aniso- 
tropic Elastostatics 7 

C. Song and J. P. Wolf, 8 This paper describes an efficient 
integral-equation formulation for the numerical analysis of ho- 
mogeneous anisotropic linear elastic problems. As the funda- 
mental solution of isotropic elastostatics is used, the boundary 
integrals are evaluated more straightforwardly and efficiently 
than when the fundamental solution of anisotropic elastostatics 
is applied. However, besides the discretization on the boundary, 
it is necessary to discretize the domain into internal cells, but 
the number of variables is not increased. 
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